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Abstract Chemotaxis refers to mechanisms by which cellular motion occurs in
response to an external stimulus, usually a chemical one. Chemotaxis phenomenon
plays an important role in bacteria/cell aggregation and pattern formation mecha-
nisms, as well as in tumor growth. A common property of all chemotaxis systems
is their ability to model a concentration phenomenon that mathematically results in
rapid growth of solutions in small neighborhoods of concentration points/curves. The
solutions may blow up or may exhibit a very singular, spiky behavior. There is con-
sequently a need for accurate and computationally efficient numerical methods for
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the chemotaxis models. In this work, we develop and study novel high-order hybrid
finite-volume-finite-difference schemes for the Patlak-Keller-Segel chemotaxis sys-
tem and related models. We demonstrate high-accuracy, stability and computational
efficiency of the proposed schemes in a number of numerical examples.

Keywords Patlak-Keller-Segel chemotaxis system · Advection-diffusion-reaction
systems · High-order finite-difference · Finite-volume methods ·
Positivity-preserving algorithms

Mathematics Subject Classification (2010) 65M06 · 65M08 · 65M12 · 92C17 ·
35M10

1 Introduction

We develop and study hybrid finite-volume-finite-difference (FVFD) schemes for
the Patlak-Keller-Segel (PKS) chemotaxis system [29–31, 40] and related models.
Chemotaxis refers to mechanisms by which cellular motion occurs in response to an
external stimulus, usually a chemical one. Chemotaxis phenomenon plays an impor-
tant role in bacteria/cell aggregation and pattern formation mechanisms, as well as
in tumor growth. The PKS model is governed by a system of advection-diffusion-
reaction equations, which in the two-dimensional (2-D) case reads as

{
ρt + ∇·(χρ∇c) = �ρ,

αct = �c − γcc + γρρ,
(x, y) ∈ � ⊂ R

2, t > 0, (1.1)

where ρ(x, y, t) denotes the cell density, c(x, y, t) stands for a chemoattractant con-
centration, χ > 0 is a chemotactic sensitivity constant, γρ > 0 and γc > 0 are the
reaction coefficients. The parameter α is equal to either 1 or 0, which correspond to
the parabolic-parabolic or reduced parabolic-elliptic coupling, respectively.

In the past two decades, chemotaxis systems have been extensively analyzed (see,
e.g., [24–27, 42] and references therein). A common property of all chemotaxis sys-
tems is their ability to model a concentration phenomenon that mathematically results
in rapid growth of solutions in small neighborhoods of concentration points/curves.
The solutions may blow up or may exhibit a very singular, spiky behavior. For exam-
ple, it has been shown that the solution of (1.1) may blow up in finite time, provided
the total mass of cells,

∫
�

ρ(x, y, 0)dxdy, is initially above a critical threshold; see,
e.g., [8, 26, 27, 41]. This blowup represents a mathematical description of a cell con-
centration phenomenon that occurs in real biological systems; see, e.g., [1, 5–7, 10,
11, 38, 43].

Capturing blowing up or spiky solutions numerically is a very challenging task,
but at the same time development of accurate and efficient numerical methods is
crucial for the modeling and analysis of chemotaxis systems. Let us briefly review
some of the numerical methods that have been proposed in the literature.
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A finite-volume, [21], and finite-element, [37, 44], methods have been proposed
for the PKS system with the parabolic-elliptic coupling, that is, the system (1.1) with
α = 0. A fractional step numerical method for fully time-dependent chemotaxis sys-
tem from [47, 50] has been proposed in [48]. However, the operator splitting approach
may not be applicable for the system (1.1) since its convective part of the chemotaxis
system may loose the hyperbolicity. As it has been demonstrated in [9], the latter is a
generic situation for the PKS model with parabolic-parabolic (α = 1) coupling. Sev-
eral methods for the parabolic-parabolic PKS system have been recently proposed: a
family of high-order discontinuous Galerkin methods has been designed in [14, 15];
an implicit flux-corrected finite-element method has been developed in [45]. These
methods achieve high-order of accuracy, but their high memory usage and compu-
tational costs are of obvious drawbacks. A simpler and more efficient second-order
finite-volume central-upwind scheme has been derived in [9] for the PKS system
with α = 1 and extended to several more realistic chemotaxis and related models.
Finally, in [13] a modified version of the scheme from [9] is extended to PKS system
in irregular geometry by employing the idea of the difference potentials.

In this paper, we further improve the scheme from [9] and develop new (high-
order) hybrid FVFD schemes: while the density equation in (1.1) is treated using a
(high-order) positivity-preserving finite-volume method, a much simpler chemoat-
tractant concentration equation is solved using a simple (high-order) centered-
difference scheme. The new schemes are highly accurate, computationally efficient
and robust.

The paper is organized as follows. First, in Section 2.1 we design a second-order
positivity-preserving hybrid FVFD scheme for the PKS system (1.1). In Section 2.2,
we develop a fourth-order positivity-preserving hybrid FVFD method. Finally, in
Section 3 we illustrate the performance of the proposed schemes in several numer-
ical experiments. To conduct the experiments in Section 3 we extend the developed
methods to the two-species chemotaxis system that was originally proposed and
analytically studied in [12, 16–20, 34, 49].

2 Hybrid finite-volume-finite-difference schemes

To derive high-order positivity-preserving numerical schemes for the chemotaxis
system (1.1), we first rewrite it in the following equivalent form:

{
ρt + (χρu − ρx)x + (χρv − ρy)y = 0,

αct = �c − γcc + γρρ,
u := cx, v := cy, (2.1)

where u and v are the chemotactic velocities.
We consider the system (2.1) in a square domain � ⊂ R

2, where we introduce a
Cartesian mesh consisting of the cells Ij,k := [x

j− 1
2
, x

j+ 1
2
] × [y

k− 1
2
, y

k+ 1
2
], which,

for the sake of simplicity, are assumed to be of the uniform size �x�y, that is,
x
j+ 1

2
− x

j− 1
2

≡ �x for all j and y
k+ 1

2
− y

k− 1
2

≡ �y for all k. On this mesh, a
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330 A. Chertock et al.

general semi-discrete hybrid FVFD scheme for the PKS system (2.1) will have the
following form:⎧⎪⎪⎨

⎪⎪⎩
d ρ̄j,k

dt
= −

F
j+ 1

2 ,k
− F

j− 1
2 ,k

�x
−

G
j,k+ 1

2
− G

j,k− 1
2

�y
,

α
dcj,k

dt
= �j,kc − γccj,k + γρρj,k.

(2.2)

Here, the cell averages of the density, ρ̄j,k(t) ≈ 1
�x�y

�
Ij,k

ρ(x, y, t)dxdy, and
the point values of the chemoattractant concentration, cj,k(t) ≈ c(xj , yk, t), are the
evolved quantities, F

j+ 1
2 ,k

and G
j,k+ 1

2
are the numerical fluxes in the x- and y-

directions, respectively, �j,k is a discrete Laplacian, and ρj,k(t) ≈ ρ(xj , yk, t) are
the approximate point values of the density.

In what follows, we construct the second- (Section 2.1) and fourth-order
(Section 2.2) hybrid FVFD schemes. In order to distinguish between the second-
and fourth-order numerical fluxes and discrete Laplacians, we will denote them by
F II

j+ 1
2 ,k

, G II
j,k+ 1

2
, �II

j,k and F IV
j+ 1

2 ,k
, G IV

j,k+ 1
2
, �IV

j,k , respectively.

2.1 Derivation of the second-order scheme

In this section, we present a detailed derivation of the second-order hybrid FVFD
scheme of the form (2.2).

We first write the second-order numerical fluxes in (2.2) as follows:

F II
j+ 1

2 ,k
= χρII

j+ 1
2 ,k

uII
j+ 1

2 ,k
− (ρx)

II
j+ 1

2 ,k
,

G II
j,k+ 1

2
= χρII

j,k+ 1
2
vII
j,k+ 1

2
− (ρy)

II
j,k+ 1

2
. (2.3)

The cell density derivatives, (ρx)
II
j+ 1

2 ,k
and (ρy)

II
j,k+ 1

2
, and velocities, uII

j+ 1
2 ,k

and

vII
j,k+ 1

2
, are approximated using the central differences:

(ρx)
II
j+ 1

2 ,k
= ρ̄j+1,k − ρ̄j,k

�x
, (ρy)

II
j,k+ 1

2
= ρ̄j,k+1 − ρ̄j,k

�y
,

uII
j+ 1

2 ,k
= cj+1,k − cj,k

�x
, vII

j,k+ 1
2

= cj,k+1 − cj,k

�y
,

(2.4)

while the point values ρII
j+ 1

2 ,k
and ρII

j,k+ 1
2

are computed in an upwind manner:

ρII
j+ 1

2 ,k
=

{
ρE

j,k, if uII
j+ 1

2 ,k
> 0,

ρW
j+1,k, otherwise,

ρII
j,k+ 1

2
=

{
ρN

j,k, if vII
j,k+ 1

2
> 0,

ρS
j,k+1, otherwise.

(2.5)

In (2.5), the one-sided point values at the interfaces, ρE
j,k , ρW

j+1,k , ρN
j,k and ρS

j,k+1, are
calculated using a second-order piecewise linear reconstruction

ρ̃(x, y) = ρ̄j,k + (ρx)j,k(x − xj ) + (ρy)j,k(y − yk), (x, y) ∈ Ij,k (2.6)
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as follows:

ρE
j,k = ρ̃(x

j+ 1
2

− 0, yk) = ρ̄j,k + �x

2
(ρx)j,k,

ρW
j+1,k = ρ̃(x

j+ 1
2

+ 0, yk) = ρ̄j+1,k − �x

2
(ρx)j+1,k,

ρN
j,k = ρ̃(xj , yk+ 1

2
− 0) = ρ̄j,k + �y

2
(ρy)j,k,

ρS
j,k+1 = ρ̃(xj , yk+ 1

2
+ 0) = ρ̄j,k+1 − �y

2
(ρy)j,k+1. (2.7)

In order to ensure that the point values in (2.7) are both second-order and nonnega-
tive, the slopes in (2.6) are calculated adaptively using

(ρx)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̄j+1,k − ρ̄j−1,k

2�x
,

if ρ̄j,k ± �x

2
· ρ̄j+1,k − ρ̄j−1,k

2�x
= ρ̄j,k ± ρ̄j+1,k − ρ̄j−1,k

4
≥ 0,

minmod
(

2
ρ̄j+1,k − ρ̄j,k

�x
,

ρ̄j+1,k − ρ̄j−1,k

2�x
, 2

ρ̄j,k − ρ̄j−1,k

�x

)
,

otherwise,

(ρy)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ̄j,k+1 − ρ̄j,k−1

2�y
,

if ρ̄j,k ± �y

2
· ρ̄j,k+1 − ρ̄j,k−1

2�y
= ρ̄j,k ± ρ̄j,k+1 − ρ̄j,k−1

4
≥ 0,

minmod
(

2
ρ̄j,k+1 − ρ̄j,k

�y
,

ρ̄j,k+1 − ρ̄j,k−1

2�y
, 2

ρ̄j,k − ρ̄j,k−1

�y

)
,

otherwise.

(2.8)

Here,

minmod(z1, z2, . . .) :=
⎧⎨
⎩

min(z1, z2, . . .), if zi > 0 ∀i,

max(z1, z2, . . .), if zi < 0 ∀i,

0, otherwise,

and the positivity of reconstructed point values is ensured by the positivity-preserving
generalized minmod limiter, [35, 36, 39, 46], under the assumption that the cell
averages of ρ are nonnegative.

Remark 1 We note that the minmod limiter used in (2.8) can be replaced with another
(positivity-preserving) nonlinear limiter; see, e.g., [35, 36, 39, 46].

Next, we use the standard five-point stencil to obtain a second-order approximate
Laplace operator in (2.2):

�II
j,kc = cj+1,k − 2cj,k + cj−1,k

(�x)2
+ cj,k+1 − 2cj,k + cj,k−1

(�y)2
. (2.9)
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This completes the derivation and the resulting second-order semi-discrete hybrid
FVFD scheme is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
d ρ̄j,k

dt
= −

F II
j+ 1

2 ,k
− F II

j− 1
2 ,k

�x
−

G II
j,k+ 1

2
− G II

j,k− 1
2

�y
,

α
dcj,k

dt
= �II

j,kc − γccj,k + γρ ρ̄j,k.

(2.10)

We now consider the cases α = 1 and α = 0 separately.

Parabolic-Parabolic Case (α = 1) In this case, the obtained scheme (2.10) is a
system of time-dependent ODEs, which has to be numerically integrated using a
stable and accurate ODE solver. In our numerical experiments, we use strong stability
preserving Runge-Kutta methods (SSP RK); see, e.g., [22, 23]. The SSP property is
essential for the resulting fully discrete scheme to preserve positivity of both {ρ̄j,k}
and {cj,k} as stated in the following theorem. We prove this result for the first-order
forward Euler discretization, but it is also valid for the SSP methods, whose time
steps are convex combinations of several forward Euler steps.

Theorem 1 Assume that the system of ODEs (2.10) with α = 1, (2.3)–(2.9) is
integrated using the forward Euler method:

ρ̄j,k(t + �t) = ρ̄j,k(t) − λ
(
F II

j+ 1
2 ,k

(t) − F II
j− 1

2 ,k
(t)

)
−μ

(
G II

j,k+ 1
2
(t) − G II

j,k− 1
2
(t)

)
, (2.11)

cj,k(t + �t) = (1 − �tγc)cj,k(t) + �t�II
j,kc(t) + �tγρ ρ̄j,k(t), (2.12)

where λ := �t/�x and μ := �t/�y. Then, the evolved cell densities, ρ̄j,k(t + �t),
and chemoattractant concentrations, cj,k(t + �t), will be nonnegative for all j, k

provided ρ̄j,k(t) and cj,k(t) are nonnegative for all j, k and the following CFL-like
condition is satisfied:

�t ≤ min

{
�x

8a
,

�y

8b
,

�x�y

4K
,

1

max{K1, ε}
}
, (2.13)

where

a := χ max
j,k

|uII
j+ 1

2 ,k
|, b := χ max

j,k
|vII

j,k+ 1
2
|,

K := �x

�y
+ �y

�x
, K1 := max

j,k

(
γc + 2K

�x�y
− γρρ̄j,k

cj,k

)
.

(2.14)

Proof We follow the lines of the positivity proof in [9]. We begin with the cell den-
sity equation (2.11) and note that the positivity-preserving property of the interpolant
(2.6) will guarantee that the reconstructed point values ρE

j,k, ρ
W
j,k, ρ

N
j,k and ρS

j,k will
be nonnegative provided ρ̄j,k(t) ≥ 0, ∀j, k. We then use (2.3)–(2.5) and the conser-
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vation property for the cell densities, ρ̄j,k = 1
8 (ρE

j,k + ρW
j,k + ρS

j,k + ρN
j,k) + 1

2 ρ̄j,k , to
regroup the terms in (2.11) as follows:

ρ̄j,k(t+�t) =
[

1

8
− λχ

2

(
|uII

j− 1
2 ,k

| − uII
j− 1

2 ,k

)]
ρW

j,k

+
[

1

8
− λχ

2

(
|uII

j+ 1
2 ,k

|+uII
j+ 1

2 ,k

)]
ρE

j,k+ λχ

2

(
|uII

j+ 1
2 ,k

|−uII
j+ 1

2 ,k

)
ρW

j+1,k

+λχ

2

(
|uII

j− 1
2 ,k

|+uII
j− 1

2 ,k

)
ρE

j−1,k+
[

1

8
− μχ

2

(
|vII

j,k− 1
2
|−vII

j,k− 1
2

)]
ρS

j,k

+
[

1

8
− μχ

2

(
|vII

j,k+ 1
2
|+vII

j,k+ 1
2

)]
ρN

j,k+ μχ

2

(
|vII

j,k+ 1
2
|−vII

j,k+ 1
2

)
ρS

j,k+1

+μχ

2

(
|vII

j,k− 1
2
| + vII

j,k− 1
2

)
ρN

j,k−1 + ρ̄j,k(t)

[
1

2
− 2K�t

�x�y

]

+�t

[
ρ̄j+1,k(t) + ρ̄j−1,k(t)

(�x)2
+ ρ̄j,k+1(t) + ρ̄j,k−1(t)

(�y)2

]
.

As one can see, ρ̄j,k(t + �t) is a linear combination of the cell averages ρ̄j,k(t),
ρ̄j±1,k(t), ρ̄j,k±1(t) and the reconstructed point values ρW

j,k , ρE
j,k , ρW

j+1,k , ρE
j−1,k , ρS

j,k ,

ρN
j,k , ρS

j,k+1, ρN
j,k−1, which are nonnegative. The coefficients of this linear combina-

tion are also nonnegative under the CFL-like condition (2.13), which guarantees that
ρ̄j,k(t + �t) ≥ 0 for all j, k.

Finally, the CFL-like condition (2.13) ensures that all of the terms on the right-
hand side (RHS) of (2.12) are nonnegative and thus cj,k(t + �t) ≥ 0 for all j, k,
which completes the proof of the theorem.

Parabolic-Elliptic Case (α = 0) In this case, the scheme (2.10) is a system of
differential-algebraic equations (DAEs). The second equation in (2.10) now reduces
to a system of linear algebraic equations for cj,k , which is to be solved by an accurate
and efficient linear algebra solver. It should be observed that the matrix of this linear
system is diagonally dominant, which would guarantee the positivity of c, while the
positivity of ρ is enforced the same way as in the parabolic-parabolic case, but with
a different CFL-like condition as summarized in the following theorem.

Theorem 2 Assume that the first equation of the system of DAEs (2.10) with α = 0,
(2.3)–(2.9) is integrated using the forward Euler method resulting in equation (2.11),
while the system of linear algebraic equations for cj,k is solved exactly. Then, the
evolved cell densities, ρ̄j,k(t+�t), and chemoattractant concentrations, cj,k(t+�t),
will be nonnegative for all j, k provided ρ̄j,k(t) and cj,k(t) are nonnegative for all
j, k and the following CFL-like condition is satisfied:

�t ≤ min
{�x

8a
,

�y

8b
,

�x�y

4K

}
,

where a, b and K are given by (2.14).
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2.2 Derivation of the fourth-order scheme

In this section, we present a detailed derivation of the fourth-order hybrid FVFD
scheme of the form (2.2).

We first write the fourth-order numerical fluxes as follows:

F IV
j+ 1

2 ,k
= χ(ρu)IV

j+ 1
2 ,k

− (ρx)
IV
j+ 1

2 ,k
, G IV

j,k+ 1
2

= χ(ρv)IV
j,k+ 1

2
− (ρy)

IV
j,k+ 1

2
. (2.15)

As in the case of the second-order scheme, the cell density derivatives are approxi-
mated using the central differences:

(ρx)
IV
j+ 1

2 ,k
= ρ̄j−1,k − 15 ρ̄j,k + 15 ρ̄j+1,k − ρ̄j+2,k

12�x
,

(ρy)
IV
j,k+ 1

2
= ρ̄j,k−1 − 15 ρ̄j,k + 15 ρ̄j,k+1 − ρ̄j,k+2

12�y
(2.16)

while the chemotactic flux terms are computed in an upwind manner:

(ρu)IV
j+ 1

2 ,k
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρNE
j,k u

j+ 1
2 ,k+ 1

2
+ 4ρE

j,kuj+ 1
2 ,k

+ ρSE
j,k u

j+ 1
2 ,k− 1

2
,

if u
j+ 1

2 ,k
> 0,

ρNW
j+1,kuj+ 1

2 ,k+ 1
2

+ 4ρW
j+1,kuj+ 1

2 ,k
+ ρSW

j+1,kuj+ 1
2 ,k− 1

2
,

otherwise,

(ρv)IV
j,k+ 1

2
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρNW
j,k v

j− 1
2 ,k+ 1

2
+ 4ρN

j,kvj,k+ 1
2

+ ρNE
j,k v

j+ 1
2 ,k+ 1

2
,

if v
j,k+ 1

2
> 0,

ρSW
j,k+1vj− 1

2 ,k+ 1
2

+ 4ρS
j,k+1vj,k+ 1

2
+ ρSE

j,k+1vj+ 1
2 ,k+ 1

2
,

otherwise.

(2.17)

The velocities u and v in (2.17) are obtained using the fourth-order central differ-
ences:

u
j+ 1

2 ,k
= cj−1,k − 27cj,k + 27cj+1,k − cj+2,k

24�x
,

v
j,k+ 1

2
= cj,k−1 − 27cj,k + 27cj,k+1 − cj,k+2

24�y
, (2.18)

and

u
j+ 1

2 ,k+ 1
2

= 1

48�x

[
30(cj+1,k+1 − cj,k+1 + cj+1,k − cj,k)

−3(cj+1,k+2 − cj,k+2 + cj+1,k−1 − cj,k−1)

−(cj+2,k+1 − cj−1,k+1 + cj+2,k − cj−1,k)
]
,

v
j+ 1

2 ,k+ 1
2

= 1

48�y

[
30(cj+1,k+1 − cj+1,k + cj,k+1 − cj,k)

−3(cj+2,k+1 − cj+2,k + cj−1,k+1

−cj−1,k) − (cj+1,k+2 − cj+1,k−1 + cj,k+2 − cj,k−1)
]
. (2.19)
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The discrete point values of the cell density along the interfaces, ρE
j,k , ρW

j,k , ρN
j,k , ρS

j,k ,

ρNE
j,k , ρNW

j,k , ρSE
j,k and ρSW

j,k , are calculated using a fourth-order piecewise polynomial
reconstruction

ρ̃(x, y) =
∑
j,k

Pj,k(x, y)1j,k(x, y) (2.20)

as follows:

ρE
j,k = ρ̃(x

j+ 1
2

− 0, yk), ρW
j,k = ρ̃(x

j− 1
2

+ 0, yk),

ρN
j,k = ρ̃(xj , yk+ 1

2
− 0), ρS

j,k = ρ̃(xj , yk− 1
2

+ 0),

ρNE
j,k = ρ̃(x

j+ 1
2

− 0, y
k+ 1

2
− 0), ρNW

j,k = ρ̃(x
j− 1

2
+ 0, y

k+ 1
2

− 0),

ρSE
j,k = ρ̃(x

j+ 1
2

− 0, y
k− 1

2
+ 0), ρSW

j,k = ρ̃(x
j− 1

2
+ 0, y

k− 1
2

+ 0). (2.21)

In (2.20), 1j,k(x, y) is the characteristic function of cell Ij,k , and the polynomials
Pj,k(x, y) are

Pj,k(x, y) = ρj,k + (ρx)j,k(x − xj ) + (ρy)j,k(y − yk)

+1

2
(ρxx)j,k(x − xj )

2 + (ρxy)j,k(x − xj )(y − yk)

+1

2
(ρyy)j,k(y − yk)

2

+1

6
(ρxxx)j,k(x − xj )

3 + 1

2
(ρxxy)j,k(x − xj )

2(y − yk)

+1

2
(ρxyy)j,k(x − xj )(y − yk)

2 + 1

6
(ρyyy)j,k(y − yk)

3

+ 1

24
(ρxxxx)j,k(x − xj )

4 + 1

4
(ρxxyy)j,k(x − xj )

2(y − yk)
2

+ 1

24
(ρyyyy)j,k(y − yk)

4 (2.22)

with the coefficients calculated from the following 13 conservation requirements (see
[32, Appendix B] for details including the precise expressions for the reconstructed
point values of ρ in terms of its cell averages):

1

�x�y

�
Ij+m,k+


Pj,k(x, y) dxdy = ρ̄j+m,k+
, {m, 
 ∈ Z : |m| + |
| ≤ 2}. (2.23)

Next, we use the nine-point stencil to obtain a fourth-order approximate Laplace
operator,

�IV
j,kc = −cj−2,k + 16cj−1,k − 30cj,k + 16cj+1,k − cj+2,k

12(�x)2

+−cj,k−2 + 16cj,k−1 − 30cj,k + 16cj,k+1 − cj,k+2

12(�y)2
,
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which can be rewritten in terms of diffusion fluxes as

�IV
j,kc = −

H IV
j+ 1

2 ,k
− H IV

j− 1
2 ,k

�x
−

L IV
j,k+ 1

2
− L IV

j,k− 1
2

�y
(2.24)

with

H IV
j+ 1

2 ,k
= −cj−1,k + 15cj,k − 15cj+1,k + cj+2,k

12�x
,

L IV
j,k+ 1

2
= −cj,k−1 + 15cj,k − 15cj,k+1 + cj,k+2

12�y
. (2.25)

The obtained fourth-order semi-discrete hybrid FVFD scheme is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d ρ̄j,k

dt
= −

F IV
j+ 1

2 ,k
− F IV

j− 1
2 ,k

�x
−

G IV
j,k+ 1

2
− G IV

j,k− 1
2

�y
,

α
dcj,k

dt
= −

H IV
j+ 1

2 ,k
− H IV

j− 1
2 ,k

�x
−

L IV
j,k+ 1

2
− L IV

j,k− 1
2

�y
− γccj,k + γρρj,k,

(2.26)

where ρj,k is a point value of ρ at the center of cell Ij,k given by

ρj,k = 1

5760

[
27

(
ρ̄j−2,k + ρ̄j,k−2 + ρ̄j,k+2 + ρ̄j+2,k

)
+10

(
ρ̄j−1,k−1 + ρ̄j−1,k+1 + ρ̄j+1,k−1 + ρ̄j+1,k+1

)
−368

(
ρ̄j−1,k + ρ̄j,k−1 + ρ̄j,k+1 + ρ̄j+1,k

) + 7084 ρ̄j,k

]
. (2.27)

As in the case of the second-order scheme, we consider the cases α = 1 and α = 0
separately.

Parabolic-Parabolic Case (α = 1) In this case, the obtained scheme (2.26) is a
system of time-dependent ODEs, which, as before, has to be numerically integrated.
Unfortunately, even if one uses an SSP ODE solver, positivity of ρ and c cannot
be guaranteed. We therefore modify the numerical fluxes following the approach
proposed in [4] in the context of shallow water models.

For simplicity of presentation, we consider the forward Euler time discretization
of (2.26):

ρ̄j,k(t + �t) = ρ̄j,k(t) − λ
(
F IV

j+ 1
2 ,k

(t) − F IV
j− 1

2 ,k
(t)

)
−μ

(
G IV

j,k+ 1
2
(t) − G IV

j,k− 1
2
(t)

)
,

cj,k(t + �t) = (1−�tγc)cj,k(t)+�tγρρj,k(t)

−λ
(
H IV

j+ 1
2 ,k

(t)−H IV
j− 1

2 ,k
(t)

)−μ
(
L IV

j,k+ 1
2
(t)−L IV

j,k− 1
2
(t)

)
, (2.28)
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where �t is selected according to the CFL-like condition similar to (2.13). In order
to design a positivity-preserving algorithm, we first introduce “draining” time steps:

�t
ρ
j,k := �x�y ρ̄j,k(t)

f
ρ
j,k�y + g

ρ
j,k�x

,

�tcj,k := �x�y[(1 − �tγc)cj,k(t) + �tγρρj,k(t)]
f c

j,k�y + gc
j,k�x

, (2.29)

where

f
ρ
j,k := max(F IV

j+ 1
2 ,k

, 0) + max(−F IV
j− 1

2 ,k
, 0),

g
ρ
j,k := max(G IV

j,k+ 1
2
, 0) + max(−G IV

j,k− 1
2
, 0),

f c
j,k := max(H IV

j+ 1
2 ,k

, 0) + max(−H IV
j− 1

2 ,k
, 0),

gc
j,k := max(L IV

j,k+ 1
2
, 0) + max(−L IV

j,k− 1
2
, 0). (2.30)

We note that one can easily show that under the following time step restriction:

�t ≤ min
j,k

{
min

(
�t

ρ
j,k, �tcj,k

)}
, (2.31)

the fully discrete scheme (2.28) is positivity preserving. However, the time step bound
(2.31) is too severe and impractical since it may lead to appearance of very small
and decreasing time steps, which will not only make the scheme inefficient, but may
simply not allow the code to run until the final computational time.

We therefore follow the idea in [4] and define the following quantities:

�t
ρ

j+ 1
2 ,k

:= min(�t, �t
ρ
m,k), m = j + 1

2
−

sgn(F IV
j+ 1

2 ,k
)

2
,

�t
ρ

j,k+ 1
2

:= min(�t, �t
ρ
j,
), 
 = k + 1

2
−

sgn(G IV
j,k+ 1

2
)

2
,

�tc
j+ 1

2 ,k
:= min(�t, �tcp,k), p = j + 1

2
−

sgn(H IV
j+ 1

2 ,k
)

2
,

�tc
j,k+ 1

2
:= min(�t, �tcj,q), q = k + 1

2
−

sgn(L IV
j,k+ 1

2
)

2
,

(2.32)

and use them to replace the numerical fluxes in (2.28) with

F̂ IV
j+ 1

2 ,k
=

�t
ρ

j+ 1
2 ,k

�t
F IV

j+ 1
2 ,k

, Ĝ IV
j,k+ 1

2
=

�t
ρ

j,k+ 1
2

�t
G IV

j,k+ 1
2

Ĥ IV
j+ 1

2 ,k
=

�tc
j+ 1

2 ,k

�t
H IV

j+ 1
2 ,k

, L̂ IV
j,k+ 1

2
=

�tc
j,k+ 1

2

�t
L IV

j,k+ 1
2
.

(2.33)
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The modified version of the fully discrete scheme (2.28) then reads as

ρ̄j,k(t + �t) = ρ̄j,k(t) − λ
(
F̂ IV

j+ 1
2 ,k

(t) − F̂ IV
j− 1

2 ,k
(t)

)
−μ

(
Ĝ IV

j,k+ 1
2
(t) − Ĝ IV

j,k− 1
2
(t)

)
, (2.34)

cj,k(t+�t) = (1−�tγc)cj,k(t)+�tγρρj,k(t)

−λ
(
Ĥ IV

j+ 1
2 ,k

(t)−Ĥ IV
j− 1

2 ,k
(t)

)−μ
(
L̂ IV

j,k+ 1
2
(t)−L̂ IV

j,k− 1
2
(t)

)
. (2.35)

We now prove its positivity-preserving property.

Theorem 3 The cell densities ρ̄j,k(t + �t) and chemoattractant concentrations
cj,k(t + �t), computed by the fully discrete scheme (2.34), (2.35), (2.29), (2.30),
(2.32), (2.33), (2.15)–(2.25) will be nonnegative provided ρ̄j,k(t) and cj,k(t) are
nonnegative for all j, k.

Proof In order to prove positivity of ρ, one needs to consider different cases depend-
ing on the sign of the fluxes F IV

j+ 1
2 ,k

and G IV
j,k+ 1

2
given by (2.15). We will only

consider one of these cases, namely, assuming that

F IV
j+ 1

2 ,k
> 0, F IV

j− 1
2 ,k

> 0 and G IV
j,k+ 1

2
< 0, G IV

j,k− 1
2

< 0. (2.36)

in the cell Ij,k . All of the other cases can be analyzed in a similar way.
First, we use the definitions in (2.30) to obtain

f
ρ
j,k = F IV

j+ 1
2 ,k

, g
ρ
j,k = −G IV

j,k− 1
2
, (2.37)

and then substituting (2.37) into (2.29) results in

�t
ρ
j,k = �x�y ρ̄j,k(t)

F IV
j+ 1

2 ,k
�y − G IV

j,k− 1
2
�x

> 0. (2.38)

It also follows from (2.36) and (2.32) that

�t
ρ

j+ 1
2 ,k

= min(�t, �t
ρ
j,k), �t

ρ

j− 1
2 ,k

= min(�t, �t
ρ
j−1,k),

�t
ρ

j,k+ 1
2

= min(�t, �t
ρ
j,k+1), �t

ρ

j,k− 1
2

= min(�t, �t
ρ
j,k).

(2.39)

We now rewrite the cell density equation (2.34) as

ρ̄j,k(t + �t) = ρ̄j,k(t) +
�t

ρ

j− 1
2 ,k

�x
F IV

j− 1
2 ,k

−
�t

ρ

j,k+ 1
2

�y
G IV

j,k+ 1
2

+
�t

ρ

j,k− 1
2

�y
G IV

j,k− 1
2

−
�t

ρ

j+ 1
2 ,k

�x
F IV

j+ 1
2 ,k

, (2.40)

and show that the RHS of (2.40) is positive. To this end, we first note that (2.36)
implies

�t
ρ

j− 1
2 ,k

�x
F IV

j− 1
2 ,k

−
�t

ρ

j,k+ 1
2

�y
G IV

j,k+ 1
2

> 0. (2.41)
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We then note that �t
ρ

j+ 1
2 ,k

= �t
ρ

j,k− 1
2

≤ �t
ρ
j,k , and therefore using (2.38), (2.40)

and (2.41), we conclude with

ρ̄j,k(t + �t) > ρ̄j,k(t) +
�t

ρ

j,k− 1
2

�y
G IV

j,k− 1
2

−
�t

ρ

j+ 1
2 ,k

�x
F IV

j+ 1
2 ,k

≥ ρ̄j,k(t) + �x ρ̄j,k(t)

F IV
j+ 1

2 ,k
�y − G IV

j,k− 1
2
�x

G IV
j,k− 1

2

− �y ρ̄j,k(t)

F IV
j+ 1

2 ,k
�y − G IV

j,k− 1
2
�x

F IV
j+ 1

2 ,k
= 0,

which shows that ρ̄j,k(t+�t) ≥ 0 for all j, k, provided that ρ̄j,k(�t) ≥ 0 for all j, k.
The positivity proof for the c component of the solution can be obtained similarly,

and the proof of the theorem will be completed.

Remark 2 We would like to emphasize that unlike Theorem 1, Theorem 3 guarantees
positivity of ρ and c independently of the CFL condition. However, taking large �t

will affect the stability of the fourth-order scheme. In practice, we have used the same
CFL condition (2.13) when implemented the fourth-order method.

Remark 3 Note that the positivity-preserving property of the second-order scheme
can be also enforced using the “draining” time step technique instead of the adaptive
reconstruction approach implemented in Section 2.1.

Parabolic-Elliptic Case (α = 0) In this case, the scheme (2.26) is a system of
DAEs. The second equation in (2.26) is a system of linear algebraic equations for cj,k ,
which, as before, is to be solved by an accurate and efficient linear algebra solver.
However, the matrix of this linear system is no longer diagonally dominant, and thus
the positivity of c is not guaranteed (the positivity of ρ is enforced the same way as
in the parabolic-parabolic case). At the same time, in our numerical experiments, we
have never observed any negative values of c. We would also like to stress that even
if some small negative values of c appear, this would not lead to any negative blowup
similar to the ones observed in [9, Example 1], where appearance of small negative
values of ρ led the computed cell density to a meaningless negative blowup.

3 Numerical experiments

In this section, we test the developed second- and fourth-order hybrid FVFD schemes
on two numerical examples. In all of the examples, we have employed the zero Neu-
mann boundary conditions implemented using the standard ghost cell/ghost point
technique. The second-order scheme is implemented using the three-state third-order
SSP RK method, while the fourth-order scheme is realized using the five-stage
fourth-order SSP RK method. In both cases, time steps were chosen to ensure the
positivity of the computed densities and changed adaptively according to the CFL
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conditions identified in Theorems 1 and 2 for the second-order scheme and in
Theorem 3 for the fourth-order scheme.

3.0.1 Example 1—fast blowup in the PKS chemotaxis model

In the first example taken from [9], we consider the initial-boundary value problem
(IBVP) for the PKS system (1.1) with χ = γc = γρ = α = 1 in a square domain
[− 1

2 , 1
2 ] × [− 1

2 , 1
2 ] subject to the radially symmetric bell-shaped initial data:

ρ(x, y, 0) = 1000 e−100(x2+y2), c(x, y, 0) = 500 e−50(x2+y2). (3.1)

As it was demonstrated in [9], the solution of this IBVP is expected to develop a
δ-type singularity at the center of the computational domain in a very short time.

We first implement the proposed second- and fourth-order hybrid FVFD schemes
on a uniform mesh with �x = �y = 1/201. The cell densities computed at two
pre-blowup times t = 10−6 and 5 × 10−6, at which the solution still preserves its
initial shape, are shown in Fig. 1. We also compute the solution at near-blowup t =
7.5×10−5 and past-blowup t = 1.5×10−4 times, and plot the obtained cell densities
in Fig. 2. As one can see, the obtained solutions are oscillation-free and the spiky
structure is quite accurately resolved by both schemes, but the blowup phenomenon
is better resolved by the fourth-order method.

Fig. 1 Example 1: ρ computed by the proposed second- (left column) and fourth-order (right column)
schemes on a uniform mesh with �x = �y = 1/201 at pre-blowup times t = 10−6 (top row) and 5×10−6

(bottom row)
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Fig. 2 Example 1: The same as in Fig. 1, but at near-blowup 7.5×10−5 (top) and past-blowup 1.5×10−4

(bottom) times

Next, we conduct a comparison study of the second- and fourth-order schemes.
We first perform the accuracy test at a small pre-blowup time t = 10−6, at which the
solution of the IBVP (1.1), (3.1) is smooth. In order to measure the convergence rate,
we compute the solutions on a five different grids and compare the obtained results
with the reference solution, computed by the proposed fourth-order method on a fine
mesh with �x = �y = 1/801. The results are presented in Tables 1 and 2, where
one can clearly observe an expected or even higher order of convergence for both ρ

and c.
Finally, we numerically investigate the blowup in the PKS system by plotting the

time evolution of ||ρ||∞ computed by both the second- and fourth-order schemes on
three consecutive meshes; see Fig. 3. The vertical lines in these figures indicate the

Table 1 Example 1: L∞-errors
for ρ and c and experimental
rates of convergence for the
second-order scheme

Grid ρ-error Rate c-error Rate

101 × 101 2.88E–1 2.44E–4

201 × 201 6.90E–2 2.09 6.18E–5 2.00

301 × 301 3.04E–2 2.03 2.76E–5 2.00

401 × 401 1.71E–2 2.01 1.55E–5 2.00

501 × 501 1.09E–2 2.01 9.95E–6 2.00
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Table 2 Example 1: L∞-errors
for ρ and c and experimental
rates of convergence for the
fourth-order scheme

Grid ρ-error Rate c-error Rate

101 × 101 7.56E-4 1.59E-6

201 × 201 1.26E-5 5.94 1.01E-7 4.00

301 × 301 1.15E-6 5.95 1.99E-8 4.04

401 × 401 2.07E-7 5.96 6.03E-9 4.16

501 × 501 5.34E-8 6.09 2.24E-9 4.46

numerical blowup times that are the times by which the value of ||ρ||∞ increases by
a factor of four as the grid is refined since the magnitude of finite-volume approx-
imations of a δ-type singularity is always proportional to 1/(�x�y). As one can
observe, the numerical blowup times for the second- and fourth-order schemes are
quite different: the solution computed by the second-order scheme blows up at about
t ≈ 1.2 × 10−4, while its fourth-order counterpart blows up at an earlier time
t ≈ 1.1 × 10−4. This together with the fact that the magnitude of the fourth-order
solution is about twice larger than the magnitude of the second-order one at the time
of blowup, indicate that the use of a higher-order scheme is advantageous when the
blowup time should be estimated numerically.

3.0.2 Example 2—slow blowup in the PKS chemotaxis model

In this example also taken from [9], we consider the same IBVP as in Example 1, but
with the uniform initial condition for the chemoattractant concentration:

c(x, y, 0) = 0.

According to [9], the solution of this IBVP develops the same δ-type singularity as
in Example 1, but at a much later time.

Fig. 3 Example 1: Time evolution of ||ρ||∞ for the second- (left) and fourth-order (right) schemes on
three consecutive meshes. The numerical blowup times are indicated by the corresponding vertical lines
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We implement the proposed second- and forth-order hybrid FVFD schemes on
a uniform mesh with �x = �y = 1/201. The cell densities computed at a pre-
blowup time t = 0.3 and a past-blowup time t = 0.4 are presented in Fig. 4. One
can observe that the obtained solutions are oscillation-free, and both of the second-
and fourth-order scheme can capture the spiky structure of the solutions. The blowup
phenomenon is however better resolved by the fourth-order scheme. This can be
seen if the maximum cell density values are compared: while for the second-order
results, maxx ρ(x, 0.3) ≈ 1626.7, the fourth-order maximum is substantially larger,
maxx ρ(x, 0.3) ≈ 1713.9.

We also numerically study the blowup phenomenon by plotting the time evolution
of ||ρ||∞ computed by both the second- and fourth-order schemes on three consec-
utive meshes with �x = �y = 1/101, 1/201 and 1/801; see Fig. 5. The numerical
blowup time for both schemes are measured based on the way the magnitude of ρ

increases (as it has been explained in Example 1): the second-order solution blows
up at t ≈ 0.375, while the fourth-order solution blows up at an earlier time t ≈ 0.35.
One can also see that the magnitude of the fourth-order solution is about twice larger
than the magnitude of the second-order one at the past-blowup time. These two facts
confirm the advantage of the higher-order scheme when the blowup time should be
estimated numerically.

It would also be instructive to look at the actual time-step size �t used in the
numerical simulations. To this end, we provide Fig. 6, where we plot �t as a function

Fig. 4 Example 2: ρ computed by the proposed second- (left column) and fourth-order (right column)
schemes on a uniform mesh with �x = �y = 1/201 at pre-blowup t = 0.3 (top row) and past-blowup
t = 0.4 (bottom row) times
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Fig. 5 Example 2: Time evolution of ||ρ||∞ for the second- (left) and fourth-order (right) schemes on
three consecutive meshes. The numerical blowup times are indicated by the corresponding vertical lines

of time t computed by both the second- and fourth-order schemes with �x = �y =
1/201. The time-step size is chosen according to the CFL condition specified in
(2.13) to guarantee the positivity of the computed solution for both the second- and
fourth-order schemes (see Remark 2). As one can see, the upper bound on the time
step in (2.13) is a minimum of four terms: The first two, �x/(8a) and �y/(8b), are
related to the chemotaxis flux in the first equation in (1.1), while the third and fourth
ones are due to the parabolic terms in the system (1.1). In the (near) blowup regime,
a and b in (2.13) become large and thus the first two terms determine the size of
time steps, in which case an explicit method is efficient enough. However, when a

and b are small, the third and fourth terms in (2.13) dominate, which reduces the
efficiency of the explicit method. One of the ways to overcome this difficulty is to
use positivity preserving implicit-explicit (IMEX) methods [2, 3, 28] as long as a and
b remain relatively small; see, e.g., [9]. The implementation of an IMEX algorithm
is left outside the scope of the current paper.

Fig. 6 Example 2: Time step size �t as a function of time t computed by both the second- and fourth-order
schemes with �x = �y = 1/201
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3.0.3 Example 3—Blowup in the Two-Species Chemotaxis Model

In this example, we consider the IBVP for two-species chemotaxis model⎧⎪⎨
⎪⎩

(ρ1)t + ∇·(χ1ρ1∇c) = �ρ1,

(ρ2)t + ∇·(χ2ρ2∇c) = �ρ2,

�c + ρ1 + ρ2 − c = 0,

(x, y) ∈ � ⊂ R
2, t > 0, (3.2)

which was proposed in [49] and then further studied both analytically, [12, 16–
20, 34], and numerically, [33]. In (3.2), ρ1(x, y, t) and ρ2(x, y, t) denote the cell
densities of the first and second non-competing species, c(x, y, t) stands for the
chemoattractant concentration, χ2 > χ1 > 0 are the chemotactic sensitivity constants
for the first and second species, respectively.

As it was proven in [16, 18], solutions of (3.2) may either remain smooth (with
decaying maxima of both ρ1 and ρ2) or blow up in a finite time. Moreover, only
simultaneous blowup is possible. However, in the blowup regime ρ1 and ρ2 may
develop different types of singularities depending on the values of χ1 and χ2 and on
the initial mass of each species:

m1 :=
∫
�

ρ1(x, y, 0) dxdy and m2 :=
∫
�

ρ2(x, y, 0) dxdy.

In particular, if

8πm1

χ1
+ 8πm2

χ2
− (m1 + m2)

2 ≥ 0 and m2 ≥ 8π

χ2
, (3.3)

then ρ2 is expected to develop much stronger singularity than ρ1.
We now numerically study a specific example taken from [33], where the system

(3.2) with χ1 = 1 and χ2 = 20 was considered on the domain � = [−3, 3]×[−3, 3]
and subject to the bell-shaped initial data:

ρ1(x, y, 0) = ρ2(x, y, 0) = 50e−100(x2+y2). (3.4)

In this case, the total masses are m1 = m2 ≈ π/2 and the condition (3.3) is satisfied.
Although the schemes presented in Section 2 have been derived for the one-species

PKS model, they can be straightforwardly extended to the two-species system (3.2)
since the equations for ρ1 and ρ2 are only coupled through the c-equation. We note
that a detailed description of the second-order hybrid FVFD scheme for the two-
species model can be found in [33].

We first conduct numerical simulations using both the second- and fourth-order
schemes on a uniform mesh with �x = �y = 6/201. The cell densities ρ1 and ρ2
computed at time t = 3.3 × 10−3 are presented in Fig. 7. As in Example 1, one can
observe that while both schemes accurately capture the spiky structure of the solution,
the fourth-order scheme achieves a higher resolution of the blowup phenomenon.

Next, we numerically investigate the blowup behavior of the system (3.2) by
plotting the time evolution of ||ρ1||∞ and ||ρ2||∞ computed by both second- and
fourth-order schemes on the four consecutive uniform meshes with �x = �y =
6/201, 6/401, 6/801 and 6/1601; see Figs. 8 and 9. We measure the numerical
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Fig. 7 Example 3: ρ1 (top row) and ρ2 (bottom row) computed by the second- (left column) and fourth-
order (right column) schemes on a uniform mesh with �x = �y = 6/201 at time t = 3.3 × 10−3

blowup time for both schemes based on the way the magnitude of ρ2 increases (as it
has been explained in Example 1) and observe that the second-order solution blows
up at about t = 3.8 × 10−3, while the fourth-order solution blows up a little earlier at
about t = 3.3 × 10−3. However, ||ρ1||∞ behaves completely different from ||ρ2||∞:
it first decreases, then increases and at the blowup time the maximum of ρ1 is sig-
nificantly smaller than the maximum of ρ2. Looking at the results in Fig. 8, one may
conclude that only ρ2 blows up, but the analytical results proved in [16, 18] state that

Fig. 8 Example 3: ||ρ1||∞ as a function of t computed by the second- (left) and fourth-order (right)
schemes. The numerical blowup times are indicated by the corresponding vertical lines
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Fig. 9 Example 3: ||ρ2||∞ as a function of t computed by the second- (left) and fourth-order (right)
schemes. The numerical blowup times are indicated by the corresponding vertical lines

only simultaneous blowup is possible, which suggests that the maximum of ρ1 should
also blow up at about t = 3.3 × 10−3 though at a much slower rate than the maxi-
mum of ρ2. In order to numerically verify this, we perform a mesh refinement study
and monitor ||ρ1||∞ and ||ρ2||∞ as functions of �x, which is equal to �y in this
numerical experiment. These functions are presented in Fig. 10. As one can see from
Fig. 10 (left), the maximum of ρ1 computed by the second-order scheme behaves like
the function f II

1 (�x) = 9( 3.51
�x

+ 90)1/4, while the maximum of ρ1 computed by the
fourth-order scheme behaves like the function f IV

1 (�x) = 11.15( 2.94
�x

+25)1/4. This
shows that ρ1 blows up at the rate of

||ρ1||∞ ∼ 1

(�x�y)
1
8

.

Fig. 10 Example 3: ||ρ1(x, y, 0.0033)||∞ computed by the second- and fourth-order schemes plotted
along with the functions f II

1 (�x) = 9( 3.51
�x

+ 90)1/4 and f IV
1 (�x) = 11.15( 2.94

�x
+ 25)1/4 (left) and

||ρ2(x, y, 0.0033)||∞ computed by the second- and fourth-order schemes plotted along with the functions
f II

2 (�x) = 0.756
(�x)2 and f IV

2 (�x) = 1.656
(�x)2 (right) for �x = �y = 6/101, 6/201, . . . , 6/1601
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At the same time, Fig. 10 (right) illustrates that ||ρ2||∞ behaves like f II
2 (�x) =

0.756
(�x)2 for the second-order results and like f IV

2 (�x) = 1.656
(�x)2 for the fourth-order

ones. This indicates that ρ2 collapses to a δ-type singularity as

||ρ2||∞ ∼ 1

�x�y
.

We would like to emphasize that even though both the second- and fourth-order
schemes asymptotically behave in a similar way in the blowup regime, the magni-
tude of both ρ1 and ρ2 are substantially larger in the fourth-order computations; see
Figs. 8–10. This clearly demonstrates the main advantage of using higher-order meth-
ods for the two-species chemotaxis system. At the same time, it seems to be necessary
to use either adaptive mesh refinement or adaptive moving mesh technique to numer-
ically detect the blowup in ρ1 in a more convincing way. Development of adaptive
techniques for the chemotaxis systems is beyond the scope of this paper and is left
for future studies.
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