
Math 5750-1: Game Theory
Midterm Exam with solutions
Mar. 6, 2015

You have a choice of any four of the five problems. (If you do all 5, each
will count 1/5, meaning there is no advantage.) This is a closed-book exam,
and calculators are not allowed or needed. Cell phone/Internet use is prohibited.
Show your work so that you can get partial credit in the case of a wrong answer.

1. A position in the game of Rims is a finite set of dots in the plane, possibly
separated by some nonintersecting closed loops. A move consists of drawing a
closed loop passing through any positive number of dots (at least one) but not
touching any other loop. Players alternate moves and the last to move wins.

(a) Explain why this game is a disguised form of nim.

Sol. Instead of several piles of chips, we have several clusters of dots sepa-
rated by loops (excluding those that have been crossed by a loop). Instead of
removing k chips from a pile, we can draw a closed loop through k of the dots in
a cluster. (Technically, there is a small difference between this game and nim.
You can split a pile after you remove a chip by drawing your loop to enclose
some but not all of the dots.)

(b) In the position given in the figure below, find a winning move, if any.

6. Suppose that at each turn a player may (1) remove one chip if it is a whole pile,
or (2) remove two or more chips and, if desired, split the remaining chips into two piles.
Find the Sprague-Grundy function.

7. Suppose that at each turn a player may select one pile and remove c chips if c = 1
(mod 3) and, if desired, split the remaining chips into two piles. Find the Sprague-Grundy
function.

8. Rims. A position in the game of Rims is a finite set of dots in the plane, possibly
separated by some nonintersecting closed loops. A move consists of drawing a closed loop
passing through any positive number of dots (at least one) but not touching any other
loop. Players alternate moves and the last to move wins.
(a) Show that this game is a disguised form of nim.
(b) In the position given in Figure 4.2, find a winning move, if any.

Figure 4.2 A Rims Position

9. Rayles. There are many geometric games like Rims treated in Winning Ways,
Chapter 17. In one of them, called Rayles, the positions are those of Rims, but in Rayles,
each closed loop must pass through exactly one or two points.
(a) Show that this game is a disguised form of Kayles.
(b) Assuming the position given in Figure 4.2 is a Rayles position, find a winning move, if
any.

10. Grundy’s Game. (a) Compute the Sprague-Grundy function for Grundy’s
game, Example 4 Section 4.4, for a pile of n chips for n = 1, 2, . . . , 13.
(b) In Grundy’s game with three piles of sizes 5, 8, and 13, find all winning first moves, if
any.

11. A game is played on a finite (undirected) graph as follows. Players alternate
moves. A move consists of removing a vertex and all edges incident to that vertex, with
the exception that a vertex without any incident edges may not be removed. That is, at
least one edge must be removed. Last player to move wins. Investigate this game. For
example,
(a) Find the Sprague-Grundy value of Sn, the star with n points. (The star with n points
is the graph with n + 1 vertices and n edges that share a common vertex.)
(b) Find the Sprague-Grundy value of Ln, the line of n edges and n + 1 vertices (at least
for small values of n).
(c) Find the Sprague-Grundy value of Cn, the circular graph of n vertices and n edges.
(d) Find the Sprague-Grundy value of a double star. (A double star is a graph of two stars
joined by a single edge.)

I – 27

Figure 1: A position in the game of Rims.

Sol. The cluster sizes are 4, 5, and 3. So we play nim with pile sizes 4, 5,
and 3.

4 = 1 0 0

5 = 1 0 1

3 = 0 1 1

The nim sum is 0 1 0 = 2, so we must reduce pile 3 to 1 chip to make the nim
sum equal to 0. The equivalent move in Rims is to draw a loop through two of
the three dots that are outside of each of the loops.
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2. Suppose that at each turn a player may select one pile and remove c chips
if c− 1 is divisible by 3 and, if desired, split the remaining chips into two piles.

(a) Find the Sprague–Grundy function g(x) for a pile of size x = 0, 1, . . . , 8.
(Check your work—it’s easy to make a mistake.)

Sol. We use a table to find the SG function g(x). Some students read the
rules carelessly. Notice that we must remove 1, 4, or 7 chips (if pile size is 8 or
less) and then we may or may not split the remainder of that pile into two piles.

x F (x) g(F (x)) g(x)

0 ∅ ∅ 0
1 0 0 1
2 1 1 0
3 2, (1, 1) 0 1
4 0, 3, (1, 2) 0, 1 2
5 1, 4, (1, 3), (2, 2) 0, 1, 2 3
6 2, 5, (1, 1), (1, 4), (2, 3) 0, 1, 3 2
7 0, 3, 6, (1, 2), (1, 5), (2, 4), (3, 3) 0, 1, 2 3
8 1, 4, 7, (1, 3), (2, 2), (1, 6), (2, 5), (3, 4) 0, 1, 2, 3 4

(b) Find a winning first move if initially there are piles of sizes 6, 7, and 8.

Sol. g(6) ⊕ g(7) ⊕ g(8) = 2 ⊕ 3 ⊕ 4 = 5 To make this 0, we can change it to
2⊕ 3⊕ 1 = 0, so we must reduce the pile of 8 to a size that has g-value 1. That
means reducing it to 3 chips or 1 chip. Only one of these is a legal move, so we
must reduce the pile of 8 to a single chip.
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3. (a) Find a 2×2 payoff matrix A with optimal strategies p∗ = (4/7, 3/7)T

for player I and q∗ = (5/7, 2/7)T for player II.

Sol. We apply the formulas for the optimal p∗ = (p∗, 1 − p∗)T and q∗ =
(q∗, 1 − q∗)T .

p∗ =
c− d

a− b + c− d
=

4

7
if a− b = 3 and c− d = 4.

q∗ =
c− b

a− b + c− d
=

5

7
if a− d = 2 and c− b = 5.

It follows that b = a− 3, c = b+ 5 = a+ 2, and d = c− 4 = a− 2, so the desired
matrix is (

a a− 3
a− 2 a + 2

)
for an arbitrary a. Take a = 0 to get one possible answer,(

0 −3
−2 2

)
,

which has value V = −6/7.

(b) By adding a constant to each entry of A if necessary, arrange it so that
the value of the game is V = 1/7. (The optimal strategies will not change.)

Sol. We can add 1 to each entry (or take a = 1 above) to get(
1 −2

−1 3

)
,

which has value V = −6/7 + 1 = 1/7.
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4. In Mendelsohn games, two players simultaneously choose a positive inte-
ger. Both players want to choose an integer larger but not too much larger than
the opponent. Here is a simple example. The players choose an integer between
1 and 100. If the numbers are equal there is no payoff. The player that chooses
a number one larger than that chosen by his opponent wins 1. The player that
chooses a number two or more larger than his opponent loses 2. The payoff
matrix is 

1 2 3 4 5 · · ·
1 0 −1 2 2 2 · · ·
2 1 0 −1 2 2 · · ·
3 −2 1 0 −1 2 · · ·
4 −2 −2 1 0 −1 · · ·
5 −2 −2 −2 1 0 · · ·
...

...
...

...
...

...
. . .

.

(a) Eliminate dominated strategies, reducing the game to a 3 × 3 game.

Sol. We notice that row 1 dominates rows 4, 5, 6, and so on. By symmetry,
column 1 dominates columns 4, 5, 6, and so on. We are left with rows 1–3 and
columns 1–3, that is,

A =


1 2 3

1 0 −1 2
2 1 0 −1
3 −2 1 0


(b) Solve the 3 × 3 game by finding an optimal mixed strategy for player I.

You may guess a mixed strategy, use a formula, or use the equilibrium theorem.
In any case, verify that your mixed strategy for player I is indeed optimal. (The
game is symmetric, so the value of the game is 0 and an optimal mixed strategy
for player I is also optimal for player II.)

Sol. We had a formula for the solution of a 3 × 3 symmetric game, which
implies that (p∗)T = (1/4, 1/2, 1/4). If you didn’t remember the formula, you
could have used the equilibrium theorem and solve the system Ap = 0 with
p1 + p2 + p3 = 1. This gives −p2 + 2p3 = 0, p1 − p3 = 0, −2p1 + p2 = 0, and
p1 + p2 + p3 = 0. Thus, p1 = p3 and p2 is twice p1. In other words, p1, p2, p3
are proportional to 1, 2, 1, and the stated result follows.

To verify that this p∗ is a solution, it is enough to show that (p∗)TA = 0T ,
or Ap∗ = 0, both of which are immediate.

Several people came up with (p∗)T = (1/3, 1/3, 1/3), but they neglected to
check whether this is a solution. Note that Ap∗ = (1/3, 0,−1/3)T .
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5. Solve the game with payoff matrix

( 1 2 3 4 5

1 11 −5 7 1 −2
2 −10 6 −8 −6 4

)
,

i.e., find the value of the game and optimal strategies for player I (row player)
and player II (column player) in terms of the original game.

Sol. Here we cheat slightly and use a computer to plot the straight lines.

Plot@811 p - 10 H1 - pL, -5 p + 6 H1 - pL,
7 p - 8 H1 - pL, p - 6 H1 - pL, -2 p + 4 H1 - pL<, 8p, 0, 1<D

0.2 0.4 0.6 0.8 1.0

-10

-5

5

10

We see that the lower envelope is maximized at about p = 2/3 at the inter-
section of the line connecting (0,−6) and (1, 1) and the line connecting (0, 6)
and (1,−5). So it suffices to solve the game

( 2 4

1 −5 1
2 6 −6

)
.

There is no saddle point, so the optimal strategy for player I is (2/3, 1/3)T

and the optimal strategy for player II is (7/18, 11/18)T , and the game’s value is
V = −4/3. Returning to the original 2×5 game, the optimal strategy for player
I is p = (2/3, 1/3)T and for II is q = (0, 7/18, 0, 11/18, 0)T , and the game’s value
is V = −4/3.
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