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Abstract. — A central problem of microstructure is to develop technologies capable of producing

an arrangement, or ordering, of a polycrystalline material, in terms of mesoscopic parameters, like
geometry and crystallography, appropriate for a given application. Is there such an order in the first

place? Our goal is to describe the emergence of the grain boundary character distribution (GBCD),
a statistic that details texture evolution discovered recently, and to illustrate why it should be con-

sidered a material property. For the GBCD statistic, we have developed a theory that relies on mass
transport and entropy. The focus of this paper is its identification as a gradient flow in the sense of

De Giorgi, as illustrated by Ambrosio, Gigli, and Savaré. In this way, the empirical texture statistic
is revealed as a solution of a Fokker–Planck type equation whose evolution is determined by weak

topology kinetics and whose limit behavior is a Boltzmann distribution. The identification as a gra-
dient flow by our method is tantamount to exhibiting the harvested statistic as the iterates in a JKO

implicit scheme. This requires several new ideas. The development exposes the question of how
to understand the circumstances under which a harvested empirical statistic is a property of the

underlying process.
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1. Introduction

Cellular networks are ubiquitous in nature. They exhibit behavior on many dif-
ferent length and time scales and are generally metastable. Most technologically
useful materials are polycrystalline microstructures composed of a myriad of
small monocrystalline grains separated by grain boundaries, and thus comprise
cellular networks. The energetics and connectivity of the grain boundary net-
work plays a crucial role in determining the properties of a material across a
wide range of scales. A central problem is to develop technologies capable of
producing an arrangement of grains that provides for a desired set of material
properties. The traditional focus has been on distributions of geometric features,
like cell size, and a preferred distribution of grain orientations, termed texture.



Attaining these gives the configuration order in a statistical sense. More recent
mesoscale experiment and simulation permit harvesting large amounts of infor-
mation about both geometric features and crystallography of the boundary net-
work in material microstructures, [2, 3, 19, 25, 26]. This has led us to the notion
of the Grain Boundary Character Distribution. The GBCD is an empirical distri-
bution of the relative length (in 2D) or area (in 3D) of interface with a given
lattice misorientation and grain boundary normal. It is a leading candidate to
characterize texture of the boundary network.

For the GBCD statistic, we develop a theory that relies on mass transport and
entropy. A consequence now is that we seek to identify it as a gradient flow in the
sense of De Giorgi as developed by Ambrosio, Gigli, and Savaré, [4, 5]. In this
way, the empirical texture statistic is revealed as a solution of a Fokker–Planck
type equation whose evolution is determined by weak topology kinetics and
whose limit behavior is the observed Boltzmann distribution for the prescribed
interfacial energy density. To achieve this we must determine first an appropriate
dissipation relation, for which we introduce the discrete iteration principle first
noted in [18]. Further viewing the GBCD as samples of a process motivates us
to adjust the time scale in a nontrivial manner, precisely matching the evolution
of a Fokker Planck Equation. That the simulation time scale must be coordinated
to the physical time scale is a challenging yet persistent problem. It arises even in
the simulation of the simplest systems, like the Ehrenfest Urn. This identifica-
tion as a gradient flow is tantamount to exhibiting the harvested statistic as the
iterates in a JKO implicit scheme, [18]. Enroute to the GBCD results, we also
study a simpler 1D model coarsening system that shares many qualitative fea-
tures with the GBCD. The development exposes the question of how to under-
stand the circumstances under which a harvested empirical statistic is a property
of the underlying process.

The GBCD viewpoint on texture and texture dependent properties is an active
area of materials research [1, 16]. Viewing the evolution of complex systems as
gradient flows is also discussed in the very interesting work [23].

2. Recapitulation of mesoscale theory and 2d computational

model: the coarsening network

Let us briefly review a mesoscale theory of microstructural evolution and a 2D
computational model based on this theory; see [7–11, 13] for a more detailed
discussion and [12] for a discussion directed to materials researchers. Coarsening
occurs when growth, namely evolution of cells and cell boundaries, occurs in a
confined space. There is a common denominator theory for the mesoscale de-
scription of microstructural evolution. This is growth by curvature, the Mullins
Equation (2) below, for the evolution of curves or arcs individually or in a net-
work. Boundary conditions must be imposed where the arcs meet to have a
well-posed system. We consider the Herring Condition, (3), which is the natural
boundary condition at equilibrium for the Mullins Equation. Let a denote the
misorientation between two grains separated by an arc G, as shown in Figure 1,
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with normal n ¼ ðcos y; sin yÞ, tangent direction b and curvature k. Let c ¼
cðy; aÞ denote the interfacial energy density on G. So

G : x ¼ xðs; tÞ; 0e seL; t > 0;ð1Þ

with

b ¼ qx

qs
ðtangentÞ and n ¼ Rb ðnormalÞ

v ¼ qx

qt
ðvelocityÞ and vn ¼ v � n ðnormal velocityÞ

where R is a positive rotation of p=2. The Mullins Equation of evolution for the
curves or arcs is

vn ¼ ðcyy þ cÞk on G:ð2Þ

In our model, we assume that only triple junctions are stable and that the Herring
Condition holds at triple junctions. This means that whenever three curves
fGð1Þ;Gð2Þ;Gð3Þg, meet at a point p the force balance, holds:

X
i¼1;...;3

ðcyn
ðiÞ þ cbðiÞÞ ¼ 0:ð3Þ

The energy of G is

Z
G

cjbj ds and it is easy to verify that the instantaneous rate of

change of this energy is

d

dt

Z
G

cjbj ds ¼ �
Z
G

v2n dsþ v � ðcynþ cbÞjqGð4Þ

Let us consider now a planar network of grains bounded by fGig subject to some
condition at the border of the region they occupy, like fixed end points or period-
icity, cf. Figure 2. The total energy of the system is defined as

EðtÞ ¼
X
fGig

Z
Gi

cjbj dsð5Þ

Figure 1. An arc G with normal n, tangent t, and lattice misorientation a, illustrating lat-
tice elements.
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Therefore, due to the Herring Condition (3), the instantaneous rate of change of
the energy

d

dt
EðtÞ ¼ �

X
fGig

Z
Gi

v2n dsþ
X
TJ

v �
X

ðcynþ cbÞð6Þ

¼ �
X
fGig

Z
Gi

v2n ds

e 0;

Hence, in an interval ðt0; t0 þ tÞ where there are no critical or rearrangement
events (grain deletion and facet interchange), we may integrate (6) to obtain a
local dissipation equation for the grain boundary network

X
fGig

Z t0þt

t0

Z
Gi

v2n ds dtþ Eðt0 þ tÞ ¼ Eðt0Þð7Þ

which has a strong resemblance to the simple dissipation relation for an ensemble
of inertia free springs with friction. Next, assume for simplicity, that the energy
density is independent of the normal direction, so c ¼ cðaÞ. Then (2) and (3)
become

Figure 2. Example of a cellular network from simulation. This is from a small simulation
with constant energy density and periodic conditions at the border of the configuration
[9].
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vn ¼ ck on Gð8Þ X
i¼1;...;3

cbðiÞ ¼ 0 at p;ð9Þ

where p denotes a triple junction. For this situation one can define the Grain
Boundary Character Distribution, GBCD,

rða; tÞ ¼ relative length of arc of misorientation a at time t;ð10Þ

normalized so that

Z
W

r da ¼ 1:

Evolution of GBCD statistics will be the focus of our study below.
The 2D computational model is based on first initializing a configuration of

cells and their boundary arcs, usually by a modified Voronoi tessellation, and
numerically solving the system of Mullins evolution equation (2) for the network
of curves/grain boundaries subject to the boundary conditions at the triple junc-
tions (3) while managing the critical events. This computational model must be
designed so it is robust and so reliable statistics can be harvested. Owing to the
size and complexity of the 2D grain boundary network there are number of chal-
lenges in designing the method. These include

• dynamic management of the data structure of cells, facets, and triple junctions

• management of the computational domain

• initialization of the computation

• resolving the equations (2) with su‰cient accuracy while

• maintaining the triple junction boundary condition (3)

Furthermore, it is important to identify some reliable diagnostics/measures to
understand the accuracy of the 2D model and resulting large scale simulations.

Figure 3. The energy density cðaÞ ¼ 1þ e sin2 2a, e ¼ 1
2 , used for the examples of coars-

ening in cellular systems in this note.
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For example, it is known that the average area of cells grows linearly even in very
casual simulations of coarsening, although more careful diagnostics show that the
Herring Condition (3) may fail if it is not resolved with su‰cient accuracy. As
noted in the introduction, this will lead to an unreliable determination of the
GBCD.

In view of the dissipation inequality (6) the evolution of the grain boundary
system may be viewed as a modified steepest descent for the energy. Therefore,
the cornerstone of our 2D computational model, which assures its stability, is
the discrete dissipation inequality for the total grain boundary energy which
holds when the discrete Herring Condition is satisfied. In general, a discrete dis-
sipation principle ensures the stability and convergence of numerical schemes to
the continuous solution. Here we work with a weak formulation, a variational
principle, to avoid the additional complexity of higher order spaces. It is not nec-
essary to know the normal direction, nor is there explicit use of curvature.

What follows is a more detailed explanation of the simulation procedure.
First, we initialize a configuration of cells and their boundary arcs, by a Voronoi
diagram with N0 seeds place randomly in the computational domain and we im-
pose ‘periodic boundary conditions’ on the border of the computational domain.
We would like to emphasize that we do not work with functions which have pe-
riodic boundary conditions but with cell structures which mirror each other near
the borders of the computational domain and they must be dynamically updated.
This is an important part of the algorithm and it is necessary in order that the
statistics always sample in the same computational domain.

Each cell is assigned an orientation and the misorientation parameter of a
boundary is the di¤erence of the orientations of the grains which share it. Typi-
cally the orientations are normally distributed, so the misorientations are also
normally distributed.

The simulation of the planar grain boundary network proceeds in three prin-
cipal steps by evolving first the grain boundaries, according to a modified steepest
descent (Mullins Equation), and then updating the triple points according to the
Herring Condition (3), imposed at the triple junctions, and finally managing
the rearrangement events in a way that preserves (6). In our 2D computational
model, grain boundaries are defined by the set of nodal points and are approxi-
mated using linear elements. In the algorithm, we define a global mesh size, h,
and uniformly discretized grain boundaries with local mesh size (distance be-
tween neighboring nodal points) which depends on h. Due to the frequency of
critical events, we have used a first order method in time, namely the Forward
Euler method. Increasing the order of time discretization to 2 by using a predictor
corrector method did not a¤ect the distribution functions, which is the focus of
this study.

Resolution of the Herring Condition: To satisfy the Herring Condition (3) one has
to solve the nonlinear equation to determine the new position of the triple junc-
tion [20]. We use a Newton’s method with line search [17] to approximate the
new position for the triple junction. As the initial guess for Newton’s method,
we determine the position of the triple point by defining the velocity of the triple
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junction to be proportional to the total line stress at that point with coe‰cient
of the proportionality equal to the mobility. This is also dissipative for the net-
work. The Newton algorithm stops if it exceeds a certain tolerance on the number
of the iterations. If the Newton’s algorithm converges, the Herring Condition (3)
is satisfied with the machine precision accuracy at the new position of the triple
junction. If Newton’s algorithm fails to converge at some triple junctions (this
happens when we work with very small cells) we use our initial guess to update
its position.

Critical events: As grain growth proceeds, critical events occur. When grain
boundaries (GB) shrink below a certain size, they trigger one or more of the fol-
lowing processes (i) short GB removal, (ii) splitting of unstable junctions (where
more then three GB meet) (ii) fixing double GB (GB that share two vertices).

Removal of short GB: A short GB whose length is decreasing is removed. If its
length is increasing, it is not removed.

Splitting unstable vertices: When a GB disappears, new vertices may appear
where more than three edges meet. These are unstable and split, introducing a
new vertex and a new GB of short length, reducing the number of edges meeting
at the unstable junctions. This process continues until all vertices are triple junc-
tions. Details of each split are designed to maximally decrease the energy.

3. Theory of the gbcd

The issue we address now is the nature of the evolution of the GBCD. From (5) it
is easy to justify an energy Z

W

cr da

and a kinetic term that needs to be allied to (6). In addition the ensemble has been
upscaled in an irreversible fashion, necessitating the introduction of an entropic
contribution. This upscaling passes from a mesoscale process of the evolution of
individual arcs to the evolution of a harvested statistic. Formally it is analogous
to the elementary calculation, due to Boltzmann himself, of the emergence of the
free energy associated to occupation numbers of bins from the individual par-
ticles in the bins. Equally appropriate is the Ehrenfest Urn, where the micro-
scopic process of moving particles between urns is ‘upscaled’ to the mesoscopic
Ornstein–Uhlenbeck process of the occupation of the urns. These are standard
statistical physics considerations.

To place this in perspective, we briefly discuss critical events or rearrangement
events. For an individual cell in an ensemble with constant facet energy density,
evolution laws (2) and (3) lead to the well known von Neumann–Mullins n� 6
rule, [28], [24]: the rate of change of area of an n-faceted cell with constant sur-
face energy density and exterior angles meeting at 2p=3 is proportional to n� 6,
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that is,

dAn

dt
¼ cðn� 6Þ; where An is the area of an n-faceted cellð11Þ

and c > 0 is some material constant. The 2p=3 angle is just (3) when the surface
energy density is constant.

One can see from Figure 4 that, contrary to (11), the average area of five sided
grains during simulation or a growth experiment, in this case on an Al thin film,
increase several-fold during coarsening. The Von Neumann–Mullins n� 6 rule
(11) does not fail, but most of the 5-faceted cells observed at a chosen time t are
descendants of cells with 6; 7; 8; . . . facets at some time earlier than t. Thus in the
network setting, the topological changes play a crucial role. Simulations are gen-
erally stopped when 80% of initial cells have been deleted; they stagnate at about
this level. Although small cells with small numbers of facets will eventually be
deleted from the system, their e¤ect on the configuration is essentially random.

We shall consider the standard configurational entropy,

þs

Z
W

r log r da;ð12Þ

although this is not the only choice. Determining the ‘temperature’ parameter s
will be discussed later. Minimizing (12) favors the uniform state, which would
be the situation were cðaÞ ¼ constant. A tantalizing clue to the development of
texture will be whether or not this entropy strays from its minimum during the
simulation.

Here we shall be aided by a simplified 1D critical event model that was con-
sidered in [7–11, 13] to develop the mathematical theory for the GBCD. This
simplified 1D network has a strong similarity to the 2D network discussed in Sec-

Figure 4. (a) Simulations tend to exhibit linear average growth in area. Shown is average
area of the five sided facet class in a typical simulation (arbitrary units). (b) Average area
in nm2 of five sided grains in an Al columnar grain structure increases (time in minutes).
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tion 2, including its gradient flow character. Its analysis is more accessible owing
to a kinetic term that leads more directly to a mass transport interpretation.

In this simplified model, the cells are intervals on a line segment in 1D. Each
cell represents a ‘‘grain boundary,’’ but not the grain, with a given misorientation
parameter subject to nearest neighbor interactions. Thus, consider a partition of
a circle of circumference L > 0 by N randomly chosen points, equivalently a
partition of the interval ½0;L� � R by points xi, i ¼ 1 . . .N; where xi < xiþ1, i ¼
1 . . .N � 1 and xNþ1 identified with x1. For each interval/grain boundary
½xi; xiþ1�, i ¼ 1 . . . ;N select a random misorientation parameter ai a R. The inter-
vals ½xi; xiþ1� correspond to grain boundaries and the points xi represent the triple
junctions. Select an energy density function cðaÞ and define the energy of the 1D
grain boundary network

E ¼
X

i¼1...N

cðaiÞðxiþ1 � xiÞ:ð13Þ

Gradient flow kinetics are imposed with respect to (13), which is just the system
of ordinary di¤erential equations

dxi

dt
¼ cðaiÞ � cðai�1Þ; i ¼ 2 . . .N; and

dx1

dt
¼ cða1Þ � cðaNÞ:ð14Þ

We also define the velocity vi of the i
th boundary as

vi ¼
dxiþ1

dt
� dxi

dt
¼ cðai�1Þ � 2cðaiÞ þ cðaiþ1Þ:ð15Þ

The grain boundary velocities are constant until one of the boundaries collapses.
That segment is removed from the list of current grain boundaries and the veloc-
ities of its two neighbors are changed due to the emergence of a new junction.
Each such deletion event rearranges the network and, thus, a¤ects its subsequent
evolution just as in the 2D cellular network.

Similar to the dissipation principle (6) of the 2D grain boundary network,
there is an analogous dissipation inequality for the 1D network of grain boun-
daries. At any time t between deletion events,

dE

dt
¼ �

X dx2
i

dt
e 0:ð16Þ

Hence, similar to (7), one can show dissipation equality and inequality,Z t0þt

t0

dx2
i

dt
dtþ Eðt0 þ tÞ ¼ Eðt0Þ;ð17Þ

and expressing the first term in (17) in terms of grain boundary velocity (15), we
obtain a dissipation inequality of the form:Z t0þt

t0

1

4

Xn

i¼1

v2i ðtÞ dtþ Eðt0 þ tÞeEðt0Þ:ð18Þ
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The grain growth analog (18) of the spring-mass-dashpot-like local dissipation
equality is valid under assumption that there are no critical events in a time inter-
val ðt0; t0 þ tÞ, t > 0 is su‰ciently small.

Similar to the 2D model in Section 2, a GBCD for the simplified 1D network
can be introduced [7–11, 13]. Consider a new ensemble based on the misorienta-
tion parameter a where we take W : � p

4 e ae p
4 , (in order to compare with the

two dimensional network for which we are imposing ‘‘cubic’’ symmetry, i.e.,
‘‘square’’ symmetry in the plane). The GBCD, or the character distribution in
this context, is the histogram rða; tÞ of lengths of intervals sorted by misorienta-
tion a scaled to be a probability distribution on W, so in particular, the statistic
satisfies

Z
W

rða; tÞ da ¼ 1:

Now, using the energy of the network (13), one may express local dissipation
inequality (18) in terms of character distribution

m0

Z t0þt

t0

Z
W

qr

qt

����
����
2

da dtþ
Z
W

rc dajt0þt e

Z
W

rc dajt0 ;ð19Þ

where m0 is some positive constant, [7–11, 13]. As it was mentioned above, the
local dissipation inequality (18) or equivalently the dissipation inequality (19) is
valid under the assumption that there are no critical events in the system. To
complete the energetic description of the system, incorporating the e¤ects of crit-
ical events into the system, we introduce a free energy defined as

FsðrÞ ¼
Z
W

ðrcþ sr log rÞ da:ð20Þ

The di¤usion-like parameter s will be determined later.
The details of how we address the kinetic term in (19) are found in [7–11, 13]

and only the conclusion is quoted here. Under some assumptions we find that

Z
W

v2r daeC1

Z
W

qr

qt

����
����
2

da;ð21Þ

where the pair ðv; rÞ satisfy the continuity equation

rt þ ðvrÞa ¼ 0; in W; t > 0:ð22Þ

In this way we extend (19) to a proposed dissipation relation for the GBCD

m1

Z t0þt

t0

Z
W

v2r da dtþ FsðrÞjt0þt eFsðrÞjt0ð23Þ

In general, the (Kantorovich–Rubinstein–)Wasserstein distance dðr; r�Þ between
r, r�, two probability measures, is given by

786 p. bardsley et al.



dðr; r�Þ2 ¼
Z
W

ðx� fðxÞÞ2r dx; whereð24Þ

f is the transfer function from r to r�:

It is well known that it is given by the Benamou–Brenier formula

1

t
dðr; r�Þ2 ¼ inf

ðv;rÞ

Z t

0

Z
W

v2r dx dt subject toð25Þ

rt þ ðvrÞx ¼ 0; in W; 0 < t < t; rjt¼0 ¼ r�; rjt¼t ¼ r:

Finally, arguing that the path given by GBCD rða; tÞ is the one most likely
to occur and the minimizing path has the highest probability, the minimum prin-
ciple was derived in [7–11, 13] for the GBCD:

m

2t
dðr; r�Þ2 þ FsðrÞ ¼ inf

fhg

m

2t
dðh; r�Þ2 þ FsðhÞ

� �
;ð26Þ

where r� ¼ rð�; t0Þ and r ¼ rð�; t0 þ tÞ. This suggests an implicit scheme. Thus,
for each relaxation time t > 0 we determine iteratively the sequence frðkÞg by
choosing r� ¼ rðk�1Þ and rðkÞ ¼ r in (26) and set

rðtÞða; tÞ ¼ rðkÞðaÞ in W for ðk � 1Þt < te kt:ð27Þ

We then anticipate recovering the GBCD r as

rða; tÞ ¼ lim
t!0

rðtÞða; tÞ;ð28Þ

with the limit taken in a suitable sense. The r obtained from (28) is the solution of
the Fokker–Planck Equation (FP), [18],

m
qr

qt
¼ q

qa

�
s
qr

qa
þ c 0r

�
in W; 0 < t < l:ð29Þ

The extent to which the harvested GBCD satisfied (26) will be a consequence of
our gradient flow validation. We might point out here, as well, that a solution of
(29) with periodic boundary conditions and nonnegative initial data is positive for
t > 0. For the detailed derivation of the FP model (29) for the GBCD obtained
from the 1D simplified model of a grain boundary network, see [7–11, 13]. Anal-
ogous considerations hold for the 2D network, cf. [21].

4. The gradient flow formulation

The De Giorgi ideas about gradient flows, [4], have proven especially fruitful in
studying the structure of flows on metric spaces. They can naturally exhibit the
optimal mass transport basis of the flow. The GBCD, unlike this situation as it
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is presented to us, is a discrete sample of an unknown process, albeit with the hy-
pothesized theory just presented. We shall seek to adapt the gradient flow method
to validate our theory. We begin with a brief review. Consider a smooth family of
probability densities r ¼ rðx; tÞ in W � R; an interval. De Giorgi’s observation is
that

d

dt
FsðrÞ ¼

Z
W

�
s
rx
r
þ c 0

�
vr dxð30Þ

f� 1

2

Z
W

�
s
rx
r
þ c 0

�2
r dx� 1

2

Z
W

v2r dx;

where ðv; rÞ satisfies satisfy the continuity equation

rt þ ðvrÞx ¼ 0; in W; t > 0;ð31Þ

with equality in (30) only if the two integrands on the right hand side are propor-
tional. Integrating, we arrive at the dissipation inequality for Fs. In a relaxation
time interval, say ð0; tÞ chosen for simplicity here,

FsðrÞjt¼0 �
�
FsðrÞjt¼t þ

1

2

Z t

0

Z
W

�
s
rx
r
þ c 0

�2
r dx dtð32Þ

þ 1

2

Z t

0

Z
W

v2r dx dt

�
e 0;

with equality if and only if

rt ¼ ðsrx þ c 0rÞx or v ¼ �
�
s
rx
r
þ c 0

�
in W; t > 0ð33Þ

in (31). To summarize, (32) holds for any path r ¼ rðx; tÞ. The path of densities
r ¼ rðx; tÞ satisfies

FsðrÞjt0 �
�
FsðrÞjt0þt þ

1

2

Z t0þt

t0

Z
W

�
s
rx
r
þ c 0

�2
r dx dtð34Þ

þ 1

2

Z t0þt

t0

Z
W

v2r dx dt

�
¼ 0; t0; tf 0;

rt þ ðvrÞx ¼ 0;

if and only if it is a solution of (29).
To apply these ideas in the context of the discrete sampling of a process, we

shall exploit the implicit scheme (26), (27). The weak Euler Equation for this
problem, eg. (40) in [18], (8.4) in [27], may be written with a little manipulation

1

t
ðx� fðxÞÞ þ

�
s
rx
r
þ c 0

�
¼ 0 in W;ð35Þ
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where f is the transfer function from r to r�. This means that, at the level of the
implicit scheme, equality holds in (30). However the subsequent integral formulas
and the notion of dissipation are not meaningful. We can correct this, at least
in part, by suggesting a path from r� ¼ rðk�1Þ to r ¼ rðkÞ. Let us choose the geo-
desic path, given by the transfer function f above, so with

fðx; tÞ ¼ xþ ðt� tÞ
t

ðfðxÞ � xÞ in W; 0 < te t;ð36Þ

~rrðx; tÞ ¼ ðf]rÞðx; tÞ; which meansZ
W

z~rr dx ¼
Z
W

zðfðx; tÞÞrðxÞ dx

It has the property that

dðr�; ~rrð�; tÞÞ ¼ t

t
dðr�; rÞ:

For this choice of path

v ¼ 1

t
ðx� fðxÞÞ in W; t ¼ t;ð37Þ

and (30) holds at t ¼ t and so we adopt it as our approximation to (32). In fact,
as we note below, it holds with accuracy to machine zero in simulations. Finally,
note that

1

t
dðr; r�Þ2 ¼

Z t

0

Z
W

�1
t
ðx� fðxÞÞ

�2
r dx dt ¼ 1

t

Z
W

ðx� fðxÞÞ2r dxð38Þ

which leads to the approximation formula

FsðrÞjt0 � FsðrÞjt0þt þ
1

t
dðrð�; t0Þ; rð�; t0 þ tÞÞ2

� �
Q0; t0; tf 0:ð39Þ

Similarly, we can formulate a condition in terms of the dissipation. This is

FsðrÞjt0 � FsðrÞjt0þt þ t

Z
W

�
s
rx
r
þ c 0

�2
r dxjt0þt

� �
Q0; t0; tf 0:ð40Þ

We present the results below based on (39) although we computed both (39) and
(40) and these results coincide.

5. Validation tests

We now begin the validation step of the Fokker–Planck model for GBCD evolu-
tion. There is an as yet unknown temperature-like parameter s in the free energy
Fs that we determine first.
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5.1. Relative entropy test

Here as the first step of validation, we review and apply the relative entropy val-
idation procedure developed originally in [7–11, 13]. To estimate the parameter s
we look for the stationary solution of the Fokker–Planck equation (29), which is
given by the Boltzmann distribution denoted as:

rsðaÞ ¼
1

Zs

e�
cðaÞ
s ;ð41Þ

with partition function; i:e:; normalization factor

Zs ¼
Z
W

e�
cðaÞ
s da:

Also, recall that solutions of the Fokker–Planck equation (29) have the property
that they converge exponentially fast to rs in Kullback–Leibler (KL) relative en-
tropy. KL relative entropy or KL divergence, is a particular f -divergence, i.e. it
is a particular function that measures the di¤erence between two probability den-
sities (see e.g. [14, 15]). Let FðrkrlÞ denote the Kullback–Leibler relative entropy
(KL relative entropy) between a probability density r and rl, the Boltzmann dis-
tribution with parameter l,

FðrkrlÞ ¼
Z
W

r log
r

rl
dað42Þ

¼ 1

l
Fl þ logZl

¼ 1

l
ðFlðrÞ � FlðrlÞÞ

We know that if the GBCD rða; tÞ evolves according to (29), it must converge
exponentially fast to rsðaÞ in KL relative entropy as t ! l. In other words, the
free energy of the grain boundary system must decrease (exponentially fast) to the
free energy of the Boltzmann distribution rsðaÞ. This concept was introduced
originally in [7–11, 13] to estimate s as described in the next paragraph.

Consider the final time Tl of the harvested GBCD rða;TlÞ. Typically
Tl ¼ Tð80%Þ is the simulation time when 80% of the initial grain boundaries
have been removed. This time corresponds to the stationary configuration in 2D
simulation in the sense that the configuration is essentially stagnant. Assuming
rða;TlÞ as the steady-state of the GBCD, the parameter s can be estimated via

s ¼ argmin
l>0

Fðrð�;TlÞkrlÞ:ð43Þ

With

cl ¼
c

l
þ logZl;ð44Þ
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this minimization is a convex duality type of optimization problem, namely, to
find the s for which

Z
W

fcsrþ r log rg da ¼ inf
fclg

Z
W

fclrþ r log rg da;ð45Þ

recognizable as a maximum likelihood estimate. The above procedure finds the
unique value of l for which the free energies Flðrð�;TlÞÞ and FlðrlÞ best agree,
which is also the value of l for which the Boltzmann distribution rlðaÞ best
matches rða;TlÞ.

We summarize this idea numerically in Fig. 5–6 (n ¼ 215 initial grain boun-
daries) and in Fig. 10–11 (n ¼ 218 initial grain boundaries) for the 1D system and
in Fig. 15–16 (n ¼ 10000 initial number of grains) and in Fig. 19–20 (n ¼ 20000
initial number of grains) for the 2D system, and reader can consult [7–11, 13] for
the original formulation of this validation procedure. From the relative entropy
test illustrated in Fig. 5–6 and in Fig. 10–11 (for the 1D model of coarsening)
and in Fig. 15–16 and in Fig. 19–20 (for the 2D model of coarsening), cf. Fig.
3, we clearly see very good agreement between the Boltzmann distribution, the
steady-state solution of the Fokker–Planck equation (29), and the steady-state
GBCD for both 1D and 2D models. One can also observe that the 1D model
and 2D large scale computational model capture the important aspects of the
GBCD evolution as illustrated in the corresponding tests in Figs. 7, 12, 17 and
21. In these tests we compare the GBCD and the solution of the Fokker–Planck
equation (29) at di¤erent instants in time (where we have selected the Fokker–
Planck time scaling for GBCD, see Section 5.2, and the di¤usion coe‰cient s in
(29) is obtained from the corresponding relative entropy tests discussed above).

Figure 5. Single 1D trial with 215 initial grain boundaries: (a) Relative entropy curves
Flðrð�; tÞÞ for 30 uniformly spaced trial values l a ½0:01; 0:05�. The red curve depicts the
optimal curve for sQ0:027931. (b) Comparison of the steady-state empirical GBCD
(80% removal) and the exact Boltzmann distribution rs for the obtained sQ0:027931.
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The observed close agreement between the empirical GBCD and the Fokker–
Planck solution further validates the developed theory.

5.2. Gradient flow and dissipation mechanisms

We now use the dissipation estimate (39), as the next validation test of the evolu-
tion of the GBCD as the solution solution of the Fokker–Planck Equation (29).
The main idea in this test is that if a density evolves according to the Fokker–

Figure 6. Average over 10 1D trials with 215 initial grain boundaries: (a) Relative entropy
curves Flðrð�; tÞÞ for 30 uniformly spaced trial values l a ½0:01; 0:05�. The red curve
depicts the optimal curve for sQ0:02931. (b) Comparison of the steady-state GBCD
(80% removal) and the exact Boltzmann distribution rs for the obtained sQ0:02931.

Figure 7. Single 1D trial with 215 initial grain boundaries (left figure) and average over 10
1D trials with 215 initial grain boundaries (right figure): Comparison of the GBCD (blue)
with the Fokker–Planck solution (29) (red) at times corresponding to 20%, 40%, 60% and
80% removal of the initial grain boundaries.
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Planck equation (29), it must dissipate energy according to (39). However, to
employ (39), we need to select the correct time scaling for the empirical GBCD.
We select the time scaling that corresponds to that of the solution of the Fokker–
Planck equation. For that, we first derive a formula for an appropriate time
dependent moment of the computed solution of the Fokker–Planck Equation.
Inverting this formula for the time variable t (or approximately inverting it) we
obtain a formula to recover time values from the density’s expected values.
Next, this is matched to the appropriate time dependent moment of the j th profile
of the empirical GBCD rða; tÞ, and we apply the derived formula to estimate the
time parameter t ¼ tj in rða; tÞ. After the time scale is set in this manner, we can
proceed with verifying dissipation equality (39) for the empirical GBCD. For the
detailed derivation see [6].

In the sequel, we shall use generally the abbreviation

rj ¼ rða; tjÞð46Þ

and similarly for other functions.
We begin by first illustrating dissipation equality (39) for the solution of the

Fokker–Planck equation, Fig. 8. We construct a numerical solution rFPða; tÞ of
(29) with mC 1; s ¼ 0:02931 and energy density function c ¼ 1þ 2a2. We con-
sider initial data for the GBCD as the initial condition for (29). To solve (29)
numerically, we use second order finite di¤erences for the spatial derivatives com-
bined with Backward Euler for the time discretization. Next, for this solution
rFPða; tÞ, we compute the energy dissipation

FsðrFP
j Þ � FsðrFP

jþ1Þ

(left plot on Fig. 8) and the squared Wasserstein (W2) distances

1

tj
dðrFP

j ; rFP
jþ1Þ

2; tj ¼ tjþ1 � tj

Figure 8. Fokker–Planck dissipation: The energy dissipation FsðrFP
j Þ � FsðrFP

jþ1Þ for the
solution rFPða; tÞ of the Fokker–Planck equation (29) (left) and the W2 distances
dðrFP

j ; rFP
jþ1Þ

2=tj (right) for the solution rFPða; tÞ of the Fokker–Planck equation (29). The
time step is tj ¼ tjþ1 � tj. The di¤erence between the energy dissipation and the squared
W2 distances is depicted in magenta and indicates that the approximate dissipation iden-
tity (39) is satisfied.
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(right plot on Fig. 8). Representative dissipation integrals were compared using
(40) but are not shown. To compute squared W2 distances we employ a nu-
merical algorithm developed in [22]. As expected, we clearly see that the dis-
sipation equality (39) is satisfied up to machine precision for the solution of
(29).

Next, we consider a time scaled GBCD harvested from the 1D critical event
model, and apply the same test (39). We first apply the test to a GBCD har-
vested from the 1D simulation (Sec. 3) with n ¼ 215 initial grain boundaries. We
use mC 1, the energy density c ¼ 1þ 2a2 and harvest the GBCD at the set of
empirical/numerical times. The parameter sQ0:02931 is estimated using the rel-
ative entropy test of Sec. 5.1. Next, we employ time-scaling procedure for GBCD
as described above to estimate the sequence of physical times ftjgN

j¼1. Finally, for
the GBCD rða; tÞ, we compute the energy dissipation

FsðrjÞ � Fsðrjþ1Þ

(left plot on Fig. 9) and the squared W2 distances

1

tj
dðrj; rjþ1Þ

2; tj ¼ tjþ1 � tj

Figure 9. Single 1D trial with 215 initial grain boundaries (top figure) and average over
10 1D trials with 215 initial grain boundaries (bottom figure): The energy dissipation
FsðrjÞ � Fsðrjþ1Þ for the GBCD (left) and the squared W2 distances dðrj; rjþ1Þ

2=tj (right)
for the GBCD. The time step is tj ¼ tjþ1 � tj. The di¤erence between the energy dissipa-
tion and squared W2 distances is depicted in magenta and indicates that the approximate
dissipation identity (39) is satisfied.
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(right plot on Fig. 9). We compare the energy dissipation and the squared W2
distances in Figure 9, where we see approximate agreement between the curves,
away from initial times. There is some disagreement between the free energy dis-
sipation and squared W2 distances curves at the initial time and can be explained
by the finite size e¤ect of the 1D model (i.e. grain boundaries with misorientation
parameters a near the boundary of W ¼ ½�p=4; p=4� are not eliminated as rapidly
as in later times of the simulation). Because the solution of (29) must satisfy the
dissipation estimate (39), we have further validation that the Fokker–Planck equa-
tion characterizes the GBCD evolution.

In Fig. 13, we present the dissipation estimate for GBCD harvested from sim-
ulations having n ¼ 218 initial grain boundaries. We observe as the number of
initial grain boundaries increases (we also considered systems with n ¼ 216 and
n ¼ 217), the dissipation estimate (39) improves. This improvement suggests that
the Fokker–Planck equation is a more accurate description of GBCD evolution
in a many particle limit.

Similarly, we execute the validation test (39) for the 2D model. The s values
used for validation test (39) were again estimated using the relative entropy test
discussed above and are reported on the appropriate figure captions. Approxi-
mately, s ¼ 0:16. Again we obtain very good agreement between the energy dis-
sipation and the squared W2 distances, see Fig. 18 (system with n ¼ 10000 grains)
and see Fig. 22 (system with n ¼ 20000 grains). We also note that the 2D model
gives better agreement between the free energy dissipation and squared W2 dis-
tances curves compared to the 1D model (the di¤erence between the free energy
dissipation curve and squared W2 distance curve that was seen for 1D model at
the initial times almost disappeared for the 2D model). This validates further our
theory that GBCD evolves as the solution of the Fokker–Planck equation (29).

Figure 10. Single 1D trial 218 initial grain boundaries: (a) Relative entropy curves
Flðrð�; tÞÞ for 30 uniformly spaced trial values l a ½0:01; 0:05�. The red curve depicts the
optimal curve for sQ0:02931. (b) Comparison of the steady-state GBCD (80% removal)
and the exact Boltzmann distribution rs for the obtained sQ0:02931.
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5.3. Statistical validation of Fokker–Planck dynamics

We now quantify the agreement between the GBCD evolution and Fokker–
Planck dynamics by asking how well (39) is satisfied in the statistical sense. Since
the grain boundary system is initialized randomly, the GBCD itself is random.
Thus the free energy dissipation FsðrjÞ � Fsðrjþ1Þ and the squared W2 distances
dðrj; rjþ1Þ

2 between any two times, are themselves random variables. Therefore,
we consider generating many realizations of the grain boundary system and asso-
ciated statistics to determine if the energy dissipation samples and the squared

Figure 11. Average over 10 1D trials with 218 initial grain boundaries: (a) Relative en-
tropy curves Flðrð�; tÞÞ for 30 uniformly spaced trial values l a ½0:01; 0:05�. The red curve
depicts the optimal curve for sQ0:02931. (b) Comparison of the steady-state GBCD
(80% removal) and the optimal Boltzmann distribution rs.

Figure 12. Single 1D trial with 218 initial grain boundaries (left figure) and average over
10 1D trials with 218 initial grain boundaries (right figure): Comparison of the GBCD
(blue) with the Fokker–Planck solution (29) (red) at times corresponding to 20%, 40%,
60% and 80% removal of the initial grain boundaries.
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W2 distance samples agree in a statistical sense. For that, we collect energy di¤er-
ences DF :¼ FsðrjÞ � Fsðrjþ1Þ and squared W2 distances W2 ¼ dðrj; rjþ1Þ

2 at
each realization of the system. Next, using these data collected from all the real-
izations, we define and compute the density estimators denoted as fDF ðe; tÞ,
ðe :¼ DFÞ and fW ðe; tÞ, ðe :¼ W2Þ as the normalized histograms of the free en-
ergy di¤erences and squared W2 distances respectively. In Fig. 14 we display the
density estimators fDF ðe; tÞ and fW ðe; tÞ computed for 1D system with di¤erent
numbers of the initial grain boundaries n ¼ 215; 216; 217 and 218. Each estimator
is generated from R ¼ 1000 independent realizations of the 1D coarsening system
with the given number n of the initial grain boundaries. We observe from the ob-
tained results, see Fig. 14, that the energy samples for the free energy dissipation
and W2 distances appear to converge in distribution, as the number of initial
grain boundaries n increases, i.e. in a many particles limit. Let us also note that
at this point we were able to conduct this test only for the 1D model of the grain
boundaries network due to large computational complexity of the statistical vali-
dation test for the 2D model.

6. Remarks

We are fortunate that for the simple potentials we treat here for interfacial
energies, roughly speaking, quadratic and consequently related to an Ornstein–

Figure 13. Single 1D trial with 218 initial grain boundaries (top figure) and average over
10 1D trials with 218 initial grain boundaries (bottom figure): The energy dissipation
FsðrjÞ � Fsðrjþ1Þ for the GBCD (left) and the W2 distances dðrj ; rjþ1Þ

2=tj (right) for the
GBCD. The time step is tj ¼ tjþ1 � tj. The di¤erence between the energy dissipation and
squared W2 distances is depicted in magenta and indicates that the approximate dissipa-
tion identity (39) is satisfied.
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Figure 14. Density estimators (left) fDF ðe; tÞ for the free energy di¤erences and (right)
fW ðe; tÞ for the squared W2 distances, and e denotes either the value of the free energy
di¤erences or W2 di¤erences in the density estimators. The estimator fDF (resp. fW ) is
computed by appropriately normalizing a two-dimensional histogram of the free energy
di¤erences (resp. squared W2 distances) collected from R ¼ 1000 realizations of the 1D
coarsening simulation with n ¼ 2x initial grain boundaries (indicated).
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Uhlenbeck process, our Fokker–Planck equation is quite direct. Regardless of
the potential, given that it is smooth, we find a Boltzmann stationary distribu-
tion, but the evolution need not be so simple. This is a direction to pursue. In
addition, there is the challenge of extending the framework to three dimensions.
Many special computational features available for the simulation of curves fail
for surfaces.

Figure 15. Single 2D trial 10000 initial grain boundaries: (a) Relative entropy curves
Flðrð�; tÞÞ for 30 uniformly spaced trial values l a ½0:05; 0:2�. The red curve depicts the
optimal curve for sQ0:148276. (b) Comparison of the steady-state GBCD (80% removal)
and the exact Boltzmann distribution rs for the obtained sQ0:148276.

Figure 16. Average over 10 2D trials with 10000 initial grain boundaries: (a) Relative
entropy curves Flðrð�; tÞÞ for 30 uniformly spaced trial values l a ½0:05; 0:2�. The red
curve depicts the optimal curve for sQ0:158621. (b) Comparison of the steady-state
GBCD (80% removal) and the exact Boltzmann distribution rs for the obtained sQ
0:158621.
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Figure 17. Single 2D trial 10000 initial grain boundaries (left figure) and average over
10 2D trials with 10000 initial grain boundaries (right figure): Comparison of the GBCD
(blue) with the Fokker–Planck solution (29) (red) at times corresponding to 20%, 40%,
60% and 80% removal of the initial grain boundaries.

Figure 18. Single 2D trial with 10000 initial grain boundaries (top figure) and average
over 10 2D trials with 10000 initial grain boundaries (bottom figure): The energy dissipa-
tion FsðrjÞ � Fsðrjþ1Þ for the GBCD (left) and the W2 distances 1

tj
dðrj; rjþ1Þ

2 (right) for

the GBCD. The time step is tj ¼ tjþ1 � tj. The di¤erence between the energy dissipation
and W2 distances is depicted in magenta and indicates that the approximate dissipation
identity (39) is satisfied.
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Figure 20. Average over 10 2D trials with 20000 initial grain boundaries: (a) Relative en-
tropy curves Flðrð�; tÞÞ for 30 uniformly spaced trial values l a ½0:05; 0:2�. The red curve
depicts the optimal curve for sQ0:158621. (b) Comparison of the steady-state GBCD
(80% removal) and the exact Boltzmann distribution rs for the obtained sQ0:158621.

Figure 19. Single 2D trial 20000 initial grain boundaries: (a) Relative entropy curves
Flðrð�; tÞÞ for 30 uniformly spaced trial values l a ½0:05; 0:2�. The red curve depicts the
optimal curve for sQ0:163793. (b) Comparison of the steady-state GBCD (80% removal)
and the exact Boltzmann distribution rs for the obtained sQ0:163793.
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Figure 21. Single 2D trial 20000 initial grain boundaries (left figure) and average over
10 2D trials with 20000 initial grain boundaries (right figure): Comparison of the GBCD
(blue) with the Fokker–Planck solution (29) (red) at times corresponding to 20%, 40%,
60% and 80% removal of the initial grain boundaries.

Figure 22. Single 2D trial with 20000 initial grain boundaries (top figure) and average
over 10 2D trials with 20000 initial grain boundaries (bottom figure): The energy dissipa-
tion FsðrjÞ � Fsðrjþ1Þ for the GBCD (left) and the squared W2 distances d 2ðrj; rjþ1Þ=tj
(right) for the GBCD. The time step is tj ¼ tjþ1 � tj. The di¤erence between the energy
dissipation and W2 distances is depicted in magenta and indicates that the approximate
dissipation identity (39) is satisfied.
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