
Applied Numerical Mathematics 93 (2015) 87–106
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

High-order accurate difference potentials methods for 

parabolic problems

Jason Albright, Yekaterina Epshteyn ∗, Kyle R. Steffen

Department of Mathematics, The University of Utah, Salt Lake City, UT, 84112, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 22 August 2014

Keywords:
Difference potentials
Boundary projections
Cauchy’s type integral
Parabolic problems
Variable coefficients
Heterogeneous media
High-order finite difference schemes
Difference Potentials Method
Immersed Interface Method
Interface/composite domain problems
Non-matching interface conditions
Non-matching grids
Parallel algorithms

Highly-accurate numerical methods that can efficiently handle problems with interfaces 
and/or problems in domains with complex geometry are crucial for the resolution of 
different temporal and spatial scales in many problems from physics and biology. In this 
paper we continue the work started in [8], and we use modest one-dimensional parabolic 
problems as the initial step towards the development of high-order accurate methods 
based on the Difference Potentials approach. The designed methods are well-suited for 
variable coefficient parabolic models in heterogeneous media and/or models with non-
matching interfaces and with non-matching grids. Numerical experiments are provided to 
illustrate high-order accuracy and efficiency of the developed schemes. While the method 
and analysis are simpler in the one-dimensional settings, they illustrate and test several 
important ideas and capabilities of the developed approach.

© 2014 Published by Elsevier B.V. on behalf of IMACS.

1. Introduction

Designing numerical methods with high-order accuracy for problems with interfaces (for example, models for composite 
materials or fluids, etc.), as well as models in domains with complex geometry is crucial to many physical and biological ap-
plications. Moreover, interface problems result in non-smooth solutions (or even discontinuous solutions) at the interfaces, 
and therefore standard numerical methods (finite-difference, finite-element methods, etc.) in any dimension (including 1D) 
will very often fail to produce accurate approximation of the solutions to the interface problems, and thus special numer-
ical algorithms have to be developed for the approximation of such problems (for instance, see simplified 1D example of 
interface problem in [8], page 12 and Table 7 on page 14).

There is extensive literature that addresses problems in domains with irregular geometries and interface problems. 
Among finite-difference based methods for such problems are the Immersed Boundary Method (IB) ([24,25], etc.), the Im-
mersed Interface Method (IIM) ([14–16,1,12], etc.), the Ghost Fluid Method (GFM) ([9,17,18,10], etc.), the Matched Interface 
and Boundary Method (MIB) ([42,39,41,40], etc.), and the method based on the Integral Equations approach ([20], etc.). 
Among the finite-element methods for interface problems are ([2,4,35,22,38,37], etc.). These methods are robust sharp in-
terface methods that have been applied to solve many problems in science and engineering. For a detailed review of the 
subject the reader can consult, for example, [16]. However, in spite of great advances in the numerical methods (finite-difference, 
finite-element, etc.) for interface problems it is still a challenge to design high-order accurate methods for such problems. To the best of 
our knowledge, there are currently only a few high order (higher than second order in space) schemes for parabolic interface problems 
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[10]. In [10], the high-order (fourth-order in space) GFM is constructed for the 2D heat equation under the assumption of 
the Dirichlet boundary conditions at the interfaces, and extended (as the third-order method) to the Stefan problem as well. 
Note, that the method in [10] is developed for the piecewise constant coefficients problems.

We develop here an approach based on the Difference Potentials Method (DPM) [28,31] (see about DPM for example 
in, [28,31,11,19,32,36,21,23,29,34,6–8], etc.). The DPM allows one to reduce uniquely solvable and well-posed boundary 
value problems to pseudo-differential boundary equations with projections. Methods based on Difference Potentials ([28,
29,34,7,8,21,30], etc.) introduce computationally simple auxiliary domains. After that, the original domains/subdomains are 
embedded into simple auxiliary domains (and the auxiliary domains are discretized using Cartesian grids). Next, methods 
based on Difference Potentials construct discrete pseudo-differential Boundary Equations with Projections to obtain the values 
of the solutions at the points near the continuous boundaries of the original domains (at the points of the discrete grid 
boundaries which approximate the continuous boundaries from the inside and outside of the domains). Using the obtained 
values of the solutions at the discrete grid boundaries, the approximation to the solution in each domain/subdomain is 
constructed through the discrete generalized Green’s formulas.

The main complexity of methods based on Difference Potentials reduces to several solutions of simple auxiliary problems 
on structured Cartesian grids. Methods based on Difference Potentials approach are not restricted by the type of the bound-
ary or interface conditions (as long as the continuous problems are well-posed), and are also computationally efficient since 
any change of the boundary/interface conditions affects only a particular component of the overall algorithm, and does not 
affect most of the numerical algorithm (see [28], or some example of the recent works [3,29,34,7,8], etc.). Finally, unlike 
many existing finite-difference based methods for interface problems, the Difference Potentials approach is well-suited for 
the development of parallel algorithms for such problems, see [29,34,7] – examples of the second-order in space schemes 
based on the Difference Potentials for 2D interface/composite domain problems and see Section 4 below. The reader can 
consult [28,31] and [26,27] for a detailed theoretical study of the methods based on Difference Potentials, and ([28,31,19,
32,36,33,21,3,13,11,30,23,29,34,6–8], etc.) for the recent developments and applications of DPM.

In this paper, we extend the work on high-order methods started in [8] to variable coefficient parabolic models. We begin 
here with the modest consideration of one-dimensional variable coefficient parabolic interface models, and we develop and 
numerically test high-order accurate methods based on Difference Potentials methodology. At this point we are not aware 
of any other high-order (higher than second-order in space) method for the parabolic interface problems in heterogeneous media. 
Moreover, numerical experiments in Section 6 indicate that the developed method preserves high-order accuracy on the interface 
problems (including problems with discontinuous diffusion coefficients at the interface and jump conditions in the solution at the 
interface), not only in the solution, but also in the discrete gradient of the solution. To the best of our knowledge, the present work is also 
the first extension (at this point, in modest 1D settings) of the Difference Potentials approach for the construction of high-order accurate 
numerical schemes for parabolic problems. Although, the method and analysis are simpler in the current one-dimensional 
settings, they illustrate and test several important ideas and abilities of the Difference Potentials approach with application 
to interface problems. Let us note that, previously in [7], we have developed an efficient (second-order accurate in space and 
first-order accurate in time) scheme based on Difference Potentials approach for 2D interface/composite domain constant 
coefficient parabolic problems. The second-order in space method developed in [7] can handle non-matching interface 
conditions on the solution (as well as non-matching grids between each subdomain), and is well-suited for the design of 
parallel algorithms. However, it was constructed and tested for the solution of the heat equation in irregular domains and/or 
with interfaces.

The paper is organized as follows. In Section 2, we introduce the formulation of the problem. Next, to illustrate the 
unified approach behind the construction of DPM with different orders of accuracy, we construct DPM with second and 
with fourth-order accuracy in space in Section 3.1 for a single domain 1D parabolic model. In Section 4, we extend the 
developed methods to one-dimensional parabolic interface/composite domain model problems. In Section 5 for the reader’s 
convenience we give a brief summary of the main steps of the presented algorithms. Finally, we illustrate the performance of 
the proposed Difference Potentials Methods, as well as compare Difference Potentials Methods with the Immersed Interface 
Method, in several numerical experiments in Section 6. Some concluding remarks are given in Section 7.

2. Parabolic interface models

We are concerned in this work with a 1D parabolic interface (with fixed interface at this point) problem of the form: 
denote, ut − L1[u] ≡ ut − (k1ux)x , and ut − L2[u] ≡ ut − (k2ux)x , thus

ut − L1[u] = f1, x ∈ I1, (2.1)

ut − L2[u] = f2, x ∈ I2, (2.2)

subject to the Dirichlet boundary conditions specified at the points x = 0 and x = 1:

u(0, t) = a(t), and u(1, t) = b(t), (2.3)

interface conditions at α:

β1u1(α, t) − β2u2(α, t) = φ(t), β̃1u1x(α, t) − β̃2u2x(α, t) = φ̃(t) (2.4)
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and an initial condition

u(x,0) = u0(x), (2.5)

where u(x, t) ≡ u1(x, t), x ∈ I1 := [0, α) ⊂ I0
1 and u(x, t) ≡ u2(x, t), x ∈ I2 := (α, 1] ⊂ I0

2. I1 ⊂ I0
1 and I2 ⊂ I0

2 are two subdo-
mains of the domain I := [0, 1], 0 < α < 1 is the interface point, β1, β2, β̃1, β̃2 are the coefficients independent of time, 
and I0

1 and I0
2 are some auxiliary subdomains that contain the original subdomains I1 and I2, respectively. The functions 

k1(x) ≥ 1 and k2(x) ≥ 1 are sufficiently smooth functions defined in a larger auxiliary subdomains I0
1 and I0

2, respectively. 
We assume here that the coefficients k1(x) and k2(x) depend only on the space variable, but the presented ideas below can 
be directly extended to time-dependent coefficients as well. f1(x, t) and f2(x, t) are sufficiently smooth functions defined 
in each subdomain I1 and I2, respectively. Note, we assume that the operator on the left-hand side of Eq. (2.1) and the 
operator on the left-hand side of Eq. (2.2) are well-defined on some larger auxiliary domains I0

1 and I0
2, respectively. More 

precisely, we assume that for any sufficiently smooth functions on the right-hand side of (2.1)–(2.2), Eqs. (2.1) and (2.2)
have a unique solution on I0

1 and I0
2, which satisfies the given boundary and initial conditions on ∂ I0

1 and ∂ I0
2, respectively.

Remark. The Dirichlet boundary conditions (2.3) are chosen only for the purpose of illustration and the developed methods 
based on Difference Potentials are not restricted by any type of boundary conditions (as long as the problem is well-posed).

3. Single domain

Our goal is to construct a high order approximation based on the Difference Potentials idea for the parabolic in-
terface/composite domain problem (2.1)–(2.5). To simplify the presentation, similar to work [8], we will first state the 
high-order methods for the single domain problem. Denote, ut − L[u] ≡ ut − (kux)x , then

ut − L[u] = f , x ∈ I (3.1)

subject to the Dirichlet boundary conditions specified at the points x = 0 and x = 1:

u(0, t) = a(t), and u(1, t) = b(t), (3.2)

and the initial conditions

u(x,0) = u0(x) (3.3)

and then extend the developed ideas in a straightforward way, to the interface/composite domain problem (2.1)–(2.5) in 
Section 4, and comment only on the technical differences.

As before, I = [0, 1], the function k(x) ≥ 1 is a sufficiently smooth function defined in some auxiliary domain I0, such 
that I ⊂ I0 and f (x, t) is sufficiently smooth function defined in I . We also assume that the model problem (3.1)–(3.3) is 
well-posed, and that the operator on the left-hand side of Eq. (3.1) is well-defined on some larger auxiliary domain I0. Let 
us now introduce and define the main steps of the Difference Potentials approach [31,28].

3.1. High-order accurate methods based on difference potentials for parabolic problems in heterogeneous media

We will present below (at this point, using simple one-dimensional settings), a methodology based on Difference Po-
tentials approach to construct high-order methods for time-dependent problems with variable coefficients in heterogeneous 
media, as well as non-matching interface conditions and non-matching grids. However, major principles of this framework 
will stay the same when applied to the numerical approximation of the models in domains with complex geometry in 2D 
and 3D, and subject to general boundary conditions.

To develop the methods in this paper, we will consider a time-discrete version of the continuous model (3.1) and we will 
employ the elliptic structure of the time-discrete reformulation of the problem. Furthermore, to illustrate and implement 
the ideas in an efficient way, we will apply below a trapezoidal second-order in time scheme along with the second and 
fourth-order finite-difference methods for the space discretization. However, the approach based on Difference Potentials 
which will be developed below is general, and can be employed in a similar way with any (most suitable) underlying 
high-order discretization of the given continuous problem in space, as well as time discretizations (such as high order IMEX 
methods, etc.).

Introduction of the Auxiliary Domain in Space:
Place the original domain I in the auxiliary domain I0 := [c, d] ⊂R. Next, introduce a Cartesian mesh for I0, with points 

x j = c + j�x, ( j = 0, 1, ..., N0). Let us assume for simplicity that �x := h = d−c
N0 . Note that the boundary points x = 0 and 

x = 1 will typically fall between grid points, say xl ≤ 0 ≤ xl+1 and xL ≤ 1 ≤ xL+1 (for the 3-point second order scheme); and 
between grid points xl < xl+1 ≤ 0 ≤ xl+2 < xl+3 and xL < xL+1 ≤ 1 ≤ xL+2 < xL+3 (for the 5-point fourth order scheme), see 
Fig. 1 and Fig. 2 (from [8]).
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Fig. 1. Example of the auxiliary domain I0, original domain I = [0, 1], and the example of points in set γ = {xl, xl+1, xL , xL+1} for the 3-point second-order 
method.

Fig. 2. Example of the auxiliary domain I0, original domain I = [0, 1], and the example of points in set γ = {xl, xl+1, xl+2, xl+3, xL , xL+1, xL+2, xL+3} for the 
5-point fourth-order method.

Define a stencil Nκ
j := N3

j or Nκ
j := N5

j with its center placed at x j , to be a 3-point central finite-difference stencil of the 
second-order method, or a 5-point central finite-difference stencil of the fourth-order method, respectively:

Nκ
j := { j − 1, j, j + 1}, κ = 3, or (3.4)

Nκ
j := { j − 2, j − 1, j, j + 1, j + 2}, κ = 5 (3.5)

Next, define a point set M0, the set of all the grid nodes x j that belong to the interior of the auxiliary domain I0; M+ :=
M0 ∩ I , the set of all the grid nodes x j that belong to the interior of the original domain I; and M− := M0\M+ , the set of 
all the grid nodes x j that are inside of the auxiliary domain I0, but belong to the exterior of the original domain I . Define 
N+ := {⋃ j Nκ

j |x j ∈ M+}, the set of all points covered by the stencil Nκ
j when the center point x j of the stencil goes through 

all the points of the set M+ ⊂ I . Similarly, define N− := {⋃ j Nκ
j |x j ∈ M−}, the set of all points covered by the stencil Nκ

j

when the center point x j of the stencil goes through all the points of the set M− .
After that, define the discrete grid boundary set γ := N+ ∩ N− . The mesh nodes from set γ straddle the boundary ∂ I ≡

{0, 1}. In case of the second-order method, the set γ contains four mesh nodes γ = {l, l + 1, L, L + 1}, see Fig. 1. In case 
of the fourth-order method, the set γ contains eight mesh nodes γ = {l, l + 1, l + 2, l + 3, L, L + 1, L + 2, L + 3}, see Fig. 2. 
Finally, define N0 := {⋃ j Nκ

j |x j ∈ M0} ⊂ I0.

As in [8], the point sets N0, M0, N+ , N− , M+ , M− , γ are used to develop high-order methods based on the Difference 
Potentials idea.

Construction of the difference equations:
The time discrete reformulation of the parabolic problem (3.1) using the trapezoidal scheme in time is:
Given solution ui at the previous time level, find ui+1 such that

L�t
[
ui+1] = F i+1, (3.6)

here, the operator L�t[ui+1] denotes the linear elliptic operator applied to ui+1 ≈ u(x, ti+1) which can be written in one of 
the forms:

L�t
[
ui+1] := (

kui+1
x

)
x − mui+1, or (3.7)

L�t
[
ui+1] := (

kxui+1
x + kui+1

xx

) − mui+1, (3.8)

where m := 2
�t and �t is the time step. For the development of the second-order in space scheme, we will employ the 

linear operator, L�t[ui+1] in the form of (3.7), and (3.8) for the fourth-order space discretization. The right-hand side in 
(3.6) is

F i+1 := −(
f
(
x, ti) + f

(
x, ti+1)) − L+

�t

[
ui], (3.9)

here

L+
�t

[
ui] := (

kui
x

)
x + mui

which corresponds to L�t[ui+1] in the form of (3.7), or

L+
�t

[
ui] := (

kxui
x + kui

xx

) + mui

which corresponds to L�t[ui+1] in the form of (3.8).
The fully discrete version of the problem (3.6) is: find ui+1 ∈ N+ such that
j
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L�t,h
[
ui+1

j

] = F i+1
j , x j ∈ M+ (3.10)

Similarly to the work [8], the fully discrete system of Eqs. (3.10) is obtained here by discretizing (3.6) with the standard 
second-order 3-point central finite difference scheme (3.11) (if second-order accuracy is desired), or with the fourth-order 
5-point central finite difference scheme in space (3.12) (if fourth-order accuracy is desired).

Here and below, by L�t,h we denote the discrete linear operator obtained using either the second, or the fourth-order 
approximation to (3.6), and by F i+1

j , the corresponding discrete version of the right-hand side F i+1.

Second-order scheme:

L�t,h
[
ui+1

j

] := 1

h2

(
k j+ 1

2
ui+1

j+1 − (k j+ 1
2

+ k j− 1
2
)ui+1

j + k j− 1
2

ui+1
j−1

)
) − mui+1

j . (3.11)

The coefficients k j+ 1
2

:= k(x j+ 1
2
) and x j+ 1

2
is the middle point of the interval [x j, x j+1].

Fourth-order scheme:

L�t,h
[
ui+1

j

] := k j

−ui+1
j−2 + 16ui+1

j−1 − 30ui+1
j + 16ui+1

j+1 − ui+1
j+2

12h2

+ (kx) j

ui+1
j−2 − 8ui+1

j−1 + 8ui+1
j+1 − ui+1

j+2

12h
− mui+1

j , (3.12)

and the coefficients k j := k(x j), (kx) j := kx(x j). The right-hand side for the second-order and for the fourth-order is given as

F i+1
j := −(

f
(
x j, ti) + f

(
x j, ti+1)) − L+

�t,h

[
ui

j

]
, (3.13)

where for the second-order scheme:

L+
�t,h

[
ui

j

] := 1

h2

(
k j+ 1

2
ui

j+1 − (k j+ 1
2

+ k j− 1
2
)ui

j + k j− 1
2

ui
j−1

)
) + mui

j, and

for the fourth-order scheme:

L+
�t,h

[
ui

j

] := k j

−ui
j−2 + 16ui

j−1 − 30ui
j + 16ui

j+1 − ui
j+2

12h2

+ (kx) j

ui
j−2 − 8ui

j−1 + 8ui
j+1 − ui

j+2

12h
+ mui

j .

See [8] for more details on the space discretization.
In general, at each time level ti+1, the linear system of difference equations (3.10) will have multiple solutions since we 

did not impose any discrete boundary or initial conditions. Once we complete the system (3.10) with the appropriate choice 
of the numerical boundary and initial conditions, the scheme will result in an accurate approximation of the continuous 
problem in domain I . Similar to the work [8], we will develop here an approach based on the idea of Difference Potentials 
[28,31].

General discrete auxiliary problem:
One of the major steps of the DPM is the introduction of the auxiliary problem, which we will denote as (AP) and define 

as follows:

Definition 3.1. The problem of solving (3.14)–(3.15) is referred to as the discrete auxiliary problem (AP): at each time level 
ti+1, for the given grid function qi+1 ∈ M0, find the solution vi+1 ∈ N0 of the following system of equations:

L�t,h
[
vi+1

j

] = qi+1
j , x j ∈ M0, (3.14)

vi+1
j = 0, x j ∈ N0\M0. (3.15)

Here, L�t,h is the same linear discrete operator as in (3.10), but now it is defined on the larger auxiliary domain I0. It 
is applied in (3.14) to the function vi+1 ∈ N0. We note that for small enough h and �t (and under the above assumptions 
on the continuous problem), the (AP) (3.14)–(3.15) is well defined for any right hand side qi+1

j : it has a unique solution 
vi+1 ∈ N0. In this work, we supplemented the discrete (AP) (3.14) by the zero boundary conditions (3.15). In general, the 
boundary conditions for (AP) are selected to guarantee that the discrete equation L�t,h[vi+1

j ] = qi+1
j has a unique solution 

vi+1 ∈ N0 for any discrete right-hand side, qi+1.
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Remark. The solution of the (AP) (3.14)–(3.15) defines a discrete operator, Gh
�t (the inverse operator to L�t,h). Although the 

choice of boundary conditions (3.15) will affect the operator, Gh
�t , and hence the difference potentials and the projections 

defined below, it will not affect the final approximation to the solution of (3.1)–(3.3), as long as the (AP) is uniquely solvable 
and well-posed.

Construction of a particular solution:
Let us denote by ui+1

j := Gh
�t F i+1

j , ui+1
j ∈ N+ , the particular solution (restricted to set N+) of the discrete problem (3.10), 

which is constructed at each time level ti+1 as the solution of the auxiliary problem (AP) (3.14)–(3.15) of the following 
form:

L�t,h
[
ui+1

j

] =
{

F i+1
j , x j ∈ M+,

0, x j ∈ M−,
(3.16)

ui+1
j = 0, x j ∈ N0\M0 (3.17)

Remark. The right-hand side of (3.14) in (AP) for the construction of a particular solution is set to

qi+1
j =

{
F i+1

j , x j ∈ M+,

0, x j ∈ M−,
(3.18)

with F i+1
j given in (3.13).

Construction of the boundary equations with projections:
i. Difference potential:
Introduce a linear space, Vγ of all the grid functions denoted by vi+1

γ defined on γ ([28], see also [8,29,34,7], etc.). We 
will extend the value vi+1

γ by zero to other points of the grid N0.

Definition 3.2. The Difference Potential at time level ti+1 with any given density vi+1
γ ∈ Vγ is the grid function ui+1

j :=
PN+γ vi+1

γ , defined on N+ , and coincides on N+ with the solution ui+1
j of the auxiliary problem (AP) (3.14)–(3.15) of the 

following form:

L�t,h
[
ui+1

j

] =
{

0, x j ∈ M+,

L�t,h[vi+1
γ ], x j ∈ M−,

(3.19)

ui+1
j = 0, x j ∈ N0\M0 (3.20)

Remark. The right-hand side of (3.14) in (AP) for constructing a difference potential with density vi+1
γ is set to

q j =
{

0, x j ∈ M+,

L�t,h[vi+1
γ ], x j ∈ M−.

(3.21)

The Difference Potential with density vi+1
γ ∈ Vγ is the discrete inverse operator. Here, PN+γ denotes the operator that 

constructs the difference potential, ui+1
j = PN+γ vi+1

γ from the given density vi+1
γ ∈ Vγ . The operator PN+γ is the linear 

operator of the density vi+1
γ , and it can be easily constructed as in [8]:

ui+1
p =

∑
j∈γ

A jp vi+1
j , xp ∈ N+

Here, by ui+1
p we denote the value at the grid point xp of the Difference Potential P N+γ vi+1

γ with the density vi+1
γ , and by 

{A jp} the coefficients of the difference potentials operator. The coefficients {A jp} can be computed by solving an auxiliary 
problem (AP) (3.19)–(3.20) (or by constructing a Difference Potential operator) with the unit density vγ at points x j	 ∈ γ . 
See [8] for more details.

Remark. Note that if the time step �t stays fixed during simulations, then the coefficients A jp of the Difference Potentials 
operator PN+γ can be computed only once and stored.
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Next, similarly to [28] (see also [8,6,7], etc.), we can define another operator Pγ : Vγ → Vγ that is defined as the trace 
(or restriction/projection) of the Difference Potential PN+γ vi+1

γ on the grid boundary γ :

Pγ vi+1
γ := Trγ

(
PN+γ vi+1

γ

) = (
PN+γ vi+1

γ

)∣∣
γ

(3.22)

We will now formulate the crucial theorem of the method.

Theorem 3.3. At each time level ti+1, density ui+1
γ is the trace of some solution, ui+1 ∈ N+ to the Difference Equations (3.10): ui+1

γ ≡
Trγ ui+1 if and only if the following equality holds

ui+1
γ = Pγ ui+1

γ + Gh
�t F i+1

γ , (3.23)

where Gh
�t F i+1

γ := Trγ (Gh
�t F i+1) is the trace (or restriction) of the particular solution, Gh

�t F i+1 ∈ N+ constructed in (3.16)–(3.17) on 
the grid boundary γ .

Proof. The proof follows closely the argument of the theory from [28] and for the reader’s convenience we will briefly 
review it in Appendix A. �
Lemma 3.4. At each time level ti+1 the rank r of the system (3.23) is equal to |γ in|. Here, |γ in| is the cardinality of the set γ in – the 
interior layer of the grid boundary, γ = γ in ∪ γ ex. Similarly, γ ex denotes the exterior layer.

Proof. The system of difference equations (3.10), L�t,h[ui+1
j ] = F i+1

j , x j ∈ M+ , will have a unique solution once the com-

ponent of the solution ui+1
j , x j ∈ γ ex to (3.10) is given at the exterior layer γ ex of the grid boundary γ (the matrix for 

the system of difference equations (3.10) is strictly diagonally dominant (and hence non-singular) for any �t > 0 for the 
second-order scheme (3.11), and for any �t < minx j∈M+ 12h2

2k j+9h|(kx) j | for the fourth-order scheme (3.12)). Also, note that 
the linear system of Boundary Equations (3.23) is equivalent to the linear system of the difference equations (3.10) due to 
Theorem 3.3.

Therefore, the rank, r of the matrix for the linear system of Boundary Equations,

ui+1
γ − Pγ ui+1

γ = Gh
�t F i+1

γ

is equal to r = |γ | − |γ ex| = |γ in|. �
Remark.

1. The restriction on the time step �t for the fourth-order scheme in the proof of the Lemma 3.4 can be relaxed if one 
does not use strictly diagonally dominant property of the matrix of the obtained linear system to show the existence 
(or uniqueness) of the solution.

2. Note that for any density, ui+1
γ ∈ Vγ , the grid function, PN+γ ui+1

γ + Gh
�t F i+1 ∈ N+ is some solution to the difference 

equations (3.10) (consequence of Theorem 3.3).
3. The difference potential, PN+γ ui+1

γ is the solution to the homogeneous difference equation, L�t,h[ui+1
j ] = 0, x j ∈ M+ , 

and is uniquely defined once we know the value of the density ui+1
γ at the points of the boundary γ (see Definition 3.2).

4. Also, note that density ui+1
γ has to satisfy Boundary Equations, ui+1

γ − Pγ ui+1
γ = Gh

�t F i+1
γ in order to be a trace of the solution 

to the difference equation, L�t,h[ui+1
j ] = F i+1

j (consequence of Theorem 3.3).
5. In the case of a constant coefficient model problem (3.1) (assume, k(x) ≡ 1), using a technique as in [8], one can show 

a direct connection of the difference potential PN+γ ui+1
γ to the Cauchy-type integral (see [28,31] for a more general 

discussion on the subject).

ii. Coupling of the boundary equations with the boundary conditions:
Below, we will present the details for the second and for the fourth-order schemes in space (3.11) and (3.12) (however, 

the main strategy presented below is the same for any high-order method in space and time).
The Boundary Equations: ui+1

γ = Pγ ui+1
γ + Gh

�t F i+1
γ for the unknown density ui+1

γ are a linear system of equations:

(I − A)ui+1 = Gh
�tF

i+1
, (3.24)

where I is the identity matrix and A is the matrix of the coefficients of the difference potentials with unit densities.

In case of the second-order method in space:
Matrix A is
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A := {Ars}, with r, s = l, l + 1, L, L + 1 (3.25)

The column vector of the unknown densities is

u := (
ui+1

l , ui+1
l+1 , ui+1

L , ui+1
L+1

)T
,

and the column vector of the right-hand side is

Gh
�tF

i+1 := (
Gh

�t F i+1
l , Gh

�t F i+1
l+1 , Gh

�t F i+1
L , Gh

�t F i+1
L+1

)T
.

In case of the fourth-order method in space:
Matrix A is

A := {Ars}, with r, s = l, l + 1, l + 2, l + 3, L, L + 1, L + 2, L + 3 (3.26)

The column vector of the unknown densities is

ui+1 := (
ui+1

l , ui+1
l+1 , ui+1

l+2 , ui+1
l+3 , ui+1

L , ui+1
L+1, ui+1

L+2, ui+1
L+3

)T
,

and the column vector of the right-hand side is

GhF
i+1 := (

Gh
�t F i+1

l , Gh
�t F i+1

l+1 , Gh
�t F i+1

l+2 , Gh
�t F i+1

l+3 , Gh
�t F i+1

L , Gh
�t F i+1

L+1, Gh
�t F i+1

L+2, Gh
�t F i+1

L+3

)T
.

Remark. The matrix A (3.25) or the matrix A (3.26) of the coefficients of the difference potentials with unit densities, and 
hence, also the matrix I − A, are the same at each time-step, provided that �t is constant. Thus, it can be computed once 
at the beginning of the simulations and stored.

Under the assumption that ui
γ is given from the previous time level ti , the above system of Boundary Equations (3.24) will 

have multiple solutions without boundary conditions (3.2), since it is equivalent to the difference equations L�t,h [ui+1
j ] =

F i+1
j , x j ∈ M+ . Thus, we need to supplement the system (3.24) with the boundary conditions (3.2) to construct the unique 

density ui+1
γ .

We will consider the following approach to solve for the unknown densities ui+1
γ from the Boundary Equations (3.24). 

Here, using the idea of the Taylor expansion, one can construct the unknown densities ui+1
γ with the values of the contin-

uous solution and its derivatives at the continuous boundary of the domain with the desired accuracy: in other words, one 
can define the extension operator from the continuous boundary ∂ I to the discrete boundary γ for the solution of (3.1). 
Note that the extension operator (the way it is constructed below) depends only on the properties of the given model at 
the continuous boundary ∂ I .

1. For example, for the second-order method, in case of 3-terms, the extension operator is:

ui+1
j := u|∂ I ± dux|∂ I + d2

2! uxx|∂ I , x j ∈ γ , (3.27)

where

u|∂ I := u
(
0, ti+1), ux|∂ I := ux

(
0, ti+1), uxx|∂ I := uxx

(
0, ti+1), if j = {l, l + 1},

and

u|∂ I := u
(
1, ti+1), ux|∂ I := ux

(
1, ti+1), uxx|∂ I := uxx

(
1, ti+1), if j = {L, L + 1}.

2. For example, for the fourth-order method in space, in case of 5-terms, extension operator is:

ui+1
j := u|∂ I ± dux|∂ I + d2

2! uxx

∣∣∣∣
∂ I

± d3

3! uxxx

∣∣∣∣
∂ I

+ d4

4! uxxxx

∣∣∣∣
∂ I

x j ∈ γ , (3.28)

where, if j = {l, l + 1, l + 2, l + 3}, we have that:

u|∂ I := u
(
0, ti+1), ux|∂ I := ux

(
0, ti+1), uxx|∂ I := uxx

(
0, ti+1),

uxxx|∂ I := uxxx
(
0, ti+1), uxxxx|∂ I := uxxxx

(
0, ti+1),

and if j = {L, L + 1, L + 2, L + 3}, we denote:

u|∂ I := u
(
1, ti+1), ux|∂ I := ux

(
1, ti+1), uxx|∂ I := uxx

(
1, ti+1),

uxxx|∂ I := uxxx
(
1, ti+1), uxxxx|∂ I := uxxxx

(
1, ti+1).
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d Denotes the distance from point x j ∈ γ to the boundary point. We take it with either the sign “+”, or with the sign “−”.
Under the assumption of sufficient regularity of the continuous model (3.1) and its solution, we can express all the 

higher-order derivatives (higher than first-order) in the extension operators (3.27) (second-order scheme) or in (3.28)
(fourth-order scheme) in terms of the lower-order ones, more precisely, in terms of u and ux only, using consecutive 
differentiation of the model equation (3.1) with respect to the space variable. In the case of the second-order derivatives, 
this is simply

uxx
(
0, ti+1) = ut(0, ti+1) − f (0, ti+1)

k(0)
− kx(0)

k(0)
ux

(
0, ti+1), (3.29)

and

uxx
(
1, ti+1) = ut(1, ti+1) − f (1, ti+1)

k(1)
− kx(1)

k(1)
ux

(
1, ti+1). (3.30)

The third-order derivative at the boundary points can be expressed as:

uxxx
(
0, ti+1) = −2

kx(0)

k(0)2

(
ut

(
0, ti+1) − f

(
0, ti+1)) − fx(0, ti+1)

k(0)
+

(
2

kx(0)2

k(0)2
− kxx(0)

k(0)

)
ux

(
0, ti+1)

+ uxt(0, ti+1)

k(0)
(3.31)

uxxx
(
1, ti+1) = −2

kx(1)

k(1)2

(
ut

(
1, ti+1) − f

(
1, ti+1)) − fx(1, ti+1)

k(1)
+

(
2

kx(1)2

k(1)2
− kxx(1)

k(1)

)
ux

(
1, ti+1)

+ uxt(1, ti+1)

k(1)
(3.32)

And the fourth-order derivative has the following expression at the boundary points:

uxxxx
(
0, ti+1) =

(
6

kx(0)2

k(0)3
− 3

kxx(0)

k(0)2

)(
ut

(
0, ti+1) − f

(
0, ti+1)) + 3

kx(0)

k(0)2
fx

(
0, ti+1) − fxx(0, ti+1)

k(0)

+ utt(0, ti+1) − ft(0, ti+1)

k(0)2
+

(
6

kx(0)

k(0)2

[
kxx(0) − kx(0)2

k(0)

]
− kxxx(0)

k(0)

)
ux

(
0, ti+1)

− 4
kx(0)

k(0)2
uxt

(
0, ti+1) (3.33)

uxxxx
(
1, ti+1) =

(
6

kx(1)2

k(1)3
− 3

kxx(1)

k(1)2

)(
ut

(
1, ti+1) − f

(
1, ti+1)) + 3

kx(1)

k(1)2
fx

(
1, ti+1) − fxx(1, ti+1)

k(1)

+ utt(1, ti+1) − ft(1, ti+1)

k(1)2
+

(
6

kx(1)

k(1)2

[
kxx(1) − kx(1)2

k(1)

]
− kxxx(1)

k(1)

)
ux

(
1, ti+1)

− 4
kx(1)

k(1)2
uxt

(
1, ti+1) (3.34)

Note that in the above formulas for higher order derivatives, the terms ut and utt can be calculated explicitly at the 
boundary nodes from the boundary conditions (3.2). However, the term uxt will be replaced, for example, by a second-order 
backward finite difference approximation in time:

uxt
(
0, ti+1) ≈ 3ux(0, ti+1) − 4ux(0, ti) + ux(0, ti−1)

2�t
. (3.35)

uxt
(
1, ti+1) ≈ 3ux(1, ti+1) − 4ux(1, ti) + ux(1, ti−1)

2�t
. (3.36)

The value u|∂ I is given due to the boundary conditions (3.2). Let us denote the unknown values C i+1
1 := ux(0, ti+1) and 

C i+1
2 := ux(1, ti+1). Therefore, at each time level ti+1, the only unknowns that we need to solve for are C i+1

1 and C i+1
2 . We 

will use expansion (3.27) (second-order in space method) or (3.28) (fourth-order in space method) for ui+1
γ in the boundary 

equations (3.24) and obtain an overdetermined linear system for C i+1
1 and C i+1

2 . This system is solved uniquely using the 
least square method. After that, we can obtain the value of the density ui+1

γ at the points of the grid boundary γ using 
formula (3.27) or (3.28).

Finally, the last step of the proposed approach based on Difference Potentials is to use the obtained density ui+1
γ to reconstruct the 

approximation to the solution (3.1)–(3.3) inside the domain I .



96 J. Albright et al. / Applied Numerical Mathematics 93 (2015) 87–106
Generalized Green’s formula:

Statement 3.5. At each time level ti+1, the discrete solution, ui+1
j := PN+γ ui+1

γ + Gh
�t F i+1

j is the approximation to the solution, 
ui+1

j ≈ u(x j, ti+1), x j ∈ N+ ∩ I of the continuous problem (3.1)–(3.3).

Discussion. The result is a consequence of sufficient regularity (smoothness) of the exact solution, Theorem 3.3, the ex-
tension operator (3.27) (for the second-order method) or the extension operator (3.28) (for the fourth-order method), the 
second-order accuracy of the trapezoidal time scheme, and the second-order accuracy in space of the scheme (3.11) (for the 
second-order method) or the fourth-order accuracy in space of the scheme (3.12) (for the fourth-order method).

More precisely, consider the trapezoidal scheme in time, and rewrite the continuous model (3.1) in a time-discrete 
version as presented below:

L�t
[
u
(
x, ti+1)] = F

[
u
(
x, ti), f

] + O
(
�t2), (3.37)

here, as before, the operator L�t is defined as in (3.7) (if the second-order in space scheme will be considered) or as 
in (3.8) (if the fourth-order in space scheme will be considered), F [u(x, ti), f ] := −L+

�t[u(x, ti)] − ( f (x, ti+1) + f (x, ti)), 
(see Section 3.1, formulas (3.6)–(3.9)), and here u(x, ti) is the exact solution at time ti . Error O (�t2) is due to the local 
truncation error of the trapezoidal scheme in time. The equation (3.37) is subject to the boundary conditions (3.2) and the 
initial condition (3.3). Define Eu to be some extension of the solution u to the auxiliary domain I0, which satisfies

Eu| Ī = u, ∀x ∈ Ī

and the zero Dirichlet boundary conditions on the boundary of the auxiliary domain I0:

Eu|∂ I0 = 0

(for example, in higher dimensions, one can investigate a Whitney extension of u to construct Eu near the boundary of the 
original domain, [26,27]). Hence, we can define on the entire auxiliary domain Ī0,

L�t
[
Eu

(
x, ti+1)] =

⎧⎪⎨
⎪⎩

F [u(x, ti), f ] + O (�t2), ∀x ∈ I,

L�t[Eu(x, ti+1)], ∀x ∈ I0\I,

Eu|∂ I0 = 0.

(3.38)

Next, approximate the linear elliptic operator L�t on the left and right-hand sides of (3.38) by the discrete (in space) linear 
operator L�t,h . Similarly, approximate the right-hand side function F [u(x, ti), f ] with accuracy O (hν) in space (ν = 2 or 
ν = 4 in this work, see Section 3.1). Therefore, obtain

L�t,h
[
Eu

(
x j, ti+1)] =

⎧⎪⎨
⎪⎩

F [u(x j, ti), f j] + O (hν) + O (�t2), ∀x j ∈ M+,

L�t,h[Eu(x j, ti+1)], ∀x j ∈ M−,

Eu|I0 = 0.

(3.39)

After that, omit the truncation error terms O (hν) + O (�t2), obtaining the following numerical scheme:
At every time level ti+1, find the approximate solution wi+1 ≈ Eu(x j, ti+1), x j ∈ N+ , where wi+1 is

wi+1
j =

{
PN+γ ui+1

γ + Gh
�t F i+1

j , ∀x j ∈ N+,

0, ∀x j ∈ N0\N+,
(3.40)

which coincides on N+ with the solution of the numerical scheme (see Section 3.1):

L�t,h
[

w̃i+1] =

⎧⎪⎨
⎪⎩

F i+1
j , ∀x j ∈ M+,

L�t,h[ui+1
γ ], ∀x j ∈ M−,

0, ∀x j ∈ N0\M0.

(3.41)

The extension w̃i+1 of the discrete solution employs the trace ui+1
γ ≡ w̃i+1

γ , which is defined in (3.27 and 3.29–3.30) 
(second-order in space scheme) and in (3.28)–(3.34) (fourth-order in space scheme).

Thus, for sufficiently small enough h and �t (and under sufficient regularity of the exact solution), we expect that at 
every time level ti+1 the constructed discrete solution ui+1

j := PN+γ ui+1
γ + Gh

�t F i+1
j will approximate the solution u j ≈

u(x j, ti+1), x j ∈ N+ ∩ I of the continuous problem (3.1)–(3.3), with O (h2 +�t2) (for the second-order method in space) and 
with O (h4 + �t2) (for the fourth-order method in space) in the 2-norm or the maximum norm.

• The developed Difference Potentials based scheme of the second-order accuracy in space can be viewed as a modified 
Crank–Nicolson scheme.
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• In Section 6, we illustrate the capabilities and the consistence of the developed approach with several numerical exper-
iments for the interface/composite domain problems. In the conducted numerical experiments, we considered time step 
dt ≈ O ( h

max k(x) ) for the second-order in space scheme and dt ≈ O ( h2

max k(x) ) for the fourth-order in space scheme.

Remark.

• The formula PN+γ ui+1
γ + Gh

�t F i+1
j is known as the discrete generalized Green’s formula.

• Note that after density ui+1
γ is obtained from the Boundary Equations, the difference potential is easily constructed as 

the solution of a simple (AP) using Definition 3.2.

4. Application to interface and composite domains problems

In Section 3.1, we formulated second and fourth-order methods in space based on the Difference Potentials approach, for 
problems in the single domain I . In this section, similar to the elliptic work [8], we will show how to extend these methods 
in a direct and a straightforward way to interface/composite domains problems (2.1)–(2.5).

First, we will introduce the auxiliary domains, as in Section 3 for the single domain I . We will place each of the original 
subdomains Is in the auxiliary domains I0

s ⊂ R (s = 1, 2), and will formulate the auxiliary difference problems in each 
subdomain Is (s = 1, 2). The choice of these auxiliary domains I0

1 and I0
2 does not need to depend on each other. Again, 

for each subdomain, we will proceed as we did in Section 3.1. Also, for each I0
s we will introduce a Cartesian grid (the 

choice of the grids for the auxiliary problems in each subdomain will be independent. The choice for each subdomain is 
based on considerations of the properties of the model and solution in each subdomain (2.1)–(2.5), as well as the efficiency 
and simplicity of the resulting discrete problems). After that, all the definitions, notations, and properties introduced in 
Section 3.1 extend to each subdomain Is in a direct and straightforward way: we will use index s (s = 1, 2) to distinguish 
each subdomain. Let us denote the difference problem of (2.1)–(2.2) for each subdomain as:

Ls
�t,h

[
ui+1

j

] = F i+1
sj , x j ∈ M+

s . (4.1)

The difference problem (4.1) is obtained using a trapezoidal scheme in time, and either the second (3.11) or the fourth-order 
scheme (3.12) in space.

The cornerstone of the Difference Potentials approach for the composite domains and interface problems is the following proposition.

Statement 4.1. Density ui+1
γ := (ui+1

γ1
, ui+1

γ2
) is the trace of some solution ui+1 ∈ N+

1 ∪ N+
2 to the Difference Equations (4.1): ui+1

γ ≡
Trγ ui+1 if and only if the following equality holds

ui+1
γ1

= P1γ1 ui+1
γ1

+ Gh
1�t F i+1

1γ1
, x j ∈ γ1 (4.2)

ui+1
γ2

= P2γ2 ui+1
γ2

+ Gh
2�t F i+1

2γ2
, x j ∈ γ2 (4.3)

At each time level ti+1, the obtained discrete solution, ui+1
j := Ps N+

s γs
ui+1

γs
+ Gh

s�t F i+1
sj is the approximation to the solution ui+1

j ≈
u(x j, ti+1) ∈ I1 ∪ I2 , x j ∈ N+

s ∩ Is, s = 1, 2 of the continuous problem (2.1)–(2.5).

Discussion. The result is a consequence of the results in Section 3.1. We expect that the solution ui+1
j := Ps N+

s γs
ui+1

γs
+

Gh
s�t F i+1

sj will approximate the exact solution u(x j, ti+1) ∈ I1 ∪ I2, x j ∈ N+
s ∩ Is, s = 1, 2 with the accuracy O (h2 + �t2) for 

the second-order scheme in space, and with the accuracy O (h4 +�t2) for the fourth-order scheme in space in the maximum 
norm. See also Section 6 for the numerical validation.

Remark. Similar to the discussion in Section 3.1, at every time level ti+1 the Boundary Equations (4.2)–(4.3) alone will have 
multiple solutions and have to be coupled with the initial conditions (solutions at the previous time level ti ), boundary (2.3)
and interface conditions (2.4) to obtain the unique densities ui+1

γ1
and ui+1

γ2
.

We use the extension formula (3.27) (second-order scheme) or (3.28) (fourth-order scheme) to construct ui+1
γs

, s = 1, 2
in each subdomain/domain. The unknowns are ui+1|∂ I1 , ui+1

x |∂ I1 and ui+1|∂ I2 , ui+1
x |∂ I2 . Here, ∂ I1 := {0, α} and ∂ I2 := {α, 1}

(total 8 unknowns without imposed boundary and interface conditions (2.3)–(2.4)).
Note, that at the interface, the time derivatives: ut , utt , uxt , in formulas (3.29)–(3.34) are obtained using second-order 

backward difference approximations in time.

Remark. In the numerical tests that we conducted, we explored both first and second-order backward finite difference 
approximations in time for the time derivatives terms in (3.29)–(3.34). In most numerical tests, they both preserved second-
order accuracy for the second-order scheme in space, and fourth-order accuracy for the fourth-order scheme in space (we 
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used time step dt = 0.5h for the second-order method and dt = 0.5h2 for the fourth-order method). However, in more in-
tricate test problems, we observed a slight improvement using the more accurate second-order backward finite difference 
approximation, and hence in the numerical examples in Section 6 we will present results using only this approximation 
(when needed) for the time derivatives terms in (3.29)–(3.34).

5. Algorithm

In this section for the reader’s convenience we will briefly summarize the main steps of the algorithm.

• Step 1: Introduce a computationally simple auxiliary domain and formulate the auxiliary problem (AP).
• Step 2: At each new time level ti+1 compute a Particular solution, ui+1

j := Gh
�t F i+1

j , x j ∈ N+ , as the solution of the Auxil-
iary Problem (AP). For the single domain method, see (3.16)–(3.17) in Section 3.1 (second-order and fourth-order method 
in space). For the direct extension of the algorithms to interface and composite domains problems, see Section 4.

• Step 3: Next, at each time level ti+1 compute the unknown boundary values or densities, ui+1
γ at the points of the discrete 

grid boundary γ by solving the system of linear equations derived from the system of Boundary Equations with Projection: 
see (3.24), (3.25) and (3.27) (second-order method in space), or (3.24), (3.26) and (3.28) (fourth-order method in space) 
in Section 3.1, and extension to interface and composite domain problems (4.2)–(4.3) in Section 4.

Remark. Note, that computation of the matrix for the system of Boundary Equations with Projection (3.24) is the key 
contribution to the overall computational complexity of the algorithm. However, if the time step �t is kept constant, 
then the matrix associated with the system of Boundary Equations with Projection (3.24) can be computed only once 
at initial time step and stored. Thus, only the right-hand side will be updated at each time level ti+1 in the linear 
system of Boundary Equations with Projection (3.24). This is a consequence of the definition of the difference potential 
Definition 3.2, property that Difference Potential is a linear operator of ui+1

γ , and the definition of the extension operator 
(3.27) and (3.28), (3.29)–(3.34). Therefore, the computations at each time level ti+1 will be performed very efficiently.

Moreover, in higher-dimensions, for example in 2D, the Auxiliary Problem (AP) can be solved very efficiently as well. 
Let us briefly mention a few examples. In the case of constant coefficients problems and compact finite-difference 
schemes as the underlying discretizations of the continuous problem, it can be solved by a sine Fast Fourier Transform 
(FFT) in the y direction, together with tri-diagonal elimination in the x direction. The complexity of this solution is 
log-linear with respect to the grid dimension in the y direction, and linear with respect to the grid dimension in the x
direction. The grid dimension in the y direction should be 2p , where p is a positive integer. In the case of a “classical” 
finite-difference scheme (dimension by dimension) or variable coefficients problems, either a sparse LU decomposition 
or iterative methods can be developed for the solution of the Auxiliary Problem (AP).

• Step 4: Using the definition of the difference potential, Definition 3.2, Section 3.1, and Section 4 (algorithm for inter-
face/composite domain problems), construct the Difference Potential, PN+γ ui+1

γ from the obtained density, ui+1
γ .

• Step 5: Finally, at each new time level ti+1 reconstruct the approximation to the continuous solution from ui+1
γ using the 

generalized Green’s formula u(x, ti+1) ≈ PN+γ ui+1
γ + Gh

�t F i+1, see Statement 3.5 in Section 3.1, and see Statement 4.1
in Section 4 (algorithm for interface/composite domain problems).

6. Numerical examples

In this section we will consider several test problems. First, we compare the performance of the second-order Difference 
Potentials Method (DPM) with the second-order Immersed Interface Method (IIM) [14–16]. Moreover, we present the result 
of the fourth-order DPM for the same test problem. After that, in Section 6.2 we test and compare the second and the 
fourth-order DPM in space on several variable coefficient problems in heterogeneous media. In all numerical experiments 
below, we compute the maximum error in the solution

max
ti∈[0,1]

max
x j∈[0,1]

∣∣u(
x j, ti) − ui

j

∣∣,
as well as the maximum error in the discrete gradient of the solution using either this formula below (results in Tables 3–6)

max
ti∈[0,1]

max
(x j,x j+1)∈(0,1)

∣∣∣∣u(x j+1, ti) − u(x j, ti)

h
− ui

j+1 − ui
j

h

∣∣∣∣,
or using the following formula (results in Tables 8, 10, 12, 14 and 16): denote,

Ei := max

{
max

(x ,x )∈I

∣∣∣∣u(x j+1, ti) − u(x j, ti)

h
− ui

j+1 − ui
j

h

∣∣∣∣, max
(x ,x )∈I

∣∣∣∣u(x j+1, ti) − u(x j, ti)

h
− ui

j+1 − ui
j

h

∣∣∣∣
}
,

j j+1 1 j j+1 2
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Table 1
Errors in the solution as functions of the number of intervals: for DPM 2 and DPM 4 we consider the auxiliary domains [−0.23, 0.77] for 0 ≤ x ≤ 0.5 and 
[0.23, 1.23] for 0.5 < x ≤ 1. The mesh size h is the same for DPM and IIM due to the choice of the auxiliary domains. dt = 0.5h for DPM 2 and IIM and 
dt = 0.5h2 for DPM 4. Problem (6.1).

N DPM2 Conv Rate IIM Conv Rate DPM4 Conv Rate

20 3.20889 E–03 3.30746 E–03 1.69012 E–05
40 8.58076 E–04 1.90290 8.27528 E–04 1.99884 1.20118 E–06 3.81460
80 2.08901 E–04 2.03828 2.06941 E–04 1.99959 1.00956 E–07 3.57266

160 5.12743 E–05 2.02651 5.17390 E–05 1.99989 8.14846 E–09 3.63105
320 1.29065 E–05 1.99013 1.29354 E–05 1.99993 4.75048 E–10 4.10038

hence, the error is computed in Tables 8, 10, 12, 14 and 16 as:

max
ti∈[0,1]

Ei .

Here, u(x j, ti) is the exact solution at the grid points and time ti , ui
j is the numerical solution at the grid points and time ti , 

and h is the mesh size.

6.1. Second and fourth order difference potentials method and comparison with the second order immersed interface method

In this section we consider first the following problem (which is the modification of a problem in [16]):

ut − (kux)x = f , k =
{

1, if 0 ≤ x ≤ 0.5

2, if 0.5 < x ≤ 1.
(6.1)

The exact solution is

u(x, t) =
{

u1(x, t) = x8e−t, 0 ≤ x ≤ 0.5
u2(x, t) = 1

2 ( 1
256 + x8)e−t, 0.5 < x ≤ 1.

(6.2)

The initial conditions are

u(x,0) =
{

u1(x,0) = x8, 0 ≤ x ≤ 0.5
u2(x,0) = 1

2 ( 1
256 + x8), 0.5 < x ≤ 1.

(6.3)

The boundary conditions are

u1(0, t) = 0 and u2(1, t) = 257

512
e−t . (6.4)

And the interface conditions are

u1(0.5, t) = u2(0.5, t) and u1x(0.5, t) = 2u2x(0.5, t). (6.5)

The right-hand side in the model (6.1) is computed in each subdomain using the exact solution (6.2).
In the tables below, DPM 2 stands for second-order in space DPM with an extension operator as in (3.27), DPM 4 stands 

for the fourth-order in space DPM with an extension operator as in (3.28). IIM 2 stands for the second-order in space IIM 
with the trapezoidal scheme for the time discretization as in [16] (“modified version of Cranck–Nicolson scheme”). For DPM 
2 and DPM 4, we implement the algorithm from Section 4. We consider the auxiliary domain [−0.23, 0.77] to discretize 
the problem using DPM in subdomain I1 := [0, 0.5] and we consider the auxiliary domain [0.23, 1.23] to discretize the 
problem using DPM in subdomain I2 := [0.5, 1.0], see Tables 1–4. Each auxiliary domain is subdivided by N intervals, and 
in Tables 1–4 we use the same number of intervals (the same grids) for each subdomain. The time-step is set to dt = 0.5h2

for DPM 4, and to dt = 0.5h for DPM 2 and IIM. The time-interval [0, 1] was used for all the tests. Note, that h is the same 
for DPM and IIM tests in Tables 1–4 due to the choice of the auxiliary domains for DPM.

The results presented in Tables 1–4 show that the errors of the second-order DPM 2 and the second-order IIM 2 are very 
close in the solution. For the discrete gradient, the error is better in magnitude by about a factor of 3 for IIM 2 than for 
DPM 2. However, DPM 4 shows much better accuracy than IIM 2 or DPM 2 in both the solution and the discrete gradient. 
Note, that the extension of IIM to higher than second order is not straightforward, and in some cases, may not be possible 
(see [16]).

As can be seen from the Tables 1–4, DPM 2 and DPM 4 confirm second-order O (h2) and fourth-order accuracy O (h4) in 
space, respectively, in both the approximation of the solution and in the discrete gradient.

To conclude Section 6.1, we use the test problem below (6.6)–(6.10) to illustrate that the fourth-order DPM 4 captures 
the solution and the discrete derivative with almost machine-accuracy, see results in Tables 5–6. The time step was again 
set to dt = 0.5h2 over the time interval [0, 1].
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Table 2
Errors in the solution as functions of the number of intervals: for DPM 2 and DPM 4 we consider the auxiliary domains [−0.23, 0.77] for 0 ≤ x ≤ 0.5 and 
[0.23, 1.23] for 0.5 < x ≤ 1. The mesh size h is the same for DPM and IIM due to the choice of the auxiliary domains. dt = 0.5h for DPM 2 and IIM and 
dt = 0.5h2 for DPM 4. Problem (6.1).

N DPM2 Conv Rate IIM Conv Rate DPM4 Conv Rate

27 1.89425 E–03 1.70518 E–03 6.01061 E–06
54 4.59529 E–04 2.04340 4.54095 E–04 1.90886 4.51690 E–07 3.73411

108 1.12109 E–04 2.03525 1.13548 E–04 1.99969 3.89478 E–08 3.53572
216 2.82364 E–05 1.98928 2.83904 E–05 1.99983 2.33761 E–09 4.05843
432 7.11373 E–06 1.98888 7.09767 E–06 1.99998 1.33932 E–10 4.12547

Table 3
Errors in the discrete gradient (derivative) of the solution as functions of the number of intervals: for DPM 2 and DPM 4 we consider the auxiliary domains 
[−0.23, 0.77] for 0 ≤ x ≤ 0.5 and [0.23, 1.23] for 0.5 < x ≤ 1. The mesh size h is the same for DPM and IIM due to the choice of the auxiliary domains. 
dt = 0.5h for DPM 2 and IIM and dt = 0.5h2 for DPM 4. Problem (6.1).

N DPM2 Conv Rate IIM Conv Rate DPM4 Conv Rate

20 2.05400 E–02 7.60408 E–03 6.26046 E–05
40 5.48004 E–03 1.90618 1.73872 E–03 2.12875 6.14695 E–06 3.34833
80 1.52702 E–03 1.84347 4.36646 E–04 1.99349 2.83496 E–07 4.43847

160 4.03691 E–04 1.91940 1.09240 E–04 1.99896 1.87820 E–08 3.91591
320 1.01516 E–04 1.99154 2.73321 E–05 1.99883 1.15657 E–09 4.02143

Table 4
Errors in the discrete gradient (derivative) of the solution as functions of the number of intervals: for DPM 2 and DPM 4 we consider the auxiliary domains 
[−0.23, 0.77] for 0 ≤ x ≤ 0.5 and [0.23, 1.23] for 0.5 < x ≤ 1. The mesh size h is the same for DPM and IIM due to the choice of the auxiliary domains. 
dt = 0.5h for DPM 2 and IIM and dt = 0.5h2 for DPM 4. Problem (6.1).

N DPM2 Conv Rate IIM Conv Rate DPM4 Conv Rate

27 1.09645 E–02 3.50021 E–03 2.03922 E–05
54 3.23580 E–03 1.76064 9.56794 E–04 1.87116 1.32410 E–06 3.94493

108 8.79987 E–04 1.87857 2.39492 E–04 1.99823 8.93245 E–08 3.88981
216 2.21609 E–04 1.98946 5.99580 E–05 1.99795 5.58354 E–09 3.99980
432 5.57632 E–05 1.99063 1.50022 E–05 1.99878 3.61838 E–10 3.94776

Table 5
Errors in the solution and in the discrete gradient as functions of the number of intervals for 
DPM 4: we consider the auxiliary domains [−0.230, 0.770] for 0 ≤ x ≤ 0.5 and [0.230, 1.230]
for 0.5 < x ≤ 1. The time step is set dt = 0.5h2. Problem (6.6).

N DPM4: Error in the Solution DPM4: Error in the Discrete Gradient

20 9.54608 E–10 2.18486 E–09
40 5.07710 E–11 1.36601 E–10
80 3.17950 E–12 9.24372 E–12

160 1.74680 E–13 1.02585 E–12
320 1.63564 E–13 3.99680 E–13

ut − (kux)x = f , k =
{

1, if 0 ≤ x ≤ 0.5
2, if 0.5 < x ≤ 1,

(6.6)

The exact solution is

u(x, t) =
{

u1(x, t) = x4e−t, 0 ≤ x ≤ 0.5
u2(x, t) = 1

2 ( 1
16 + x4)e−t, 0.5 < x ≤ 1.

(6.7)

The initial conditions are

u(x,0) =
{

u1(x,0) = x4, 0 ≤ x ≤ 0.5
u2(x,0) = 1

2 ( 1
16 + x4), 0.5 < x ≤ 1.

(6.8)

The boundary conditions are

u1(0, t) = 0 and u2(1, t) = 17

32
e−t . (6.9)

The interface conditions are

u1(0.5, t) = u2(0.5, t) and u1x(0.5, t) = 2u2x(0.5, t) (6.10)

The right-hand side in the model (6.6) is computed in each subdomain using the exact solution (6.7).
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Table 6
Errors in the solution and in the discrete gradient as functions of the number of intervals for 
DPM 4: we consider the auxiliary domains [−0.230, 0.770] for 0 ≤ x ≤ 0.5 and [0.230, 1.230]
for 0.5 < x ≤ 1. The time step is set dt = 0.5h2. Problem (6.6).

N DPM4: Error in the Solution DPM4: Error in the Discrete Gradient

27 2.78599 E–10 6.45468 E–10
54 1.55945 E–11 4.41681 E–11

108 9.73041 E–13 3.13549 E–12
216 6.30607 E–14 3.95683 E–13
432 1.44199 E–12 5.76739 E–12

Fig. 3. Plot of the exact solution and the discrete gradient of the exact solution at time t = 0 (left figure), and plot of the exact solution and the discrete 
gradient of the exact solution versus the numerical solution and the discrete gradient of the numerical solution (DPM 4) at time t = 0.25 (right figure). 
Problem (6.11).

6.2. Second and fourth order difference potentials methods for parabolic interface problems in heterogeneous media

In this section, we first consider the following interface/composite domain test problem with variable coefficients:

ust − (ksusx)x = f s, s = 1,2 (6.11)

with

k(x) =
{

k1(x) = 1 + x2, 0 ≤ x ≤ 0.5
k2(x) = 1 + (x − 1

4 )2, 0.5 < x ≤ 1.
(6.12)

The exact solution is

u(x, t) =
⎧⎨
⎩

u1(x, t) = 1
1+3t2

5
1+(x− 1

4 )2 , 0 ≤ x ≤ 0.5

u2(x, t) = 1
1+3t2

10
1+(x− 1

4 )2 , 0.5 < x ≤ 1.
(6.13)

The initial conditions are

u(x,0) =
⎧⎨
⎩

u1(x,0) = 5
1+(x− 1

4 )2 , 0 ≤ x ≤ 0.5

u2(x,0) = 10
1+(x− 1

4 )2 , 0.5 < x ≤ 1.
(6.14)

The boundary conditions are

u1(0, t) = 80

17(1 + 3t2)
and u2(1, t) = 32

5(1 + 3t2)
. (6.15)

The interface conditions are

2u1(0.5, t) = u2(0.5, t) and 2u1x(0.5, t) = u2x(0.5, t) (6.16)

Again, the right-hand side in this model (6.11) is computed in each subdomain using the exact solution (6.13). Here, the 
exact solution (6.13) has a jump in both the solution and the derivative at the interface, see Fig. 3. Moreover, we have 
a variable coefficient k1(x) in subdomain I1, and a variable coefficient k2(x) in subdomain I2 with a discontinuity in the 
coefficient at the interface. In Tables 7–8, we consider auxiliary domains [−0.23, 0.77] and [0.23, 1.23] to construct dif-
ference potentials approximation in I1 and I2 respectively. In Tables 9–10, we consider auxiliary domains [−0.667, 0.833]
and [−0.167, 1.333] to construct the Difference Potentials approximation in I1 and I2 respectively. Each auxiliary domain is 
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Table 7
Errors in the solution as functions of the number of intervals for DPM 2 and DPM 4: we consider the auxiliary domains [−0.230, 0.770] for 0 ≤ x ≤ 0.5
and [0.230, 1.230] for 0.5 < x ≤ 1. The time step is dt = 0.5h for DPM 2 and dt = 0.5h2 for DPM 4. Problem (6.11).

N DPM2 Conv Rate DPM4 Conv Rate

27 1.39101 E–03 3.17450 E–06
54 3.49728 E–04 1.99183 2.30391 E–07 3.78438

108 8.80409 E–05 1.98999 9.16988 E–09 4.65104
216 2.20121 E–05 1.99987 7.30761 E–10 3.64943
432 5.52320 E–06 1.99472 5.90488 E–11 3.62942

Table 8
Errors in the discrete gradient (derivative) of the solution as functions of the number of intervals for DPM 2 and DPM 4: we consider the auxiliary domains 
[−0.230, 0.770] for 0 ≤ x ≤ 0.5 and [0.230, 1.230] for 0.5 < x ≤ 1. The time step is dt = 0.5h for DPM 2 and dt = 0.5h2 for DPM 4. Problem (6.11).

N DPM2 Conv Rate DPM4 Conv Rate

27 3.84544 E–03 1.34950 E–05
54 9.20733 E–04 2.06229 1.08108 E–06 3.64188

108 2.37836 E–04 1.95282 4.42891 E–08 4.60938
216 5.92558 E–05 2.00494 3.35365 E–09 3.72315
432 1.47789 E–05 2.00342 2.93632 E–10 3.51365

Table 9
Errors in the solution as functions of the number of intervals for DPM 2, and DPM 4: we consider the auxiliary domains [−0.667, 0.833] for 0 ≤ x ≤ 0.5
and [−0.167, 1.333] for 0.5 < x ≤ 1. The time step is dt = 0.5h for DPM 2 and dt = 0.5h2 for DPM 4. Problem (6.11).

N DPM2 Conv Rate DPM4 Conv Rate

27 2.90206 E–03 1.99710 E–04
54 7.64170 E–04 1.92511 1.31170 E–05 3.92840

108 1.95309 E–04 1.96813 8.12292 E–07 4.01329
216 4.93374 E–05 1.98501 4.74572 E–08 4.09730
432 1.23948 E–05 1.99294 2.51220 E–09 4.23960

Table 10
Errors in the discrete gradient (derivative) of the solution as functions of the number of intervals for DPM 2 and DPM 4: we consider the auxiliary domains 
[−0.667, 0.833] for 0 ≤ x ≤ 0.5 and [−0.167, 1.333] for 0.5 < x ≤ 1. The time step is dt = 0.5h for DPM 2 and dt = 0.5h2 for DPM 4. Problem (6.11).

N DPM2 Conv Rate DPM4 Conv Rate

27 8.93270 E–03 1.74080 E–03
54 2.36855 E–03 1.91509 4.64187 E–05 5.22890

108 6.01715 E–04 1.97685 1.19060 E–06 5.28494
216 1.43762 E–04 2.06540 4.55888 E–08 4.70687
432 3.31913 E–05 2.11480 2.62572 E–09 4.11789

Table 11
Errors as functions of the number of intervals for solution over [0,1]: we consider the auxiliary domains [−0.167, 0.583] with N1 subintervals for 0 ≤ x ≤
0.5, and [0.333, 1.080] with N2 subintervals for 0.5 < x ≤ 1. DPM2 and DPM4. Problem (6.17).

N1 N2 DPM2 Conv Rate DPM4 Conv Rate

20 20 5.91034 E–02 5.67412 E–03
40 40 1.22885 E–02 2.26593 1.68164 E–04 5.07645
80 80 2.38617 E–03 2.36454 7.48936 E–06 4.48889

160 160 5.65604 E–04 2.07683 4.50653 E–07 4.05475
320 320 1.41801 E–04 1.99593 2.82018 E–08 3.99816

subdivided by N intervals, and we use the same number of intervals (the same grids) for each subdomain in Tables 7–10. 
The time-step is given by dt = 0.5h2 for DPM 4 and dt = 0.5h for DPM 2. The time-interval [0, 1] was used for all tests.

As can be seen from the Tables 7–10, DPM 2 and DPM 4 again confirm the second-order O (h2) and fourth-order ac-
curacy O (h4) in space, respectively, in both the approximation of the solution and in the discrete gradient. However, the 
convergence is not as strictly monotone as in Tables 1–4 for the model (6.1). Similar (but more noticeable) non-monotone 
behavior of the error was observed for the elliptic variable coefficient problem in [8]. Let us remark that the slowdown of 
convergence of the fourth-order scheme on finer grids is due to the loss of significant digits as the absolute levels of error 
get very close to machine zero. Again, DPM 4 yields superior accuracy compared to DPM 2.

As a final example, we consider in Tables 11–16 (see Fig. 4) the following test problem with variable coefficients:

(us)t − (ksusx)x = f s, s = 1,2 (6.17)
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Table 12
Errors as functions of the number of intervals for discrete gradient (derivative) of the solution over [0,1]: we consider the auxiliary domains [−0.167, 0.583]
with N1 subintervals for 0 ≤ x ≤ 0.5, and [0.333, 1.080] with N2 subintervals for 0.5 < x ≤ 1. DPM2 and DPM4. Problem (6.17).

N1 N2 DPM2 Conv Rate DPM4 Conv Rate

20 20 8.10172 E–01 2.89043 E–02
40 40 1.78616 E–01 2.18137 1.42670 E–03 4.34053
80 80 3.61706 E–02 2.30398 8.39558 E–05 4.08690

160 160 7.37614 E–03 2.29388 5.28580 E–06 3.98944
320 320 1.84976 E–03 1.99553 3.55334 E–07 3.89487

Table 13
Errors as functions of the number of intervals for solution over [0,1]: we consider the auxiliary domains [−0.167, 0.583] with N1 subintervals for 0 ≤ x ≤
0.5, and [0.333, 1.080] with N2 subintervals for 0.5 < x ≤ 1. DPM2 and DPM4. Problem (6.17).

N1 N2 DPM2 Conv Rate DPM4 Conv Rate

40 20 1.22889 E–02 1.69078 E–04
80 40 2.39104 E–03 2.36164 7.53575 E–06 4.48780

160 80 5.64233 E–04 2.08328 4.53707 E–07 4.05392
320 160 1.41434 E–04 1.99616 2.83975 E–08 3.99792

Table 14
Errors as functions of the number of intervals for discrete gradient (derivative) of the solution over [0,1]: we consider the auxiliary domains [−0.167, 0.583]
with N1 subintervals for 0 ≤ x ≤ 0.5, and [0.333, 1.080] with N2 subintervals for 0.5 < x ≤ 1. DPM2 and DPM4. Problem (6.17).

N1 N2 DPM2 Conv Rate DPM4 Conv Rate

40 20 1.78735 E–01 1.42918 E–03
80 40 3.62203 E–02 2.30295 8.40339 E–05 4.08807

160 80 7.37497 E–03 2.29609 5.29015 E–06 3.98959
320 160 1.84934 E–03 1.99562 3.56265 E–07 3.89229

Table 15
Errors as functions of the number of intervals for solution over [0,1]: we consider the auxiliary domains [−0.167, 0.583] with N1 subintervals for 0 ≤ x ≤
0.5, and [0.333, 1.080] with N2 subintervals for 0.5 < x ≤ 1. DPM2 and DPM4. Problem (6.17).

N1 N2 DPM2 Conv Rate DPM4 Conv Rate

20 40 4.88790 E–02 7.26540 E–03
40 80 9.59556 E–03 2.34877 1.88898 E–04 5.26536
80 160 2.26402 E–03 2.08348 7.61359 E–06 4.63289

160 320 5.65992 E–04 2.00003 4.54727 E–07 4.06551

Table 16
Errors as functions of the number of intervals for discrete gradient (derivative) of the solution over [0,1]: we consider the auxiliary domains [−0.167, 0.583]
with N1 subintervals for 0 ≤ x ≤ 0.5, and [0.333, 1.080] with N2 subintervals for 0.5 < x ≤ 1. DPM2 and DPM4. Problem (6.17).

N1 N2 DPM2 Conv Rate DPM4 Conv Rate

20 40 7.08038 E–01 7.06176 E–02
40 80 1.44413 E–01 2.29362 1.48784 E–03 5.56874
80 160 2.93694 E–02 2.29782 8.43808 E–05 4.14016

160 320 7.37527 E–03 1.99355 5.30915 E–06 3.99036

with

k(x) =
{

k1(x) = 3e−10(x−0.5)4x4
, 0 ≤ x ≤ 0.5

k2(x) = 3, 0.5 < x ≤ 1
(6.18)

The exact solution is given below

u(x, t) =
{

u1(x, t) = e−t sin(5πx), 0 ≤ x ≤ 0.5

u2(x, t) = e−t(2(x − 0.5)7 + 1), 0.5 < x ≤ 1
(6.19)

subject to the initial conditions

u(x,0) =
{

u1(x,0) = sin(5πx), 0 ≤ x ≤ 0.5
u2(x,0) = 2(x − 1

2 )7 + 1, 0.5 < x ≤ 1 (6.20)

subject to the boundary and interface conditions:
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Fig. 4. Plot of the exact solution and the discrete gradient of the exact solution at time t = 0 (left figure), and plot of the exact solution and the discrete 
gradient of the exact solution versus the numerical solution and the discrete gradient of the numerical solution (DPM 4) at time t = 0.25 (right figure). 
Problem (6.17).

u1(0, t) = 0, u2(1, t) = 1.0156e−t, (6.21)

u1(0.5, t) = u2(0.5, t), (6.22)

u1x(0.5, t) = u2x(0.5, t). (6.23)

The f s are computed from the above equation and the exact solution (6.19). We have a variable coefficient k1(x) in 
subdomain I1 and a constant coefficient k2 in subdomain I2. Note that the solution given by (6.19) is more oscillatory 
in subdomain I1 than in the subdomain I2, see Fig. 4. The time-step is given by dt = 0.5 min{h2

I1
, h2

I2
} for DPM 4, and 

dt = 0.5 min{hI1 , hI2} for DPM 2 (where hI1 is the grid size for the domain I1 and hI2 is the grid size for the domain I2).
In Tables 11–16, we demonstrate overall second-order convergence for DPM 2 and fourth-order convergence for DPM 4 

in problem (6.19).
In Tables 13–16 we select different grids for each subdomain. Results in Tables 13–14 show that we can take a coarser 

mesh in the subdomain with less oscillatory solution (subdomain I2), while the error remains almost the same as in Ta-
bles 11–12. Similar results with the use of different grids in different subdomains are observed in 2D for the constant 
coefficient problem [34,7]. This illustrates the important flexibility of the method for the future development and applica-
tions of the proposed ideas (multigrid/multi-scale approach), for variable coefficient problems in 2D and 3D.

7. Concluding remarks

In this paper, we employed one-dimensional parabolic models with variable coefficients as a starting point, to design 
high-order methods based on Difference Potentials approach for variable coefficient parabolic problems in heterogeneous 
media. We presented the construction of Difference Potentials Methods with high-order accuracy for single domain, and 
for the interface/composite domain problems with non-matching interface conditions. While the methods and analysis are 
simpler for these one-dimensional problems, they allow us to show and test several ideas and capabilities of high-order 
methods based on the Difference Potentials approach. The numerical schemes, as well as meshes can be chosen totally 
independently for each subdomain/domain; in higher-dimensions the boundaries of the subdomains and interfaces do not 
need to conform/align with the grids. We expect that high-order schemes can be constructed for problems with gen-
eral boundary conditions, and the main complexity of the developed algorithm reduces to the several solutions of simple 
auxiliary problems on structured Cartesian grids. Also, the preliminary tests that we conducted here and in [8] in one-
dimensional settings, as well as preliminary 2D numerical tests in irregular domains in [29,34,7,6] indicate the capability of 
Difference Potentials approach to resolve discontinuities very accurately at interfaces. Therefore, we expect that in higher-
dimensions, the developed method will be well-suited for the elliptic and parabolic problems in arbitrary domains and with 
non-matching interface conditions.

For future research, we plan to develop numerical analysis, as well as extend and further develop the proposed approach 
(as well as methods that we developed in [29,34,7,6]) to high-order methods for variable coefficient problems in complex 
2D and 3D domains. Finally, we also plan to investigate the possibility of designing an Alternating Direction Implicit Method 
(ADI) [5] in higher dimensions, within the Difference Potentials methodology proposed here.
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Appendix A

For the reader’s convenience, we will briefly review here the proof of the Theorem 3.3. The proof follows the argument 
from [28].

First, let us assume that at time, ti+1, ui+1
γ is the trace of some solution to the difference equations (3.10): ui+1

γ =
T rγ ui+1, where ui+1 ∈ N+ is the solution to the difference equations L�t,h[ui+1

j ] = F i+1
j , x j ∈ M+ . Now, construct the grid 

function wi+1 ∈ N0 as the solution of the following problem:

L�t,h
[

wi+1
j

] =
{

F i+1
j , x j ∈ M+,

L�t,h[ui+1
γ ], x j ∈ M−,

(A.1)

wi+1
j = 0, x j ∈ N0\M0. (A.2)

Note that the restriction of this function wi+1 to the set N+ is wi+1|N+ := PN+γ ui+1
γ + Gh

�t F i+1 (this is a consequence of 
the definition of the difference potentials PN+γ ui+1

γ , (3.19)–(3.20)) and the particular solution Gh
�t F i+1, (3.16)–(3.17). At the 

same time, ui+1 ∈ N+ is the solution of L�t,h[ui+1
j ] = F i+1

j , x j ∈ M+ , and thus F i+1
j ≡ Lh[ui+1

j ] in (A.1). Also, ui+1
γ is the 

trace of the solution ui+1. Hence we have that:

L�t,h
[

wi+1
j − ui+1

j

] = 0, x j ∈ M0,

wi+1
j − ui+1

j = 0, x j ∈ N0\M0. (A.3)

Note that the solution ui+1 is extended by zero to the points of the set N0\N+ . Due to the uniqueness argument, wi+1 ≡
ui+1, on N+ . Hence, we can reconstruct the solution, ui+1 to the difference equations (3.10) using the formula: ui+1 =
PN+γ ui+1

γ + Gh
�t F i+1. Let us apply the trace operator to both sides of this formula to obtain the desired equality: ui+1

γ =
Pγ ui+1

γ + Gh
�t F i+1

γ .

Next, assume that at time ti+1 the equality (3.23) holds true for some grid function, ui+1
γ ∈ Vγ . Again, let us construct 

the grid function: wi+1 := PN+γ ui+1
γ + Gh

�t F i+1 on N+ . Thus, wi+1 is the solution (restricted to N+) of (AP) (A.1)–(A.2), and 
therefore, it coincides on M+ with a solution ui+1 of the difference equations (3.10): wi+1 ≡ ui+1 on M+ . Hence, due to 
equality (3.23), ui+1

γ coincides with the trace wi+1
γ of wi+1, and thus coincides with the trace, ui+1

γ of a solution, ui+1 of 
the difference equations (3.10): ui+1

γ ≡ Trγ ui+1. �
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