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ADAPTIVE CENTRAL-UPWIND SCHEME ON
TRIANGULAR GRIDS FOR THE SAINT-VENANT SYSTEM∗

YEKATERINA EPSHTEYN† AND THUONG NGUYEN‡

Abstract. In this work, we develop a robust adaptive well-balanced and positivity-preserving central-
upwind scheme on unstructured triangular grids for shallow water equations. The numerical method
is an extension of the scheme from [Liu et al., J. Comput. Phys., 374:213–236, 2018]. As a part of
the adaptive central-upwind algorithm, we obtain a local a posterior error estimator for the efficient
mesh refinement strategy. The accuracy, high-resolution and efficiency of new adaptive central-upwind
scheme are demonstrated on a number of challenging tests for shallow water models.
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1. Introduction
We consider the two-dimensional (2-D) Saint-Venant system of shallow water equa-

tions,

ht+(hu)x+(hv)y =0, (1.1a)

(hu)t+
(
hu2+

g

2
h2

)
x
+(huv)y =−ghBx, (1.1b)

(hv)t+(huv)x+
(
hv2+

g

2
h2

)
y
=−ghBy, (1.1c)

where t is the time, x and y are horizontal spatial coordinates ((x,y)∈Ω), h(x,y,t) is
the water height, u(x,y,t) and v(x,y,t) are the x- and y-components of the flow velocity,
B(x,y) is the bottom topography, and g is the constant gravitational acceleration. The
system (1.1a–1.1c) was originally proposed in [12], but it is still widely used to model
water flow in rivers, lakes and coastal areas, to name a few examples. The Saint-Venant
system (1.1a–1.1c) is an example of the hyperbolic system of balance/conservation laws.
The design of robust and accurate numerical algorithms for the computation of its
solutions is an important and challenging problem that has been extensively studied in
the recent years.

An accurate numerical scheme for shallow water Equations (1.1a–1.1c) should pre-
serve the physical properties of the flow. For example, (i) the numerical method should
be positivity preserving, that is, the water height h should be nonnegative at all times.
The positivity preserving property ensures a robust performance of the algorithm on
dry (h is zero) or almost dry (h is near zero) states; (ii) in addition, the numerical
method for system (1.1a–1.1c) should be well-balanced, the method should exactly pre-
serve the “lake-at-rest” solution, h+B≡ const,u≡0,v≡0. This property diminishes the
appearance of unphysical oscillations of magnitude proportional to the grid size. In
the past decade, several well-balanced [1, 2, 4–7,15–18,22,23,25,30,33–36,39–42,46,47]
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and positivity preserving [1,2,4–6,8,25,30,35,36,40] schemes (non-exhaustive lists) for
shallow water models have been proposed, but only few satisfy both major properties
(i) and (ii) simultaneously.

The traditional numerical methods for system (1.1a–1.1c) consider very fine fixed
meshes to reconstruct delicate features of the solution. However, this can lead to high
computational cost. Therefore, the main goal of this work is to design adaptive nu-
merical algorithms for shallow water equations. In this work, we extend the numerical
method in [36] to an adaptive well-balanced and positivity-preserving central-upwind
finite volume method on unstructured triangular grids. The central Nessyahu-Tadmor
schemes, their generalization into higher resolution central schemes and semi-discrete
central-upwind schemes are a family of efficient and accurate Godunov-type Riemann
problem-free projection-evolution finite volume methods for hyperbolic problems. They
were originally developed in [28, 31, 38]. The main advantages of these numerical algo-
rithms are high-resolution, efficiency and simplicity. The class of central-upwind meth-
ods has been successfully used for problems in science and engineering, including, for
geophysical flow problems and related models, e.g. [3, 5–7, 9–11, 25–32, 36, 44]. There is
some very recent effort on the design of adaptive well-balanced and positivity-preserving
central-upwind schemes on quad-tree grids for shallow water models [19,43], but no re-
search has been done for the development of such adaptive schemes on unstructured
triangular grids. However, triangular grids are efficient or even inevitable when dealing
with complex geometries such as modeling the ocean waves near the shore, dam break,
stream channels, etc. In addition, the well-balanced wet/dry reconstruction takes ad-
vantage of the triangular mesh, see Section 2 and [36], and such an algorithm is not
applicable to the rectangular meshes.

This paper is organized as follows. In Section 2, we briefly review the well-balanced
positivity-preserving central-upwind scheme on unstructured triangular grids [36] which
serves as the underlying discretization for the developed adaptive algorithm. We give a
summary of the adaptive central-upwind method in Section 3.1. We discuss the adaptive
mesh refinement strategy in Section 3.2. In Section 3.3, we present the adaptive second-
order strong stability preserving Runge-Kutta method, employed as a part of the time
evolution for the adaptive central-upwind scheme. We derive a local a posterior error
estimator in Section 3.4 which is used as a robust indicator for the adaptive mesh
refinement in our work. Finally, in Section 4, we illustrate the high accuracy and
efficiency of the developed adaptive central-upwind scheme on a number of challenging
tests for shallow water models.

2. Semi-discrete central-upwind scheme–an overview

In this work, we employ the central-upwind scheme discussed in this section as
the underlying discretization for the adaptive central-upwind algorithm, developed in
Section 3. Therefore, in this section, we will briefly review a semi-discrete second-order
well-balanced positivity preserving central-upwind scheme on unstructured triangular
grids for the Saint-Venant system of shallow water equations [6, 36].

In the first work [6], a new second-order semi-discrete central-upwind scheme was
developed for computing the solutions of the system (1.1a–1.1c) on unstructured trian-
gular grids. The key ideas in the development of the scheme in [6] were: (1) Change of
variables from (h,hu,hv)T to variables (w :=h+B,hu,hv)T . This change of variables
simplifies the construction of the well-balanced scheme since in the“lake-at-rest” steady-
state, it is the equilibrium variable, the water surface w≡h+B (but not the conservative
variable, the water height h) that has to stay constant; (2) Replacement of the bottom
topography function B with its continuous piecewise linear approximation; (3) De-
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sign of the special positivity preserving correction of the piecewise linear reconstruction
for the water surface w; (4) Development of a special well-balanced finite-volume-type
quadrature for the discretization of the cell averages of the geometric source term. The
developed scheme in [6], enforced the positivity of the water height h, and preserved
the “lake-at-rest” steady state in the case of fully submerged bottom topography. In the
recent work [36], we further improved the well-balanced property of the scheme from [6],
and extended the scheme to accurate and stable simulations of shallow water models
with dry or near dry states (e.g., waves arriving or leaving the shore). We will briefly
review below the central-upwind scheme from [36].

First, we rewrite the system (1.1a–1.1c) in the following equivalent form,

Ut+F (U ,B)x+G(U ,B)y =S(U ,B), (2.1)

where the variables U and the fluxes F and G are

U =




w

hu

hv


, F =




hu
(hu)2

w−B
+

g

2
(w−B)2

(hu)(hv)

w−B


, G=




hv
(hu)(hv)

w−B
(hv)2

w−B
+

g

2
(w−B)2


,

and the source term S is

S=




0
−g(w−B)Bx

−g(w−B)By


.

Fig. 2.1. A typical triangular cell with three neighbors.

As illustrated in Figure 2.1, we denote,
T :={Tj}j is an unstructured triangulation of the computational domain Ω;
Tj ∈T is a triangular cell of size |Tj | with the barycenter (xj ,yj);
Vjκ=(x̃jκ, ỹjκ), κ=12,23,31 are the three vertices of Tj ;
Tjk, k=1,2,3 are the neighboring triangles that share a common side with Tj ;
�jk is the length of the common side of Tj and Tjk, and Mjk is its midpoint;
njk := (cos(θjk),sin(θjk))

� is the outer unit normal to the k-th side of Tj .
Next, in order to develop the positivity-preserving and well-balanced scheme, the

bottom topography B is replaced with its continuous piecewise linear approximation B̃
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given by ∣∣∣∣∣∣∣
x− x̃j12 y− ỹj12 B̃(x,y)−B̂j12

x̃j23− x̃j12 ỹj23− ỹj12 B̂j23−B̂j12

x̃j13− x̃j12 ỹj13− ỹj12 B̂j13−B̂j12

∣∣∣∣∣∣∣=0, (x,y)∈Tj ,

where, in the case of continuous bottom topography, B̂jκ :=B(Vjκ) κ=12,23,31. Then,
denote:

Bjk := B̃(Mjk), Bj := B̃(xj ,yj)=
1

3
(B̂j12+B̂j23+B̂j13).

At time t, define by U j(t) the approximation of the cell averages of the solution,

U j(t)≈
1

|Tj |

∫∫
Tj

U(x,y,t)dxdy.

Then, it can be shown (see [6, 36]), that the semi-discrete second-order central-upwind
scheme for the Saint-Venant system (2.1 on triangular grid is given by the following
system of ODEs,

d U j

dt
=− 1

|Tj |
[
Hj1+Hj2+Hj3

]
+ S j , (2.2)

where the numerical fluxes through the edges of the triangular cell Tj are

Hjk=
ℓjk cos(θjk)

ainjk+aoutjk

[
ainjkF (Ujk(Mjk),Bjk)+aoutjk F (Uj(Mjk),Bjk)

]
+

ℓjk sin(θjk)

ainjk+aoutjk

[
ainjkG(Ujk(Mjk),Bjk)+aoutjk G(Uj(Mjk),Bjk)

]
−ℓjk

ainjka
out
jk

ainjk+aoutjk

[
Ujk(Mjk)−Uj(Mjk)

]
, k=1,2,3. (2.3)

Here, Uj(Mjk) and Ujk(Mjk) are the reconstructed point values of U at the middle
points of the edges Mjk. To obtain these values [36], first, a piecewise linear reconstruc-
tion of the variables Υ := (w,u,v)⊤ is computed as,

Υ̃(x,y)=
∑
j

Υj(x,y)χTj
, Υj(x,y) :=Υj+(Υ̂x)j(x−xj)+(Υ̂y)j(y−yj), (2.4)

where χTj
is the characteristic function of the cell Tj , Υj are the point values of Υ at

the cell centers and (Υ̂x)j and (Υ̂y)j are the limited partial derivatives. After that, the
second and third components of the point values Uj(Mjk) and Ujk(Mjk) are obtained
from, Υj(Mjk) and Υjk(Mjk),

(hu)j(Mjk)=(wj(Mjk)−Bjk)uj(Mjk), (hu)jk(Mjk)=(wjk(Mjk)−Bjk)ujk(Mjk),

(hv)j(Mjk)=(wj(Mjk)−Bjk)vj(Mjk), (hv)jk(Mjk)=(wjk(Mjk)−Bjk)vjk(Mjk).

See Section 2 in [36] for more details on the reconstruction.
Moreover, to design a well-balanced central-upwind scheme, a special second-order

reconstruction of water surface is introduced in [36] which is positivity preserving for the
steady-state solutions with partially flooded/dry cells. Hence, the linear approximation
for the water surface is updated as follows:
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• In the dry cells in which w j =Bj , the corresponding linear pieces for w in
(2.4) are replaced by,

w̃j(x,y)= B̃(x,y). (2.5)

• If Tj is partially flooded which means Bj < w j <max{B̂j23,B̂j13,B̂j12}, the
water surface is reconstructed by using two linear pieces instead of one as,

w̃j(x,y)=

{
ẘj(x,y), if (x,y)∈Twet

j ,

B̃(x,y), otherwise,
(2.6)

where ẘj(x,y) is a linear reconstruction of the water surface on the wet part
Twet
j of the cell Tj .

• If Tj is fully flooded w j ≥max{B̂j23,B̂j13,B̂j12}, no further modification for
the linear approximation (2.4) is needed.

See Section 3 in [36] for more details of the reconstruction of the water surface w.

In (2.3), ainjk and aoutjk are the one-sided local speeds of propagation in the directions
±njk. These speeds are related to the largest and smallest eigenvalues of the Jacobian
matrix Jjk=cos(θjk)

∂F
∂U +sin(θjk)

∂G
∂U , denoted by λ+[Jjk] and λ−[Jjk], respectively,

and are defined by

ainjk=−min{λ−[Jjk(Uj(Mjk))], λ−[Jjk(Ujk(Mjk)], 0},
aoutjk =max{λ+[Jjk(Uj(Mjk))], λ+[Jjk(Ujk(Mjk)], 0}, (2.7)

where

λ±[Jjk(Uj(Mjk))]=cos(θjk)uj(Mjk)+sin(θjk)vj(Mjk)±
√
ghj(Mjk),

λ±[Jjk(Ujk(Mjk))]=cos(θjk)ujk(Mjk)+sin(θjk)vjk(Mjk)±
√
ghjk(Mjk).

Remark 2.1. In order to avoid division by 0 (or by a very small positive number),
the numerical flux (2.3) is replaced with

Hjk=
ℓjk cos(θjk)

2
[F (Ujk(Mjk),Bjk)+F (Uj(Mjk),Bjk)]

+
ℓjk sin(θjk)

2
[G(Ujk(Mjk),Bjk)+G(Uj(Mjk),Bjk)]

wherever ainjk+aoutjk <σ. In all of the reported numerical examples in Section 4, we have

taken σ=10−6.

A fully discrete scheme can be obtained by numerically solving the ODE system
(2.2), (2.3) using a stable and sufficiently accurate ODE solver. The time-step size on
each cell Tj ∈T should satisfy the CFL-type condition (see [6]), which can be expressed
as,

∆t<
1

6
min
j,k

[
rjk

max(ainjk,a
out
jk )

]
, (2.8)

where rj1, rj2 and rj3 are the three corresponding altitudes of the triangle Tj . From
(2.7), the one-sided local speeds of propagation ainjk and aoutjk are nonnegative for all j
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and k. However, the condition (2.8) can become too restrictive on partially flooded cells.
Thus, for partially flooded cells, the “draining” time-step technique is used to ensure the
positivity of the scheme without reducing the time step size (2.8), [4, 36]. Namely, first
the “draining” time-step ∆tdrainj is defined by,

∆tdrainj :=
|Tj | h

n

j

3∑
k=1

max(0,H
(1)
jk )

where H
(1)
jk is the first component of the numerical flux Hjk given by (2.3). Notice

that, for fully flooded cells ∆tdrainj =∆t, while for dry cells ∆tdrainj =0. Next, the local
“draining” time-step ∆tjk for each edge k of the cell Tj ∈T is defined as,

∆tjk=

{
min(∆t,∆tdrainj ), if H

(1)
jk >0,

min(∆t,∆tdrainjk ), if H
(1)
jk ≤0,

(2.9)

where ∆tdrainjk is the “draining” time-step in the neighboring triangle Tjk ∈T of Tj and
∆t is computed by (2.8), but with the minimum taken there over the flooded cells
only. This procedure of the draining time step is a part of the adaptive SSPRK2 time
evolution (3.6a-3.6b) in Section 3.3.

Finally, the cell average of the source term Sj in (2.2),

S j(t)≈
1

|Tj |

∫∫
Tj

S
(
U(x,y,t),B(x,y)

)
dxdy,

has to be discretized in a well-balanced manner [36]:

Quadrature for S
(2)

j is

S
(2)

j =
g

2|Tj |

3∑
k=1

ℓjk cos(θjk) ·
∆tjk
∆t

·
[
w(Mjk)−B(Mjk)

]2
− g

3

[
(wj12−B̂j12)wx(Vj12)+(wj23−B̂j23)wx(Vj23)+(wj13−B̂j13)wx(Vj13)

]
.

(2.10)

A similar quadrature for S
(3)

j is

S
(3)

j =
g

2|Tj |

3∑
k=1

ℓjk sin(θjk) ·
∆tjk
∆t

·
[
w(Mjk)−B(Mjk)

]2
− g

3

[
(wj12−B̂j12)wy(Vj12)+(wj23−B̂j23)wy(Vj23)+(wj13−B̂j13)wy(Vj13)

]
.

(2.11)

Remark 2.2. Note, that in Section 4, we compare the performance of the adaptive
central-upwind scheme developed in Section 3 with the performance of the central-
upwind scheme without adaptivity from [36] (see also brief review above). We use
standard SSPRK2 time discretization [20] together with the draining time step for the
scheme without adaptivity from [36] in numerical experiments in Section 4.
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3. Adaptive central-upwind scheme

The traditional numerical schemes are based on the use of very fine fixed meshes to
reconstruct delicate features of the solution. This can lead to high computational cost, as
well as poor resolution of all small scale features of the problem. In many engineering
and scientific applications, it is beneficial to use adaptive meshes for improving the
accuracy of the approximation at a much lower cost. Therefore, in this section, we will
introduce an efficient and accurate adaptive central-upwind algorithm.

3.1. Adaptive central-upwind algorithm. The adaptive central-upwind algorithm
is described briefly by the following steps.

Step 0. At time t= t0, generate the initial uniform grid T 0,0.

Step 1. On mesh T n,Mn , evolve the cell averages U
n
of the solution from time tn

to U
n+1

at the next time level tn+1 by using the adaptive central-upwind scheme
(3.6a-3.6b), see Section 3:

• At time tn, determine the level l=0,1,...,L of each cell/triangle Tn,Mn

j ∈T n,Mn ,
(3.2), Section 3.3.

• At each time level tn,pl ,p=0,1,...,Pl−1, perform the piecewise polynomial re-
construction (2.4) and compute the point values, Section 2, Section 3.3.

• At each time level tn,pl ,p=0,1,...,Pl−1, calculate the one-sided local speeds of
propagation using (2.7), Section 2, Section 3.3.

• At time tn, calculate the reference time step ∆t using (3.4), Section 3.3.

• At each time level tn,pl ,p=0,1,...,Pl−1, compute the local time step for each
cell level, (3.5), Section 3.3.

• At each time level tn,pl ,p=0,1,...,Pl−1, compute numerical fluxes and source
term in the adaptive central-upwind scheme (3.6a-3.6b), (2.3), (2.10-2.11), Sec-
tion 2, Section 3.3.

Step 2. On mesh T n,Mn , compute WLR error using (3.15) in Section 3.4 and update
the refinement/de-refinement status for each cell/triangle, Section 3.4.

Step 3. Generate the new adaptive mesh T n+1,Mn+1 at tn+1, Section 3.2. This step
includes coarsening of some cells, refinement of some cells, and the appropriate projec-
tion of the cell averages at tn+1 from the mesh T n,Mn onto the new adaptive mesh
T n+1,Mn+1 , Section 3.2.

Step 4. Repeat Step 1-Step 3 until final time.

3.2. Adaptive mesh refinement/coarsening. The main idea of the proposed adap-
tive mesh refinement algorithm is as follows. At time tn, we start with the given
mesh, denoted as T n,m={Tn,m

j }, where Tn,m
j is a triangular cell of size |Tn,m

j | with
the barycenter (xn,m

j ,yn,mj ) within the initial mesh T n,m, and index m=0,1,2... is the

level of refinement (m=0 corresponds to the mesh with no refinement and T n,0≡T 0,0

for all n). To flag triangular cells in the mesh T n,m for the refinement/de-refinement
(or coarsening), we use weak local residual (WLR) error estimate, see Section 3.4. We
apply “regular refinement” on the triangles flagged for refinement to obtain a new mesh
T n,m+1 with the refinement level m+1. The “regular refinement” on a fully flooded tri-
angle is obtained by splitting each flagged triangle (“parent” triangle) into four smaller
triangles (“children” triangles) by inserting a new node at the mid-point of each edge
of the “parent” triangle. We illustrate this idea using Figure 3.1 (a), where we show
an example of splitting a flagged triangle Tn,m

j by using the mid-points of the sides to
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obtain the “children” cells Tn,m+1
js

,s=1,2,3,4. In addition, the insertion of new nodes
on the edges means that non-flagged triangles adjacent to refined triangles get hanging
nodes and must also be refined. This is done by inserting a new edge between the
hanging node and the opposite corner as illustrated in Figure 3.1 (b). In practice, we

(a) Triangle Tn,m
j (left) is split into four“children”cells Tn,m+1

js ,s=1,2,3,4 (right).

(b) Refinement in the neighboring cells of
Tn,m
j .

Fig. 3.1. An outline of the “regular refinement”.

may want to reach a higher level of refinement for some cells. This happens when those
cells have very large WLR error (3.15), and we need to add more data points. We can
obtain a finer cell by repeating the refinement for the flagged triangles in the refined
mesh T n,m+1 to get the mesh with higher level T n,m+2,m=0,1,2, ..... Figure 3.2 is the
illustration of the “regular refinement” procedure with two levels of refinement.

In the partially flooded cells, Section 2, the approximation of the water surface
w̃(x,y) at each time level tn consists of two linear pieces, the piece for the wet and
for the dry region, see Figure 3.3. This motivates an idea of the “wet/dry refinement”
which uses the boundary between the wet region and the dry region of the cell to refine
the partially flooded triangles as shown in the example in Figure 3.4 (left). Namely,
consider a partially flooded triangle Tn,m

j which is flagged for the refinement and has
three non-flagged neighboring cells in the grid T n,m. The segment I1I2 is the boundary
between the wet and dry interface in that triangle. Note that, the location of the nodes
I1 and I2 is determined by the second-order water surface reconstruction developed
in [36], see also Section 2. During “regular refinement” of the partially flooded cell, we
first split the flagged cell Tn,m

j into a smaller triangle and a quadrilateral using the
wet/dry interface I1I2. We then continue to refine the quadrilateral by its diagonal. As
can be seen in Figure 3.4 (left), the flagged triangle Tn,m

j has three “children”which are
either fully flooded or dry. Similarly, as in Figure 3.1, the appearance of two hanging
nodes I1 and I2 on two sides leads to the need of the further splitting of the neighboring
cells as presented in Figure 3.4 (right). The “regular wet/dry refinement” will capture
the features of the wet/dry fronts and will minimize the number of partially flooded
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“children” cells. However, this method may give us difficulties in controlling the shapes
of triangles in the adaptive mesh. In some cases, it may produce “children” cells with
unexpected large obtuse angles or very small altitudes, as shown in Figure 3.5. For
cells where such situation happens, we instead use the “regular refinement” for the fully
flooded cells as described above.

Fig. 3.2. An example of the “regular refinement” procedure with two levels of refinement. The left
figure is the initial coarse mesh T n,0 with the region flagged for the refinement (gray). The middle
figure is the “first” level mesh T n,1 with the region flagged for higher level of the refinement (gray).
The right figure is the “second” level mesh T n,2.

Fig. 3.3. An example of a partially flooded triangle Tn,m
j with wet (blue) and dry (gray) regions,

where Tn,m
j is flagged for refinement (red) and its neighboring cells are not flagged.

Fig. 3.4. An example of the refinement of a partially flooded triangle by using the wet/dry interface
I1I2 (left) and the refinement of the neighboring triangles (right).
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Fig. 3.5. An example of a refinement of a partially flooded triangle (left) using idea of “wet/dry
refinement” that produces “child” cell with large obtuse angle (right).

Very often in the numerical simulations of the wave phenomena, the regions of the
domain that need to be refined move with time. Hence, the refinement in some cells
may be no longer needed. The de-refinement or coarsening procedure is then introduced
to deactivate unnecessarily fine cells in the mesh. The de-refinement is performed by
coarsening (by deactivating “children” cells) in the triangles of the mesh flagged for
coarsening (and possibly deactivating finer neighboring triangles due to removal of the
hanging nodes). At time tn, “children” cells in the mesh T n,m+1,m=0,1, ...,Mn−1, are
deactivated based on the WLR and the corresponding “parent” cell from the mesh T n,m

is activated back. In order to minimize the complexity of the adaptive grid generation,
the de-refinement should be applied on all cells flagged for coarsening prior to the
refinement, see for example [21].

The refinement/de-refinement process at time tn produces a hierarchical system of
grids Sn={T n,0,T n,1,T n,2, ...,T n,Mn}, where T n,m, m=1,2, ...,Mn is the grid with
the level of refinement m obtained by refining the grid T n,m−1. The term Mn is
the highest refinement level of the hierarchical system at time tn. In the numerical
experiments, Section 4, we assign two values to Mn which are either Mn=1 or Mn=2.
The final mesh T n,Mn ∈Sn is the mesh that is used in the adaptive central-upwind
scheme at time level tn. After the evolution of the numerical solution from time tn to
time tn+1 using mesh T n,Mn ∈Sn, we proceed with the generation of a new adaptive
grid T n+1,Mn+1 ∈Sn+1 from the mesh T n,Mn , using WLR in Section 3.4. After a new

adaptive mesh T n+1,Mn+1 is constructed, the obtained cell averages U
n+1

on the
mesh T n,Mn need to be projected accurately on the new mesh T n+1,Mn+1 , using the
ideas as summarized briefly below.

Case 1. If a triangle T
n+1,Mn+1

j ∈T n+1,Mn+1 at tn+1 is the same cell as in the grid

T n,Mn , we will keep without any change the cell averages for that triangle at tn+1.

Case 2. A cell T
n+1,Mn+1

j ∈T n+1,Mn+1 is obtained by coarsening some finer cells

Tn,Mn

js
∈T n,Mn ,s=1,2, ..,S. In order to enforce the conservation, the solution, U

n+1

j

in the cell T
n+1,Mn+1

j , is computed as

U
n+1

j =
1

|Tn+1,Mn+1

j |

S∑
s=1

U
n+1

js |Tn,Mn

js
|,

where U
n+1

js is the solution at tn+1 in Tn,Mn

js
.
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Case 3. A triangle T
n+1,Mn+1

j ∈T n+1,Mn+1 is obtained from the refinement of the cell

Tn,Mn

i ∈T n,Mn . The approximation of the cell averages of the solution at tn+1 in

T
n+1,Mn+1

j is obtained by using the evaluation of the piecewise linear reconstruction

(2.4–2.6) of the solution at tn+1 in the triangle Tn,Mn

i . Namely, suppose Υi(x,y)=
(w̃i,ui,vi)

⊤(x,y) is obtained via the piecewise linear reconstruction (2.4–2.6) in the

coarse cell Tn,Mn

i at tn+1. The cell averages in triangle T
n+1,Mn+1

j at tn+1 are calculated
by,

w j =
1

|Tn+1,Mn+1

j |

∫∫
T

n+1,Mn+1
j

w̃i(x,y)dxdy,

hu j =( w j−Bj)ui(xj ,yj),

hv j =( w j−Bj)vi(xj ,yj), (3.1)

where Bj is the point value of the bottom level at the center (xj ,yj) of triangle

T
n+1,Mn+1

j .

The adaptive grid T n+1,Mn+1 with the cell averages of the solution reconstructed
above is used to perform a new time evolution, see Section 3.3. As a part of the time
evolution, at time tn+1, we approximate the point values of the solution by applying
the piecewise linear reconstruction (2.4–2.6) on the adaptive grid T n+1,Mn+1 .

Note that the cell averages at tn+1 in T n+1,Mn+1 are calculated via the projection of
the well-balanced piecewise linear reconstruction of the solution from grid T n,Mn onto
grid T n+1,Mn+1 . In addition, in this research, we utilize the well-balanced discretization
of the source term proposed in [36]. Therefore, the well-balanced property of the central-
upwind method originally developed in [36] is also preserved in the adaptive grids.

3.3. Second-order adaptive time evolution. The CFL-type condition (2.8) is
needed for numerical stability. Hence, use of a global time step in the adaptive al-
gorithm may lead to the time step becoming very small due to the presence of much
finer cells in the mesh. To improve the computational cost of the algorithm, we consider
the approach based on the adaptive time step from [13, 14, 37]. The main idea of the
adaptive time evolution is that we group cells into different levels based on the cell sizes.
After that, we evolve the solution on each cell level individually with its local time step.
This approach does not violate the stability of the explicit time discretization scheme
as was shown in [13, 37]. Below, we present the brief summary of the adaptive time
evolution algorithm based on the second-order strong stability preserving Runge-Kutta
methods (SSPRK2) in [13,14,20,37].

The idea and the order of steps of adaptive SSPRK2 are illustrated on the example in
Figure 3.6. First, we group all cells Tn,Mn

j ∈T n,Mn at time tn in cell levels l=0,1,..,L

based on their sizes. We define cell levels at tn in mesh T n,Mn as follows. A cell
Tn,Mn

j ∈T n,Mn belongs to the level l, if l is the smallest positive integer satisfying,

2l≥
max

j

(
min
k

(rjk)

)
min
k

(rj,k)
, (3.2)

where rjk,k=1,2,3 are three altitudes of triangle Tn,Mn

j . Thus, the cell levels with
larger index l will contain finer cells which will require a smaller time step (2.8) for
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level 0

level 1

level 2

(1)

(1)

(1) (3)

(2)

(5)

(7)

(4)

(6)

(8)

(10)

(9)

(14)

(11)

(13)

(14)(12)

(14)

: The first SSPRK2 step

: The second SSPRK2 step

(2)

: The time interpolation to obtain solution at

Fig. 3.6. The example of SSPRK2 on mesh with three cell levels, l=0,1,2.

the evolution from tn→ tn+1. Next, at tn, we define the reference time step ∆t as the
local time step on the coarsest level l=0 of cells in the mesh T n,Mn by considering the
CFL-type condition (2.8) locally on level l=0. Namely, define first amax,

amax :=max
j,k

(ainjk,a
out
jk ), (3.3)

where (ainjk,a
out
jk ) are the local one-sided speeds of propagation (2.7) at tn for sides

k=1,2,3 in the triangle Tn,Mn

j ∈T n,Mn . Then, the reference time step ∆t is computed
as,

∆t≡∆tn,00 =

0.9max
j

(
min
k

(rjk)

)

6amax
.

(3.4)

We set, tn+1= tn+∆t.

Assume next, that Pl is the number of steps taken on higher levels l=1, ..L to
evolve from tn to tn+1, namely [tn,tn+1]=∪[tn,pl ,tn,p+1

l ],p=0, ...,Pl−1 with tn,0l ≡ tn,

tn,Pl

l ≡ tn+1 ∀l. We define the local time step for cells on these levels l=1, ...,L as,

∆tn,pl =
2−l∆t

max(µn,p
l ,1)

, (3.5)

where parameter µn,p
l takes into account change in the local one-sided speeds of the

propagation,

µn,p
l =

max
j,k

(ainjk,a
out
jk )n,pl

amax
,

where (ainjk,a
out
jk )n,pl are the local one-sided speeds of propagation at tn,pl of the cell Tn,Mn

j

in the level l. Therefore, on each cell Tn,Mn

j of level l, for each substep [tn,pl ,tn,p+1
l ]≡

[tn,pl ,tn,pl +∆tn,pl ],p=0,1,2,3, ...,Pl−1 of the evolution from tn to tn+1, we apply the
following two adaptive steps of SSPRK2 method,

U
(1)
j = U

n,p
j − 1

|Tn,Mn
j |

3∑
k=1

∆tn,p
jk Hn,p

jk +∆tn,p
l S

n,p
j :=R( U

n,p
j ,∆tn,p

l ), (3.6a)
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U
n,p+1
j =

1

2
U

n,p
j +

1

2
R( U

(1)
j ,∆tn,p

l ). (3.6b)

Here, ∆tn,pl is the local time step of the cells of level l at time tn,pl (3.5), and ∆tn,pjk

is the “draining” time step in cell Tn,Mn

j for the local time step ∆tn,pl in level l. The flux

term Hn,p
jk in (3.6a -3.6b) is the flux (2.3) computed at t= tn,pl . The source term S

n,p

j

in (3.6a -3.6b) is the source (2.10 - 2.11) computed at t= tn,pl with the time step ∆tn,pl

and with the corresponding local “draining” time step ∆tn,pjk . Note that, U
n,0

j ≡ U
n

j

and U
n,Pl

j ≡ U
n+1

j .

Remark 3.1. Figure 3.6 describes an example of the adaptive time evolution where
the cells in the adaptive mesh at tn are categorized based on their sizes (see (3.2)) into
three levels l=0,1,2. As can be seen in Figure 3.6, the adaptive time evolution can be
briefly described as follows.

• We perform two adaptive SSPRK2 steps, see Equations (3.6a–3.6b). In Fig-
ure 3.6, the first and the second adaptive SSPRK2 steps are represented by
the straight and circle vectors, respectively. The order of the SSPRK2 steps is
denoted by the index (i),i=1,2,3,...14.

• If cells from different cell levels are neighbors, then we use the linear interpo-
lation in time to match the time levels of such cells. See blue dash vectors in
Figure 3.6 for the illustration of the interpolation.

Namely, at tn, we apply the first SSPRK2 step (3.6a) on each level l=0,1,2 to
obtain the solution at time tn,1l , see the straight vectors (1) in Figure 3.6. One can see

from Figure 3.6 that tn,12 <tn,11 <tn,10 (see also Equation (3.5) for the sizes of local time
steps). Hence, after the first time steps, we perform the second adaptive SSPRK2 step
to update the solution at tn,12 on level 2, see the circle vector (2) in Figure 3.6. Note that
cells on level 2 may have some neighboring cells which are on the other levels l=0,1.
In that case, we need to approximate the solution at time tn,12 in such neighboring cells
on levels l=0,1. The solutions at time tn,12 on levels l=0,1 can be computed by using
the linear interpolation in time, see blue dash vectors in Figure 3.6. Next, we apply
the first adaptive SSPRK2 step on level 2, see Equation (3.6a) and the straight vector
(3) in Figure 3.6. To ensure the stability of the adaptive scheme, at time tn,12 , the local
time-stepping size ∆tn,12 applied on level 2 is updated by using Equation (3.5). We
continue to perform two adaptive SSPRK2 steps, see Equations (3.6a-3.6b), to obtain
the solution at tn+1 on all levels.

3.4. A posteriori error estimator. Here, using the idea of Weak Local Residual
(WLR) from [24, 45], we will derive local error estimator that is used as the robust
indicator for the adaptive mesh refinement in our work.

Let us recall that the weak form of the mass conservation equation for the system
(2.1) in Ω× [0,T ] takes the integral form,∫ T

0

∫
Ω

(wϕt(x,y,t)+huϕx(x,y,t)+hvϕy(x,y,t)dΩdt+

∫
Ω

w(x,y,0)ϕ(x,y,0)dΩ=0,

(3.7)
for all sufficiently smooth test functions ϕ(x,y,t) with compact support on Ω× [0,T ).

Consider the example of a localized test function in time and space,

ϕ
n+ 1

2
i (x,y,t)=

1

∆
fi(x,y)f

n+ 1
2 (t), (3.8)
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where ∆ :=max(max
j,k

(rjk),∆t), ∆t= tn+1− tn= tn+
1
2 − tn−

1
2 ,n=1,2,3..., and rjk are the

heights of the triangle/cell Tn,Mn

j ∈T n,Mn . Function fn+ 1
2 (t) is a linear function in

time with a local support defined as,

fn+ 1
2 (t)=



t− tn−
1
2

∆t
, if tn−

1
2 ≤ t≤ tn+

1
2 ,

tn+
3
2 − t

∆t
, if tn+

1
2 ≤ t≤ tn+

3
2 ,

0, otherwise.

(3.9)

Function fi(x,y),i=1,2,3,... is a “hat function”, namely, a piecewise linear function
with compact support over all triangles with common vertex Ni=(x̃i, ỹi). The function
fi(x,y) takes value 1 at the vertex Ni and 0 at all other nodes. More precisely, assume

that there are Ci triangles Tn,Mn

j1
, Tn,Mn

j2
, Tn,Mn

j3
,..., Tn,Mn

jCi
∈T n,Mn which share a

common vertex Ni. Thus, the function fi(x,y) is defined as,

fi(x,y)=

{
a
(i)
c (x− x̃i)+b

(i)
c (y− ỹi)+1, if (x,y)∈Tn,Mn

jc
, c=1,2,...Ci

0, otherwise
, (3.10)

The quantity (a
(i)
c ,b

(i)
c ) is the gradient of the linear piece of fi(x,y) restricted to Tn,Mn

jc
,

a(i)c =
ỹ2− ỹ3

(ỹ3− ỹi)(x̃2− x̃i)−(ỹ2− ỹi)(x̃3− x̃i)
,

b(i)c =
x̃3− x̃2

(ỹ3− ỹi)(x̃2− x̃i)−(ỹ2− ỹi)(x̃3− x̃i)
, (3.11)

where Ni=(x̃i, ỹi),(x̃2, ỹ2), and (x̃3, ỹ3) are the three vertices of triangle Tn,Mn

jc
. Next,

define the following piecewise constant approximation for the solution U =(w,hu,hv),

U∆ := U
n

jc , if (x,y,t)∈Tn,Mn

jc
× [tn−

1
2 ,tn+

1
2 ]. (3.12)

Now, using the localized test function ϕ
n+ 1

2
i (x,y,t), (3.8) together with the piece-

wise constant approximation U∆, (3.12) in (3.7), we can define the weak form of the
truncation error, (WLR), which will be used as the error indicator for refinement/de-
refinement in the adaptive grid,

E
n+ 1

2
i :=E(U∆,ϕ

n+ 1
2

i )

=

Ci∑
c=1

∫ t
n+1

2

t
n− 1

2

∫
T

n,Mn
jc

( w n
jc(ϕ

n+ 1
2

i )t+( hu )njc(ϕ
n+ 1

2
i )x+( hv )njc(ϕ

n+ 1
2

i )y)dΩdt

+

Ci∑
c=1

∫ t
n+3

2

t
n+1

2

∫
T

n,Mn
jc

( w n+1
jc

(ϕ
n+ 1

2
i )t+( hu )n+1

jc
(ϕ

n+ 1
2

i )x+( hv )n+1
jc

(ϕ
n+ 1

2
i )y)dΩdt.

(3.13)

After straightforward calculations, the WLR error E
n+ 1

2
i on mesh T n,Mn is given

by the formula,

E
n+ 1

2
i =

1

∆
(Un+ 1

2
i +Fn+ 1

2
i +Gn+ 1

2
i ),
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Un+ 1
2

i =

Ci∑
c=1

1

3
|Tn,Mn

jc
|( w n

jc − w n+1
jc

),

Fn+ 1
2

i =

Ci∑
c=1

a(i)c

∆t

2
|Tn,Mn

jc
|(( hu )njc +( hu )n+1

jc
),

Gn+ 1
2

i =

Ci∑
c=1

b(i)c

∆t

2
|Tn,Mn

jc
|(( hv )njc +( hv )n+1

jc
). (3.14)

The error in a cell Tn,Mn

j ∈T n.Mn is given by,

ej =max
k

∣∣∣En+ 1
2

jk

∣∣∣, k=1,2,3, (3.15)

where E
n+ 1

2

jk is the WLR error computed in (3.14) at a node k of triangle Tj .
In our numerical experiments, we define an error tolerance, ω as,

ω=σmax
j

(ej), (3.16)

where σ<1 is a given problem-dependent constant (see Section 4), and ej is the WLR

error in the triangle Tn.Mn
j , (3.15). The error ej in each cell Tn.Mn

j ∈T n,Mn is compared
to the error tolerance (3.16), and the cell is either“flagged” for refinement/de-refinement
or “no-change”.

Next, we will determine the number of refinement levels for each triangle Tj by
comparing the WLR error ej in Tj with the threshold ω. Note that the adaptive central-
upwind method has a second-order accuracy in space for a smooth solution, numerically
shown in Section 4.1. This means that the error of the solution obtained in a grid
decreases by a factor of four if we refine each cell in that grid into four smaller cells
by using the midpoints, see Figure 3.1 for the illustration of the refinement. Therefore,
in order to obtain the error in a cell Tj less than the threshold ω, we refine Tj for
m=1,2,3,... levels if the local error ej in cell Tj satisfies ω×4m−1≤ej <ω×4m.

Note that, in this work, we consider only the Equation (1.1a) to obtain WLR error.
The full system of shallow water equations can be used to derive WLR too, however it
will make the computation of the error indicator more complex and more expensive.

4. Numerical examples
In this section, we illustrate the performance of the designed adaptive central-

upwind scheme. We compare the results of the adaptive central-upwind scheme de-
veloped in this work with the results of the central-upwind scheme from [36] on uniform
triangular meshes (an example of such a uniform triangular mesh is outlined in Fig-

ure 4.1). In addition, in all experiments, we compute ratio, RCPU =
CPUuniform

CPUadaptive
, which

is the ratio of the CPU times of the central-upwind algorithm without adaptivity to
the CPU time of the adaptive central-upwind algorithm. To compare L1-errors, as well
as to compare the CPU times and to compute RCPU , we consider uniform mesh and
the adaptive mesh with the same size of the smallest cells. More precisely, in Table
4.1, L1-errors, and in Tables 4.2-4.7, RCPU are computed using the uniform meshes
2×N×N,N =100,200,400 and using the corresponding adaptive meshes which are ob-
tained from the coarser uniform mesh 2×N/2M×N/2M (M=1,2 is the highest level
of refinement in the adaptive mesh). In Example 4.1 and the first two cases in Example
4.2 with (4.1-4.2), the gravitational acceleration is set g=1.0, while in the last case of
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Example 4.2 with (4.3-4.4) and Example 4.4, we take g=9.8. We set the desingular-
ization parameters τ and ε for calculations of the velocity components u and v to be
τ =maxj{|Tn,Mn

j |2} and ε=10−4, except for the Example 4.2, (4.3-4.4), where ε=10−2

(see Section 2.1 formula (2.6) in [36]).

Fig. 4.1. An outline of uniform triangular mesh.

4.1. Example 4.1—accuracy test. Here, we consider the example from [6], and
we verify experimentally the order of accuracy of the designed adaptive central-upwind
scheme. We also compare the computational efficiency of the adaptive central-upwind
scheme and the central-upwind scheme without adaptivity on uniform and non-uniform
triangular meshes.

We consider the following initial data and the bottom topography,

w(x,y,0)=1, u(x,y,0)=0.3, v(x,y,0)=0,

B(x,y)=0.5exp(−25(x−1)2−50(y−0.5)2).

The computational domain is [0,2]× [0,1]. A zero-order extrapolation is used at all
boundaries. The error tolerance (3.16) for the mesh refinement in this example is set to
ω=0.01maxj(ej).

From the result reported in [6], by t=0.07, the numerical solution reaches the steady
state. In Figure 4.2 (left column), we show the numerical solution of water surface at
t=0.07. The solution is computed using the central-upwind scheme on uniform meshes
on Figure 4.2 (a, b) and using the adaptive central-upwind scheme on Figure 4.2 (c,
d). The adaptive meshes in Figure 4.2 are obtained from the uniform mesh 2×25×25,
Figure 4.2 (a). The adaptive mesh with one level of refinement M=1 (as the highest
level of refinement) is on Figure 4.2 (c), and with two levels of refinement M=2 (as the
highest level of refinement) is on Figure 4.2 (d).

Next, in Table 4.1 we compute the L1-errors of the central-upwind scheme on uni-
form meshes and of the adaptive central-upwind scheme. To obtain the errors, the
reference solution is calculated on the uniform mesh with 2×1600×1600 triangles. In
Table 4.2, we present the RCPU ratio to compare the computational efficiency of the
two methods. From Table 4.1 and Table 4.2, we observe that the adaptive algorithm
produces similar accuracy as the scheme on fixed uniform triangular meshes, but at a
less computational cost. Also, as expected, the adaptive central-upwind scheme achieves
second-order accuracy in space, similar to the central-upwind scheme without adaptivity.

In addition, we will use this example to show that the adaptive central-upwind
scheme is also effective on the unstructured triangular meshes. On Figure 4.3 (left), we
plot the numerical solution at t=0.07 computed using the central-upwind method on
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(a) Uniform mesh 2×25×25.

(b) Uniform mesh 2×50×50.

(c) Adaptive mesh with M=1.

(d) Adaptive mesh with M=2.

Fig. 4.2. Example 4.1: Computational water surface w(x,y,0.07) (left column) with the corre-
sponding meshes (right column).

a non-uniform mesh, Figure 4.3 (a), the adaptive scheme with one level of refinement,
Figure 4.3 (b) and the adaptive scheme with two levels of refinement, Figure 4.3 (c).
The adaptive meshes on Figure 4.3 (b, c) are obtained at t=0.07 as a result of applying
the adaptive central-upwind scheme on the non-uniform mesh shown on the right of
Figure 4.3 (a).

We then recompute the accuracy of the solution, see Table 4.3, and the CPU time
ratio, see Table 4.4, obtained by using the non-uniform meshes. From Table 4.3 and
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algorithm
without adaptivity

adaptive algorithm

one level M=1 two levels M=2
cells L1-error rate cells L1-error rate cells L1-error rate
20000 2.23e-05 11,808 2.23e-05 10,404 3.43e-05
80000 4.89e-06 2.19 46,892 5.76e-06 1.95 40,728 6.07e-06 2.50
320000 1.11e-06 2.14 187,726 1.67e-06 1.79 160,846 1.67e-06 1.86

Table 4.1. Example 4.1: L1-errors of the water surface w at t=0.07, and the convergence rates
of the central-upwind scheme without adaptivity (uniform mesh 2×N×N,N =100,200,400) and the
adaptive scheme (the corresponding adaptive mesh is reconstructed from the uniform mesh 2×N/2M×
N/2M).

uniform mesh
adaptive
mesh
M=1

RCPU with M=1
adaptive
mesh
M=2

RCPU with M=2

(cells) (cells) total
without
grid

generation
(cells) total

without
grid

generation
2×100×100 11,808 2.18 2.36 10,404 2.58 2.70
2×200×200 46,892 1.85 2.05 40,728 2.48 2.62
2×400×400 187,726 1.77 1.98 160,846 2.25 2.40

RCPU average: 1.93 2.13 2.44 2.57

Table 4.2. Example 4.1: RCPU ratio at t=0.07, where for adaptive central-upwind scheme, we
consider the total CPU times and CPU times without the grid generation.

algorithm
without adaptivity

adaptive algorithm

one level M=1 two levels M=2
cells L1-error rate cells L1-error rate cells L1-error rate
22,438 2.65e-05 13,036 2.54e-05 11,630 3.60e-05
90,434 6.61e-06 2.00 51,656 6.07e-06 2.07 44,400 7.16e-06 2.33
314,708 1.24e-06 2.41 204,044 1.77e-06 1.78 176,278 1.68e-06 2.09

Table 4.3. Example 4.1: L1-errors of the water surface w at t=0.07, and the convergence rates
of the central-upwind scheme without adaptivity in non-uniform mesh and the adaptive scheme (the
corresponding adaptive meshes have the same size of the smallest cells with the compared non-uniform
meshes).

Table 4.4, we observe that the advantage of the adaptive scheme is still maintained
on non-uniform meshes as it reduces the computational cost of the method. Next, we
compare the results presented in Table 4.3 and in Table 4.1. As expected, we see that
the errors obtained by using the scheme on non-uniform meshes are slightly larger than
the ones using the corresponding uniform meshes (with approximately the same number
of cells).

4.2. Example 4.2—well-balanced tests. The first numerical example here was pro-
posed in [33] to test the capability of the numerical scheme to accurately resolve small
perturbations of a steady state solution. We take a computational domain [0,2]× [0,1]
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(a) Non-uniform mesh with 1824 cells.

(b) Adaptive mesh with M=1.

(c) Adaptive mesh with M=2.

Fig. 4.3. Example 4.1: Computational water surface w(x,y,0.07) (left column) with the corre-
sponding meshes (right column) obtained by applying the adaptive central-upwind scheme on a non-
uniform mesh.

and the bottom topography,

B(x,y)=0.8exp(−5(x−0.9)2−50(y−0.5)2). (4.1)

The initial conditions describe a flat surface of water with a small perturbation in
0.05<x<0.15:

w(x,y,0)=

{
1+ϵ, 0.05<x<0.15,

1, otherwise,
u(x,y,0)≡v(x,y,0)≡0, (4.2)

where ϵ is the perturbation height. We have used zero-order extrapolation at the right
and the left boundaries of the domain and periodic boundary conditions for the top and
the bottom ones.
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Non-uniform
and

non-adaptive
mesh

adaptive
mesh
M=1

RCPU with M=1
adaptive
mesh
M=2

RCPU with M=2

(cells) (cells) total
without
grid

generation
(cells) total

without
grid

generation
22,438 13,036 1.86 1.94 11,630 3.77 3.90
90,434 51,656 2.20 2.20 44,400 3.34 3.43
314,708 204,044 2.45 2.57 176,278 3.36 3.46
RCPU average: 2.17 2.24 3.49 3.60

Table 4.4. Example 4.1: RCPU ratio at t=0.07, where for adaptive central-upwind scheme, we
consider the total CPU times and CPU times without the grid generation in non-uniform meshes.

To verify the well-balanced property of the adaptive scheme, we first consider a very
small perturbation ϵ=10−14. The adaptive meshes with levels M=1,2 are obtained
from a coarse uniform mesh 2×25×25. The threshold for mesh refinement in this
example is ω=0.1max

j
(ej). We plot max

x,y
(w−1) as a function of time for the central-

upwind scheme without adaptivity on a uniform mesh in Figure 4.4 (a), for the adaptive
central-upwind scheme with M=1 in Figure 4.4 (b), and with M=2 in Figure 4.4 (c).
The results of the test show that the adaptive scheme is stable and preserves numerically
the balance between the fluxes and the source term, similar to the scheme without
adaptivity.

In the next numerical test, we take a larger perturbation value ϵ=10−2. The pur-
pose of this test is to demonstrate the capability of the adaptive algorithm to resolve
the small scale features of the solution. In Figure 4.5, we plot the water surface w
obtained by the method without adaptivity on two uniform meshes 2×100×100 (left)
and 2×200×200 (right) at t=0.6,0.9,1.2,1.5, and 1.8. The computed solutions of the
water surface exhibit a right-going disturbance propagating past the hump. We then
apply the adaptive algorithm and plot the numerical solution of the water surface w on
selected meshes at different times in Figure 4.6 (left) with M=1 and in Figure 4.7 (left)
with M=2 (the starting grid was a uniform mesh with 2×100×100 and the threshold
is ω=0.1max

j
(ej)). We observe from Figure 4.5, Figure 4.6 and Figure 4.7 that the

adaptive central-upwind scheme delivers high resolution of the complex features of a
small perturbation of the “lake-at-rest” steady state. We note also, that by increasing
the level of refinement from M=1 to M=2, the number of cells in the mesh increases
from 30,912 cells with M=1 to 66,097 cells with M=2, but the accuracy is clearly im-
proved with higher resolution as seen in Figure 4.6 and Figure 4.7. We also present the
corresponding adaptive meshes in Figure 4.6 (right) and in Figure 4.7 (right). Clearly,
the meshes are adapted to the behavior of the flow during time evolution from t=0.6
to t=1.8. This confirms the ability of the WLR error estimator to detect the location
of the steep local gradient in the solution.

To demonstrate further the advantage of the adaptive scheme, we have compared
the CPU times of the central-upwind scheme without adaptivity and with adaptivity
for the solution at t=0.9. The computed RCPU ratios are presented in Table 4.5. The
computed ratios RCPU show that the adaptive central-upwind scheme can reduce the
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(a) Central-upwind scheme on a uniform mesh 2×25×25.

(b) Adaptive central-upwind scheme on a mesh obtained from the uniform mesh 2×25×25 with M=1.

(c) Adaptive central-upwind scheme on a mesh obtained from the uniform mesh 2×25×25 with M=2.

Fig. 4.4. Example 4.2: max
x,y

(w(x,y,t)−1) is plotted as a function of t on the uniform grid and

the adaptive grids.

numerical cost by about three times with M=1 and by about five times with M=2 in
comparison with the cost of the algorithm without adaptivity.

4.3. Example 3—well-balanced test with wet/dry interfaces. In this test, we
consider a small perturbation of the lake-at-rest steady-state that propagates around
an island. Similar examples were considered in [6, 36]. We consider a hump partially
submerged in water so that there is a disk-shaped island at the origin, see Figure 4.8.



692 ADAPTIVE CENTRAL-UPWIND SCHEME

Fig. 4.5. Example 4.2: w component of the solution of the IVP (1.1a-1.1c), (4.1-4.2) with
ϵ=10−2 at t=0.6,0.9,1.2,1.5, and 1.8 (from top to bottom) obtained by the central-upwind scheme
without adaptivity on uniform meshes 2×100×100 (left column) and 2×200×200 (right column).
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Fig. 4.6. Example 4.2: w component of the solution of the IVP (1.1a-1.1c), (4.1-4.2) with
ε=10−2 (left column) at t=0.6,0.9,1.2,1.5, and 1.8 (from top to bottom) obtained by the adaptive
central-upwind scheme. The corresponding adaptive meshes have one level of refinement M=1 (right
column).
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Fig. 4.7. Example 4.2: w component of the solution of the IVP (1.1a-1.1c), (4.1-4.2) with
ε=10−2 (left column) at t=0.6,0.9,1.2,1.5, and 1.8 (from top to bottom) obtained by the adaptive
central-upwind scheme. The corresponding adaptive meshes have two levels of refinement M=2 (right
column).
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uniform mesh
(cells)

adaptive mesh
M=1
(cells)

RCPU

with M=1

adaptive mesh
M=2
(cells)

RCPU

with M=2

2×100×100 9,127 3.50 8,274 4.06
2×200×200 30,912 2.06 21,131 5.29
2×400×400 108,297 3.67 66,097 6.38

RCPU average: 3.07 5.24

Table 4.5. Example 4.2: The RCPU ratio obtained in solving the IVP (1.1a-1.1c), (4.1-4.2) with
ϵ=10−2 at t=0.9.

Fig. 4.8. Example 3: 1-D slice of the bottom topography (brown) and water surface (blue) at t=0.
The plot is not to scale.

Hence, the bottom topography is given by

B(x,y)=


1.1, r≤0.1,

11×(0.2−r) 0.1<r≤0.2,

0, otherwise,

r :=
√

(x−0.5)2+(y−0.5)2. (4.3)

We consider the following initial condition,

w(x,y,0)=

{
1+ϵ, 0.1<x<0.2,

max(1,B(x,y)), otherwise,
u(x,y,0)≡v(x,y,0)≡0, (4.4)

where ϵ=10−2 is the perturbation height. Homogeneous Neumann boundary conditions
are used at all boundaries.

We first obtain the water surface using central-upwind scheme without adaptiv-
ity. Different to the results in the submerged plateau case (4.1-4.2), the right-going
disturbance bends around the island and is reflected by the island.

We then compare with the performance of the adaptive scheme in this case. The
adaptive grids are generated from the uniform mesh 2×100×100 using the threshold
ω=0.001maxj(ej) for one level of refinementM=1 and ω=0.01maxj(ej) forM=2. In
Figure 4.10 (left) and Figure 4.11 (left), we plot the results for w (left) obtained by the
adaptive scheme and the corresponding adaptive meshes (right). The results are similar
to the results of the central-upwind scheme without adaptivity in Figure 4.9. We do not
observe any non-physical spurious waves generated at the wet/dry front. Note that, as
shown in [36], if the scheme is not well-balanced, the numerical results will be polluted
by numerical oscillations. Moreover, the computed water depth is nonnegative in the
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Fig. 4.9. Example 3: w component of the solution of the IVP (1.1a-1.1c), (4.3-4.4) at t=
0.06,0.1,0.14, and 0.2 (from top to bottom) obtained by the central-upwind scheme without adaptivity
on uniform meshes 2×100×100 (left column) and 2×200×200 (right column).

adaptive meshes. This means that the adaptive method maintains the well-balanced
and positivity-preserving properties of the central-upwind scheme originally proposed
in [36]. As in previous examples, the WLR error estimator accurately detects regions
in the domain which are marked for adaptive refinement/coarsening.

Next, in Table 4.6, we present ratio of CPU times RCPU to compute the solution at
t=0.1 by the central-upwind method without adaptivity and by the adaptive algorithm.
In order to compare the computational costs and calculate RCPU , we consider uniform
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Fig. 4.10. Example 3: w component of the solution of the IVP (1.1a-1.1c), (4.3-4.4) at
t=0.06,0.1,0.14, and 0.2 (from top to bottom) obtained by the adaptive central-upwind scheme (left
column) and the corresponding adaptive meshes with one level of refinement M=1 (right column).

and adaptive meshes with the same size of the smallest cells. From Table 4.6, one
can see that the adaptive algorithm reduces the CPU times up to four times. In our
experiments, we considered only M=1 and M=2, but one can consider higher levels
of refinement to further enhance the accuracy of the numerical solution at the reduced
computational cost.

Finally, we illustrate the advantages of WLR error as the error indicator, and hence
compare it with another example of the error indicator which uses the unlimited gradient
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Fig. 4.11. Example 3: w component of the solution of the IVP (1.1a-1.1c), (4.3-4.4) at
t=0.06,0.1,0.14, and 0.2 (from top to bottom) obtained by the adaptive central-upwind scheme (left
column) and the corresponding adaptive meshes with two levels of refinement M=2 (right column).

of the water surface (wx,wy), see e.g. [19]. As shown in [19], the gradient indicator is
simple and applicable. However, the gradient indicator is very general since it does
not take into account more subtle features of a particular model, namely the shallow
water model in this work. Meanwhile, in this research, we designed the WLR error
specifically based on the SWEs, see Section 3.4. Therefore, the WLR error indicator
adapts to the shallow water model under study and accurately captures the behavior of
the solutions. Moreover, as the gradient indicator does not take into account the scale of
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uniform mesh
(cells)

adaptive mesh
M=1
(cells)

RCPU

with M=1

adaptive mesh
M=2
(cells)

RCPU

with M=2

2×100×100 11,831 1.91 6,155 3.04
2×200×200 31,050 2.08 25,753 3.14
2×400×400 154,616 3.16 94,357 5.82

RCPU average: 2.38 4.00

Table 4.6. Example 3: The RCPU ratio for solving the IVP (1.1a-1.1c), (4.3-4.4) at t=0.1.

a mesh cell, it does not provide necessary information about the number of refinement
levels needed in that cell. Finally, we will illustrate the performance of the gradient
and WLR error as the error indicators to obtain the adaptive meshes. We continue to
consider the IVP (1.1a-1.1c), (4.1-4.2). In Figure 4.12 (left column), we first present
the contour plots of the water surface w computed at t=0.14 and t=0.2 using the
meshes obtained by WLR error indicator, Figure 4.12 (middle column). The adaptive
meshes in Figure 4.12 (middle and right columns) are reconstructed from the uniform
mesh 2×100×100, respectively, by using the WLR error indicator and the gradient
indicator. The highest level of refinement for the two indicators is M=3. For WLR
error indicator, the threshold is set ω=0.001maxj(ej), where ej is the WLR error in
each cell Tj . For the gradient indicator, a cell Tj is refined for m=1,2,3 levels if the
gradient of the computed water surface w in Tj stays in the interval [ω′×4m−1,ω′×4m),
where ω′=0.0005 is the adhoc threshold parameter assigned for the gradient indicator.
The interval [ω′×4m−1,ω′×4m) is taken from the idea of the refinement threshold used
in the WLR error indicator, see Section 3.4. From Figure 4.12, it seems that the WLR
error indicator is more sensitive to subtle features of the solution than the error indicator
based on the gradient.

Fig. 4.12. Example 3: w component of the solution of (4.3-4.4) at t=0.14 (top) and t=0.2
(bottom) obtained by the adaptive central-upwind scheme using WLR error indicator (left column).
The corresponding adaptive meshes reconstructed from uniform mesh 2×100×100 by using the WLR
error indicator (middle column) and the gradient indicator (right column).
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Fig. 4.13. Example 4.4: Simulated water surface w at different times on uniform grid 2×100×100.

Fig. 4.14. Example 4.4: Simulated water surface at different times on uniform grid 2×200×200.

4.4. Example 4.4—dam break test. In Example 4.4 taken from [36], we simulate
the propagation of the dam-break flood wave which produces a moving wet/dry front
over an irregular dry bed with three obstacles. The test allows us to verify the capa-
bility of the proposed adaptive algorithm to handle wet/dry interfaces. The bottom
topography is defined by,

B(x,y)=max
[
0.5e−8(x−2)2−10(y−3)2 ,0.2e−3(x−4)2−4(y−4.8)2 ,0.2e−3(x−4)2−4(y−1.2)2

]
,

(4.5)
in the computational domain [0,6]× [0,6]. At t=0, an upstream reservoir in the region
[0,1]× [0,6] filled with water up to w(x,y,0)=0.5 is suddenly released. Hence, the
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Fig. 4.15. Example 4.4: Contour of the water depth h at different times on uniform grid 2×
100×100.

Fig. 4.16. Example 4.4: Contour of the water depth h at different times on uniform grid 2×
200×200.
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following initial condition is imposed,

w(x,y,0)=

{
0.5, 0≤x<1,

B(x,y), otherwise,
u(x,y,0)≡v(x,y,0)≡0. (4.6)

In this example, we consider the friction effects by modifying the governing Equation
(1.1b) and (1.1c) with the Manning friction terms as follows,

(hu)t+
(
hu2+

g

2
h2

)
x
+(huv)y =−ghBx−

gn2
bu

√
u2+v2

h1/3
,

(hv)t+(huv)x+
(
hv2+

g

2
h2

)
y
=−ghBy−

gn2
bv
√
u2+v2

h1/3
, (4.7)

where nb=0.01 is the Manning roughness coefficient. The friction terms affect the
stiffness of the underlying central-upwind scheme especially when the depth of the water
is very small. To numerically solve the Saint-Venant system with the friction terms,
see Equation (1.1a) and (4.7), we first rewrite the friction terms in the vector form

as I=(0,−gn2
bu

√
u2+v2

h1/3
,−gn2

bv
√
u2+v2

h1/3
)T . Denote the cell averages of the friction

terms at the certain time level t in cell Tj as,

I j(t)≈
1

|Tj |

∫∫
Tj

I(x,y)dxdy. (4.8)

Next, we add the cell averages of the friction terms at time tn,pl , denoted by I
n,p

j , to
the adaptive SSPRK2 Equations (3.6a–3.6b) as,

U
(1)
j = U

n,p
j − 1

|Tn,Mn
j |

3∑
k=1

∆tn,p
jk Hn,p

jk +∆tn,p
l S

n,p
j +∆tn,p

l I
n,p
j :=R( U

n,p
j ,∆tn,p

l ),

(4.9a)

U
n,p+1
j =

1

2
U

n,p
j +

1

2
R( U

(1)
j ,∆tn,p

l ). (4.9b)

The cell averages of friction terms in a cell Tj are approximated by using the same
Trapezoidal rule as the source term, see [36].

We first present the numerical solution computed by applying the central-upwind
scheme without the adaptivity [36] on the uniform meshes. Figure 4.13 and Figure 4.14
are the 3-D view of the dam-break wave propagation over the initially dry bed obtained
respectively on 2×100×100 and 2×200×200 uniform meshes at different times t=
0.4,0.6,1.0,1.4,2.0, and 4.0. As can be observed from the figures, the water wave spreads
from the reservoir and passes the obstacles. In addition, we plot the contour lines of the
water depth for the solutions obtained on the uniform meshes 2×100×100 (Figure 4.15)
and 2×200×200 (Figure 4.16). The contour lines clearly show the reflections and
interactions of waves.

Now, we continue the test for the proposed adaptive central-upwind method with
the refined meshes generated from the uniform mesh 2×100×100. The threshold for
the grid refinement is set to ω=0.01maxj(ej) in this example. In Figure 4.17 and
Figure 4.18, we show the 3-D view of the simulated water computed by the adaptive
scheme on the adaptive meshes with two cases of the highest refinement level M=1
and M=2. The behavior of the wave is similar to the result obtained by the central-
upwind scheme without adaptivity, see Figure 4.13 and Figure 4.14. This means that
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the adaptive scheme performs well in simulating the wetting/drying processes. There
are no non-physical spurious waves appearing as a result of the simulation. We also
present the contour lines of the water depth obtained on the adaptive meshes withM=1
(Figure 4.19) andM=2 (Figure 4.20). Clearly, the simulated solution captures correctly
the reflections and interactions of the waves with no oscillations or disturbances showing
up at the wet/dry interfaces. The considered adaptive meshes with M=1 are plotted
in Figure 4.21 and with M=2 in Figure 4.22. As we expected, the moving refined/de-
refined regions match with the wetting and drying processes in the propagation of the
flow.

Finally, we present the RCPU ratios at time t=1.0 in Table 4.7. The result in
Table 4.7 shows that the average cost for the adaptive central-upwind method is about
half of the cost for the central-upwind method without adaptivity. Note that at t=1.0,
the refined region is larger than half of the computational domain, see Figure 4.21
and Figure 4.22. Therefore, the numerical cost is not as remarkably reduced with the
adaptive grid as the cost in Example 2, see Table 4.6. As illustrated, the adaptive
central-upwind method preserves the advantages of the well-balanced positivity pre-
serving central-upwind scheme proposed in [36], but at a lower computational cost.

Fig. 4.17. Example 4.4: Simulated water surface w at different times on the adaptive mesh with
M=1.

uniform mesh
(cells)

adaptive mesh
M=1
(cells)

RCPU

with M=1

adaptive mesh
M=2
(cells)

RCPU

with M=2

2×100×100 15,064 2.47 14,299 2.64
2×200×200 59,252 1.62 54,518 2.13
2×400×400 238,485 1.53 217,075 1.69

RCPU average: 1.87 2.02

Table 4.7. Example 4.4: The RCPU ratios at t=1.0.
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Fig. 4.18. Example 4.4: Simulated water surface w at different times on the adaptive mesh with
M=2.

Fig. 4.19. Example 4.4: Contour of the water depth h at different times on the adaptive mesh
with M=1.
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Fig. 4.20. Example 4.4: Contour of the water depth h at different times on the adaptive mesh
with M=2.

Fig. 4.21. Example 4.4: Adaptive mesh at different times with one level of refinement M=1.
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Fig. 4.22. Example 4.4: Adaptive mesh at different times with two levels of refinement M=2.

5. Conclusion
We have developed a new adaptive well-balanced and positivity preserving central-

upwind scheme on unstructured triangular meshes for shallow water equations. The
designed scheme is an extension and improvement of the scheme in [36]. In addition, as a
part of the adaptive algorithm, we obtained a robust local error indicator for the efficient
mesh refinement strategy. We conducted several challenging numerical tests for shallow
water equations and we demonstrated that the new adaptive central-upwind scheme
maintains important stability properties (i.e., well-balanced and positivity-preserving
properties) and delivers high-accuracy at a reduced computational cost.
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