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In this talk we will discuss recent progress in the development of the numerical
methods for the chemotaxis models and closely related problems in physics and
biology. We consider the most common formulation of the classical Patlak-Keller-
Segel system [7] with the ’parabolic-parabolic’ coupling, which can be written in
the dimensionless form as

(0.1)

{
ρt +∇ · (χρ∇c) = ∆ρ,
ct = ∆c− c+ ρ,

(x, y) ∈ Ω, t > 0,

subject to the Neumann boundary conditions:

(0.2) ∇ρ · n = ∇c · n = 0, (x, y) ∈ ∂Ω.

Here, ρ(x, y, t) is the cell density, c(x, y, t) is the chemoattractant concentration,
χ is a chemotactic sensitivity constant, Ω is a bounded domain in R2, ∂Ω is its
boundary, and n is a unit normal vector.
Chemotaxis refers to mechanisms by which cellular motion occurs in response to an
external stimulus, usually a chemical one. Chemotaxis is an important process in
many medical and biological applications, including bacteria/cell aggregation and
pattern formation mechanisms, as well as tumor growth. There exists an extensive
literature about chemotaxis models and their mathematical analysis a first place to
start is [23], as well as [15, 16], and for a deeper background [2, 8, 21, 1, 7, 3, 4, 24].
The first descriptions of the mechanism owe to Keller and Segel, [17, 18, 19] and
Patlak [22]. In this description, the organism or migrating enzyme chooses a
direction upwards of a chemical signal which leads to aggregation.

Although there is an extensive literature on this subject, only a few numeri-
cal methods have been proposed for these models. Chemotaxis models are usu-
ally highly nonlinear due to the density dependent cross diffusion term (attract-
ing force) that models chemotactic behavior, and hence, any realistic chemotaxis
model is too difficult to solve analytically. Therefore, development of accurate and
efficient numerical methods is crucial for the modeling and analysis of chemotaxis
systems. Furthermore, a common property of all existing chemotaxis systems is
their ability to model a concentration phenomenon that mathematically results in
rapid growth of solutions in small neighborhoods of concentration points/curves.
The solutions may blow up or may exhibit a very singular, spiky behavior. This
blow-up represents a mathematical description of a cell concentration phenomenon
that occurs in real biological systems, see, e.g., [1, 2, 3, 4, 8, 24]. In either case,
capturing such solutions numerically is a very challenging problem.

Let us briefly review the numerical methods that have been proposed in the
literature. A finite-volume, [13], and finite-element, [20, 26], methods have been
proposed for a simplified version of the Patlak-Keller-Segel model with ’parabolic-
elliptic’ coupling: the equation for concentration of chemical signals c has been
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replaced by an elliptic equation using an assumption that c changes over much
smaller time scales than the density of the cells ρ. A fractional step numerical
method for a fully time-dependent chemotaxis system from [28] has been proposed
in [29]. However, the operator splitting approach may not be applicable when a
convective part of the chemotaxis system is not hyperbolic, which is a generic situa-
tion for the original Patlak-Keller-Segel model with ’parabolic-parabolic’ coupling.
In [6], a finite-volume central-upwind scheme was derived for the original Patlak-
Keller-Segel model and extended to some other chemotaxis models. Recently, in
[27], an implicit flux-corrected finite element method has been developed for the
original Patlak-Keller-Segel model as well. In our recent work [12, 11, 10] we de-
veloped a family of high-order Finite Element Methods (Discontinuous Galerkin
Methods) for the original Patlak-Keller-Segel chemotaxis model. However, among
the methods that have been proposed, only [20, 26, 27] were designed to treat com-
plex geometry by the use of unstructured meshes. Finally, a different approach
has been proposed in [14]. The authors considered the measure-valued global in
time solutions of the simplified Patlak-Keller-Segel system in R2 and proposed a
stochastic particle approximation. The advantage of their method is that it cap-
tures the solution even after the (possible) blow-up. However, the method was
only designed for the simplified Patlak-Keller-Segel model with ’parabolic-elliptic’
coupling. Moreover, at least in the 2D case, methods based on particle simulation
are usually less efficient than ’conventional’ finite element or finite volume meth-
ods for solving convection-diffusion equations.

Often, modeling of real biomedical problems has to deal with the complex struc-
ture of the computational domains. Therefore there is a need for accurate, fast,
and computationally efficient numerical methods for different chemotaxis models
that can handle arbitrary geometries. In our recent paper [9] we develop novel and
efficient upwind-difference potentials method which can handle complex geometry
without the use of unstructured meshes and it can be combined with fast Poisson
solvers. Our method combines the simplicity of the positivity-preserving upwind
scheme on Cartesian meshes [5] with the flexibility of the Difference Potentials
method [25].

Therefore, in this talk we will discuss and compare recently developed high-order
Discontinuous Galerkin Methods [12, 11, 10] and Upwind-Difference Potentials
method [9] for the original Patlak-Keller-Segel chemotaxis model.
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