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In this paper, we construct an improved well-balanced positivity preserving central-
upwind scheme for the two-dimensional Saint-Venant system of shallow water equations. 
As in Bryson et al. (2011) [7], our scheme is based on a continuous piecewise linear 
discretization of the bottom topography over an unstructured triangular grid. The main 
new technique is a special reconstruction of the water surface in partially flooded cells. 
This reconstruction is an extension of the one-dimensional wet/dry reconstruction from 
Bollermann et al. (2013) [3]. The positivity of the computed water depth is enforced 
using the “draining” time-step technique introduced in Bollermann et al. (2011) [4]. The 
performance of the proposed central-upwind scheme is tested on a number of numerical 
experiments.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

We consider the two-dimensional (2-D) Saint-Venant system of shallow water equations:

ht + (hu)x + (hv)y = 0, (1.1)

(hu)t +
(

hu2 + g

2
h2
)

x
+ (huv)y = −ghBx, (1.2)

(hv)t + (huv)x +
(

hv2 + g

2
h2
)

y
= −ghB y, (1.3)

where t is the time, x and y are horizontal spatial coordinates ((x, y) ∈ �), h(x, y, t) is the water depth, u(x, y, t) and 
v(x, y, t) are the x- and y-components of the flow velocity, B(x, y) is the bottom topography, and g is the constant gravita-
tional acceleration. The system (1.1)–(1.3) was originally proposed in [13], but it is still widely used to model water flow in 
rivers, lakes, reservoirs, estuaries, and coastal areas.
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In many applications, quasi steady solutions of the system (1.1)–(1.3) are to be computed using a (practically affordable) 
coarse grid. In such situations, small perturbations of steady states may be amplified by the scheme and the computational 
errors may become larger than the magnitude of the waves to be captured; see, e.g., [24,32,38]. In order to prevent this, 
one has to develop a well-balanced scheme—a scheme that is capable of accurately balancing the flux and source terms so 
that the relevant steady states, for instance, the “lake at rest” steady states,

u ≡ v ≡ 0, w := h + B ≡ Const, (1.4)

are preserved within the machine accuracy. Here, w denotes the water surface level. Examples of such schemes can be 
found in [1,2,4,7,15–17,23,24,28,32,38–42,46].

Another difficulty one often has to face in practice is related to the presence of dry areas (island, shore) in the compu-
tational domain. In these areas, h = 0 and if due to numerical oscillations h becomes negative, the calculation will simply 
break down as the acoustic speed needed in the calculation of the eigenvalues of the Jacobians is 

√
gh. It is thus crucial for 

a good scheme to preserve the positivity of h (positivity preserving schemes can be found, e.g., in [1,2,4,7,16,28,39,40,42,
46]).

We would also like to point out that in the dry areas, the steady state is

hu ≡ hv ≡ h ≡ 0, (1.5)

which can be viewed as a “dry lake”. A good numerical scheme may be considered “truly” well-balanced when it is capable 
of exactly preserving both “lake at rest” and “dry lake” steady states, as well as their combinations corresponding to the 
situations, in which the domain � is split into two non-overlapping parts �1 (wet area) and �2 (dry area) and the combined 
steady-state solution satisfies (1.4) in �1 and (1.5) in �2.

We focus on central-upwind schemes, which were originally developed in [25–27,29–31] for general multidimensional 
hyperbolic systems of conservation laws. These schemes were extended to hyperbolic systems of balance laws, in particular, 
to the Saint-Venant system in [2,7,24,28,42]. As in all finite volume Godunov-type schemes, a central-upwind numerical 
solution realized at a certain time level by a global (in space) piecewise polynomial reconstruction, is evolved to the next 
time level using the integral form of the system of balance laws. For the second-order schemes, the reconstruction is 
piecewise linear and the bottom topography is approximated using a continuous piecewise linear (or, in the 2-D schemes 
on Cartesian grids, piecewise bilinear) interpolant. This allows one to guarantee that the reconstructed water surface stays 
above the discretized bottom topography, which, in turn, ensures positivity preserving property of the resulting scheme 
provided a proper CFL condition is satisfied. The well-balanced property is achieved by using an appropriate discretization 
of the geometric source term.

In order to design a “truly” well-balanced central-upwind scheme for the system (1.1)–(1.3), it is necessary that a piece-
wise linear reconstruction of the water surface while being positivity preserving respects both the “lake at rest” (1.4) and 
“dry lake” (1.5) steady-state solutions as well as their combinations. The main difficulty in obtaining such reconstruction 
is related to the fact that at the wet/dry fronts there are always partially flooded cells, in which the positivity preserving 
reconstructions from [2,7,28,42] are not well-balanced. A special well-balanced positivity preserving reconstruction for par-
tially flooded cells was developed in [3] for the one-dimensional (1-D) Saint-Venant system. The key idea is to use a subcell 
resolution, that is, to reconstruct the water surface in some of the partially flooded cells using two (continuously connected) 
linear pieces instead of one. In this paper, we extend this reconstruction to the 2-D case using unstructured triangular grids. 
The extension is highly nontrivial since compared to the 1-D case, additional degrees of freedom need to be taken into 
account and more types of partially flooded cells are to be considered. Moreover, when the new wet/dry reconstruction is 
used, a new discretization for the source term has to be derived in order to maintain the well-balanced property of the 
resulting central-upwind scheme. In addition, while the proof of the positivity preserving property from [7] carries over to 
the new central-upwind scheme, the time-step constraint may be so severe that the scheme would become impractical. We 
therefore follow the same approach as in [3] and extend the “draining” time-step technique proposed in [4] to the triangular 
grid. This approach ensures positivity of the computed water depths without a reduction of the time-steps.

The paper is organized as follows. In §2, a modified version of the well-balanced positivity preserving second-order 
“triangular” central-upwind scheme from [7] is briefly reviewed. In §3, we present the new piecewise linear wet/dry recon-
struction. In §4, the positivity preserving property of the new scheme is discussed. In §5, we develop a special discretization 
of the source term needed to maintain the well-balanced property. Several numerical tests are conducted and the obtained 
results are presented in §6. Some concluding remarks complete the paper in §7.

2. Semi-discrete central-upwind scheme – an overview

In this section, we describe a slightly modified version of the semi-discrete second-order “triangular” central-upwind 
scheme from [7].

We first rewrite the system (1.1)–(1.3) in the following equivalent form:

U t + F (U , B)x + G(U , B)y = S(U , B),
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Fig. 2.1. A typical triangular cell with three neighbors.

where the equilibrium variables U and the fluxes F and G are

U =

⎛⎜⎜⎝
w

hu

hv

⎞⎟⎟⎠ , F =

⎛⎜⎜⎜⎜⎝
hu

(hu)2

w − B
+ g

2
(w − B)2

(hu)(hv)

w − B

⎞⎟⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎝
hv

(hu)(hv)

w − B
(hv)2

w − B
+ g

2
(w − B)2

⎞⎟⎟⎟⎟⎠ ,

and the source term S is

S =
⎛⎝ 0

−g(w − B)Bx

−g(w − B)B y

⎞⎠ .

We use the following notation (illustrated in Fig. 2.1):

T :=⋃
j T j is an unstructured triangulation of the computational domain �;

T j is a triangular cell of size |T j | with the barycenter (x j, y j);
V jκ = (̃x jκ , ̃y jκ ), κ = 12, 23, 31 are the three vertices of T j ;
T jk , k = 1, 2, 3 are the neighboring triangles that share a common side with T j ;
� jk is the length of the common side of T j and T jk and M jk is its midpoint;
n jk := (cos(θ jk), sin(θ jk))

� is the outer unit normal to the kth side of T j .

We replace the bottom topography B with its continuous piecewise linear approximation B̃ given by∣∣∣∣∣∣∣
x − x̃ j12 y − ỹ j12 B̃(x, y) − B̂ j12

x̃ j23 − x̃ j12 ỹ j23 − ỹ j12 B̂ j23 − B̂ j12

x̃ j13 − x̃ j12 ỹ j13 − ỹ j12 B̂ j13 − B̂ j12

∣∣∣∣∣∣∣= 0, (x, y) ∈ T j,

where, in the case of continuous bottom topography, B̂ jκ := B(V jκ ) κ = 12, 23, 31. We then use the following notation:

B jk := B̃(M jk), B j := B̃(x j, y j) = 1

3
(B̂ j12 + B̂ j23 + B̂ j13).

We assume that at a certain time level t the computed cell averages of the solution,

U j(t) ≈ 1

|T j|
¨

T j

U (x, y, t)dxdy,

are available. They are then evolved to the next time level by solving the following system of time-dependent ODEs:

d U j

dt
= − 1

|T j|
[

H j1 + H j2 + H j3
]+ S j, (2.1)

where the numerical fluxes through the corresponding edges of the triangle T j are
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H jk =� jk cos(θ jk)

ain
jk + aout

jk

[
ain

jk F (U jk(M jk), B jk) + aout
jk F (U j(M jk), B jk)

]
+� jk sin(θ jk)

ain
jk + aout

jk

[
ain

jk G(U jk(M jk), B jk) + aout
jk G(U j(M jk), B jk)

]

−� jk

ain
jkaout

jk

ain
jk + aout

jk

[
U jk(M jk) − U j(M jk)

]
, k = 1,2,3.

(2.2)

Here, U j(M jk) and U jk(M jk) are the reconstructed point values of U at M jk obtained as follows. We first obtain a 
piecewise linear reconstruction of the variables ϒ := (w, u, v)� (rather than U as it was done in [7]):

ϒ̃(x, y) =
∑

j

ϒ j(x, y)χ T j
, ϒ j(x, y) := ϒ j + (ϒ̂x) j(x − x j) + (ϒ̂y) j(y − y j), (2.3)

where χ T j
is the characteristic function of the cell T j , ϒ j are the point values of ϒ at the cell centers and (ϒ̂x) j and (ϒ̂y) j

are the limited partial derivatives (see §2.1 for the details on their computation).
In order to maintain the numerical stability of the resulting scheme, we prevent appearance of local extrema at the 

points M jk by setting the slopes of the ith component of ϒ to be zero, that is, by taking (ϒ̂(i)
x ) j = (ϒ̂

(i)
y ) j = 0 in (2.3) in 

those cells T j , where at least one of the monotonicity conditions,

min
(
ϒ

(i)
j ,ϒ

(i)
jk

)≤ ϒ
(i)
j (M jk) ≤ max

(
ϒ

(i)
j ,ϒ

(i)
jk

)
, k = 1,2,3,

is not satisfied.
In the dry cells in which w j = B j , the corresponding linear pieces in (2.3) are replaced by

ϒ j(x, y) = (B(x, y),0,0)�. (2.4)

Finally, the second and third components of the point values U j(M jk) and U jk(M jk) are obtained from ϒ j(M jk) and 
ϒ jk(M jk):

(hu) j(M jk) = (w j(M jk) − B jk) u j(M jk), (hu) jk(M jk) = (w jk(M jk) − B jk) u jk(M jk),

(hv) j(M jk) = (w j(M jk) − B jk) v j(M jk), (hv) jk(M jk) = (w jk(M jk) − B jk) v jk(M jk).

The cell average of the source term S j in (2.1),

S j(t) ≈ 1

|T j|
¨

T j

S
(
U (x, y, t), B(x, y)

)
dxdy,

has to be discretized in a well-balanced manner; see [7] for details. We note that in the presence of dry areas, the quadrature 
in [7] is not “truly” well-balanced. We therefore have modified it; see §5 below.

In (2.2), ain
jk and aout

jk are the one-sided local speeds of propagation in the directions ±n jk . These speeds are related to 
the largest and smallest eigenvalues of the Jacobian matrix J jk = cos(θ jk) ∂ F

∂U + sin(θ jk) ∂G
∂U , denoted by λ+[ J jk] and λ−[ J jk], 

respectively, and are defined by

ain
jk = −min{λ−[ J jk(U j(M jk))], λ−[ J jk(U jk(M jk)], 0},

aout
jk = max{λ+[ J jk(U j(M jk))], λ+[ J jk(U jk(M jk)], 0},

where

λ±[ J jk(U j(M jk))] = cos(θ jk)u j(M jk) + sin(θ jk)v j(M jk) ±
√

gh j(M jk),

λ±[ J jk(U jk(M jk))] = cos(θ jk)u jk(M jk) + sin(θ jk)v jk(M jk) ±
√

gh jk(M jk).

Remark 2.1. In order to avoid division by 0 (or by a very small positive number), the numerical flux (2.2) is replaced with

H jk =� jk cos(θ jk)

2

[
F (U jk(M jk), B jk) + F (U j(M jk), B jk)

]
+� jk sin(θ jk)

2

[
G(U jk(M jk), B jk) + G(U j(M jk), B jk)

]
wherever ain + aout < σ . In all of the reported numerical examples, we have taken σ = 10−6.
jk jk
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Remark 2.2. A fully discrete scheme can be obtained by numerically solving the ODE system (2.1), (2.2) using a stable and 
sufficiently accurate ODE solver. In our numerical experiments, we have used the three-stage third-order strong stability 
preserving (SSP) Runge–Kutta method; see, e.g., [18,19]. The time-step size should satisfy the CFL condition (see [27]), 
which can be expressed as

�t <
1

3
min

j,k

[
r jk

max(ain
jk,aout

jk )

]
, (2.5)

where r j1, r j2 and r j3 are the three corresponding altitudes of the triangle T j .

2.1. Computing point values at the cell centers and gradients

We first obtain the point values ϒ j required in formula (2.3). Since our scheme is (formally) second-order accurate in 
space, we set the cell center point values of all of the evolved quantities to be equal to their computed cell averages. In 
order to compute the cell center point values of the velocities, u j ≈ u(x j, y j, t) and v j ≈ v(x j, y j, t), we use the following 
desingularization procedure (which is different from the one used in [7]):

u j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(hu) j

h j

, if h j ≥ ε,

√
2h j(hu) j√

h
4
j + max(h

4
j , τ )

, otherwise,

v j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(hv) j

h j

, if h j ≥ ε,

√
2h j(hv) j√

h
4
j + max(h

4
j , τ )

, otherwise,

(2.6)

where ε > 0 and τ > 0 are prescribed small parameters: ε > 0 represents the depth-tolerance used to switch the velocity 
desingularization on and τ is used to avoid division by very small numbers.

The slopes (ϒ̂x) j and (ϒ̂y) j in (2.3) are computed in a component-wise manner using the nonlinear limiter from [22]. 
To this end, we denote a component of ϒ by ϒ and first compute the unlimited gradients (∇ϒ) j = (

(ϒx) j, (ϒy) j
)

in every 
cell T j by taking the x- and y-derivatives of the planes passing through (x j1, y j1, ϒ j1), (x j2, y j2, ϒ j2) and (x j3, y j3, ϒ j3) at 
three neighboring cell centers:

(ϒx) j = (y j3 − y j1)(ϒ j2 − ϒ j1) − (y j2 − y j1)(ϒ j3 − ϒ j1)

(y j3 − y j1)(x j2 − x j1) − (y j2 − y j1)(x j3 − x j1)
,

(ϒy) j = (x j2 − x j1)(ϒ j3 − ϒ j1) − (x j3 − x j1)(ϒ j2 − ϒ j1)

(x j2 − x j1)(y j3 − y j1) − (x j3 − x j1)(y j2 − y j1)
.

(2.7)

The limited slopes are then given by

(ϒ̂x) j = � j1(ϒx) j1 + � j2(ϒx) j2 + � j3(ϒx) j3,

(ϒ̂y) j = � j1(ϒy) j1 + � j2(ϒy) j2 + � j3(ϒy) j3,

where � j1, � j2 and � j3 are the weights defined by

� j1 = ‖(∇ϒ) j2‖2
2 ‖(∇ϒ) j3‖2

2 + η

‖(∇ϒ) j1‖4
2 + ‖(∇ϒ) j2‖4

2 + ‖(∇ϒ) j3‖4
2 + 3η

,

� j2 = ‖(∇ϒ) j1‖2
2 ‖(∇ϒ) j3‖2

2 + η

‖(∇ϒ) j1‖4
2 + ‖(∇ϒ) j2‖4

2 + ‖(∇ϒ) j3‖4
2 + 3η

,

� j3 = ‖(∇ϒ) j1‖2
2 ‖(∇ϒ) j2‖2

2 + η

‖(∇ϒ) j1‖4
2 + ‖(∇ϒ) j2‖4

2 + ‖(∇ϒ) j3‖4
2 + 3η

.

Here, the parameter η is a small positive number introduced to prevent division by zero. In our numerical experiments, we 
have used η = 10−14.

2.2. Positivity correction for the reconstructed water surface

Notice that the use of the limited piecewise linear reconstruction (2.3) (with the slopes calculated as described in §2.1
or using another limiter) cannot guarantee that the reconstructed water surface w j(x, y) stays above the corresponding 
linear piece of the bottom B j(x, y) = B̃(x, y), (x, y) ∈ T j . This may introduce unphysical negative water depths h j(M jk) :=
w j(M jk) − B jk at M jk for some k ∈ {1, 2, 3} in some cells and therefore, the piecewise linear reconstruction (2.3) for w has 
to be corrected to ensure non-negativity of the water depth in those cells.
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In [7], the following positivity correction was performed in the two possible Cases A and B.
• Case A. There is only one vertex in the cell T j , say, with index κ = 12, for which w j(V jκ ) < B̂ jκ . In this case, we first set 
w j(V j12) = B̂ j12 and then determine w j(V j23) and w j(V j31) at the remaining two vertices by setting w j(V j23) − B̂ j23 =
w j(V j31) − B̂ j31 = 3

2 (w j − B j) based on the mass conservation. Finally, the original reconstruction (2.3) for w is replaced 
in the cell T j with a new one (still denoted by w j(x, y)) defined by∣∣∣∣∣∣∣∣

x − x j y − y j w j(x, y) − w j

x̃ j12 − x j ỹ j12 − y j B̂ j12 − w j

x̃ j23 − x j ỹ j23 − y j
3

2
(w j − B j) + B̂ j23 − w j

∣∣∣∣∣∣∣∣= 0, (x, y) ∈ T j. (2.8)

• Case B. There are two vertices in the cell T j , say, with indices κ = 12 and 23, for which w j(V jκ ) < B̂ jκ . In this case, we 
first set w j(V j12) = B̂ j12 and w j(V j23) = B̂ j23 and then the conservation requirement yields w j(V j31) − B̂ j31 = 3 (w j − B j). 
Finally, the original reconstruction (2.3) for w is replaced with a new one (still denoted by w j(x, y)) defined by∣∣∣∣∣∣∣

x − x j y − y j w j(x, y) − w j

x̃ j12 − x j ỹ j12 − y j B̂ j12 − w j

x̃ j23 − x j ỹ j23 − y j B̂ j23 − w j

∣∣∣∣∣∣∣= 0, (x, y) ∈ T j . (2.9)

One can easily see that the linear pieces (2.8) and (2.9) are conservative and lead to non-negativity of the reconstructed 
point values of water depth throughout the entire cell T j . However, in the presence of wet/dry fronts, the reconstruction 
procedure (2.3), (2.4), (2.8) and (2.9) can not guarantee the well-balanced property at the wet/dry interfaces. We therefore 
propose a novel wet/dry reconstruction (§3) together with a special discretization of the source term (§5) to maintain the 
well-balanced property in the presence of dry areas.

3. A novel well-balanced wet/dry reconstruction

In this section, we propose a novel conservative well-balanced wet/dry reconstruction on unstructured triangular grids. 
This reconstruction can be viewed as an extension of the 1-D wet/dry reconstruction from [3].

Assuming at a certain time level t , w j ≥ B j for all j, we define the following three types of computational cells:

• Fully flooded cell. If w j is not lower than the bed level at all three vertices of T j , that is, if w j ≥ max(B̂ j12, ̂B j23, ̂B j31) and 
h j := w j − B j > 0, the cell is fully flooded.

• Partially flooded cell. If w j is lower than the maximum bed level in T j , that is, if B j < w j < max(B̂ j12, ̂B j23, ̂B j31), the cell 
is partially flooded.

• Dry cell. If w j = B j , the cell is dry.
We first recall that in partially flooded and dry cells, even the first-order piecewise constant reconstruction of the water 

surface (equilibrium) variable w may lead to appearance of negative water depth point values as illustrated in Fig. 3.1
(left), in which h jκ = w jκ − B̂ jκ < 0. The correction algorithm proposed in [7] (see §2.2) can guarantee the positivity of the 
reconstructed water depth point values. Such correction, however, cannot guarantee the well-balanced property as illustrated 
in Fig. 3.1 (right), where one can see that the reconstructed values w j(M jk) and w jk(M jk) are not guaranteed to be the 
same for a “lake at rest” steady state.

To overcome the aforementioned difficulties, we develop an alternative correction procedure, which is both positivity 
preserving and well-balanced even on “dry lake” steady states.

Fig. 3.1. Two problematic reconstructions of w in a partially flooded cell T j : Piecewise constant reconstruction that leads to negative water depth point 
values (left) and a positivity preserving piecewise linear correction which is, however, is not well-balanced (right).
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Fig. 3.2. Well-balance first-order water surface reconstruction in partially (left) and fully (right) flooded cells.

Fig. 3.3. Two types of partially flooded cells depending on the total amount of water in the cell.

3.1. Well-balanced first-order water surface reconstruction

We first introduce a first-order water surface reconstruction, which keeps the water surface flat in a non-dry part of the 
cell. This reconstruction is illustrated in Fig. 3.2 for typical partially (left) and fully (right) flooded cells.

If T j is a dry cell, then the water surface is approximated there by

w j(x, y) = B̃(x, y).

If T j is a fully flooded cell, then the first-order reconstruction is simply

w j(x, y) = w j.

If T j is a partially flooded cell, then the well-balanced nonnegative first-order approximation of w consists of two 
pieces—the constant and linear ones:

w j(x, y) =
{

w j, if (x, y) ∈ T ∗
j ,

B̃(x, y), otherwise.
(3.1)

Here, T ∗
j is the flooded area of the partially flooded cell T j under the horizontal water surface at level w j , chosen in such 

way that the volume of water enclosed between the surface w = w j and the bottom topography equals to the total amount 
of water in this cell, that is, to |T j | h j .

From now on, we will consider (without loss of generality) partially flooded cells with either B̂ j13 ≥ B̂ j12 > B̂ j23 and 
distinguish between the following two types of such cells depending on the total amount of water in the cell.

Type 1. There exist two points A2 and A3 such that B̂ j13 ≥ B̂ j12 ≥ w j = B̃(A2) = B̃(A3) > B̂ j23 and thus the area T ∗ is a 
triangle as outlined in Fig. 3.3 (left);

Type 2. There exist two points A1 and A3 such that B̂ j13 > w j = B̃(A1) = B̃(A3) > B̂ j12 > B̂ j23 and thus the area T ∗ is a 
quadrilateral as outlined in Fig. 3.3 (right).

In Type 1 partially flooded cells, the total amount of water is

|T j|h j = w j − B̂ j23

3
|T ∗

j |, (3.2)

and since simple similarity consideration gives

|T ∗
j |

|T j| = |A3 V j23| · |A2 V j23|
|V j13 V j23| · |V j12 V j23| = (w j − B̂ j23)

2

(B̂ j13 − B̂ j23)(B̂ j12 − B̂ j23)
,

we obtain from (3.2) that

h j = (w j − B̂ j23)
3

3(B̂ j13 − B̂ j23)(B̂ j12 − B̂ j23)
. (3.3)

As w j < B̂ j12 and h j = w j − (B̂ j13 + B̂ j12 + B̂ j23)/3, we conclude from (3.3) that the partially flooded cell T j is of Type 1 if 
the following condition is satisfied:
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w j ≤ B̂ j12 + (B̂ j13 − B̂ j12)
2

3(B̂ j13 − B̂ j23)
, (3.4)

and the value of w j in this case is also obtained from (3.3) and is given by

w j = B̂ j23 +
[

3h j(B̂ j13 − B̂ j23)(B̂ j12 − B̂ j23)
] 1

3
.

In Type 2 partially flooded cells, which according to (3.4) are characterized by the following inequality:

B̂ j12 + (B̂ j13 − B̂ j12)
2

3(B̂ j13 − B̂ j23)
< w j < B̂ j13,

the total amount of water is

|T j|h j = w j − B̂ j23

3
|A1 A3 V j23| + w j − B̂ j12 + w j − B̂ j23

3
|A1 V j12 V j23|. (3.5)

Note that in this calculation, the quadrilateral |T ∗
j | is split into the two triangles, A1 A3 V j23 and A1 V j12 V j23, and then we 

once again use simple similarity considerations that give

|A1 A3 V j23|
|T j| = |A1 A3 V j23|

|A1 V j13 V j23| · |A1 V j13 V j23|
|T j| = |A3 V j23|

|V j13 V j23| · |V j13 A1|
|V j13 V j12| = w j − B̂ j23

B̂ j13 − B̂ j23
· B̂ j13 − w j

B̂ j13 − B̂ j12

and

|A1 V j12 V j23|
|T j| = |A1 V j12|

|V j13 V j12| = w j − B̂ j12

B̂ j13 − B̂ j12
,

which are after being substituted into (3.5) result in the following cubic equation for w j :

w3
j − 3B̂ j13 w2

j + 3(B̂ j23 B̂ j13 + B̂ j12 B̂ j13 − B̂ j12 B̂ j23)w j

+
[

3h j(B̂ j13 − B̂ j12) − B̂ j12(B̂ j12 + B̂ j23)
]
(B̂ j13 − B̂ j23) − B̂2

j23 B̂ j13 = 0.

Remark 3.1. The obtained quantities w j(x, y) will be used twofold. Firstly, they will be used in §3.2 to develop a second-
order well-balanced piecewise linear water surface reconstruction. Secondly, they are used to modify the computation of 
the unlimited gradients (∇w) j = (

(wx) j, (w y) j
)�

in (2.7) in the case when the cell T j is fully flooded, but (at least) one 
of its neighboring cells T jk is either partially flooded or dry. We note that a straightforward use of (2.7) in such a situation 
may lead to significant oscillations at wet/dry interfaces and the scheme may fail to preserve “lake at rest” steady states.

In order to overcome this difficulty, we modify formula (2.7) in such problematic cells by replacing the point 
(x jk, y jk, w jk) with 

(
M jk, 12

[
w j(M jk) + w jk(M jk)

])
there.

3.2. Well-balanced second-order water surface reconstruction

In this section, we present a new piecewise linear well-balanced nonnegative reconstruction, which is the key component 
of the proposed new central-upwind scheme. This reconstruction, denoted by w̃corr(x, y) =∑

j,k w̃corr
j (x, y), can be viewed 

as a correction of the limited piecewise linear reconstruction w̃(x, y) given by (2.3) and described in §2.1 and Remark 3.1.
If T j is a dry cell, then

w̃corr
j (x, y) = B̃(x, y).

If T j is a fully flooded cell, then no correction is necessary and we set

w̃corr
j (x, y) = w̃ j(x, y).

If T j is a partially flooded cell, then the well-balanced nonnegative second-order approximation of w may consist of two 
linear pieces:

w̃corr
j (x, y) =

{
ẘ j(x, y), if (x, y) ∈ T ∗

j ,

B̃(x, y), otherwise,
(3.6)

where ẘ j(x, y) is a linear reconstruction on the wet part T ∗
j of the partially flooded cell T j . Notice that unlike the case of 

the first-order reconstruction presented in §3.1, in the second-order case T ∗ may coincide with T j even though according to 
j
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Fig. 3.4. Proposed linear piece ẘ j(x, y) in Case 1.

the definition given in the beginning of §3 the cell T j is only partially flooded. In such a cease, the corrected reconstruction 
w̃corr

j (x, y) will consist of one linear piece only; the details will be explained below.
In the remaining part of this section, we describe how to obtain T ∗

j and ẘ j(x, y) in a partially flooded cell. To this 
end, we first compute the point value w j23 at the vertex V j23 with lowest bed level in the cell T j (as in §3.1, we will 
assume that B̂ j13 ≥ B̂ j12 ≥ B̂ j23). We will also assume that V j23 is a common vertex of m surrounding cells, denoted by 
T 1

j23, . . . , T
m
j23 (notice that the studied cell T j is one of these cells as V j23 ∈ T j ), and then take

w j23 = max
1≤i≤m

wi, wi =

⎧⎪⎪⎨⎪⎪⎩
w̃i

j23(V j23), if T i
j23 is a fully flooded cell,

wi
j23(V j23), if T i

j23 is a partially flooded cell,

B̂ j23, if T i
j23 is a dry cell,

i = 1, . . . ,m, (3.7)

where w̃i
j23(x, y) is a linear piece of the reconstruction w̃(x, y) in the cell T i

j23 and wi
j23(x, y) is the corresponding flat 

water surface reconstruction (3.1) computed in §3.1.
Equipped with w j23 computed in (3.7), we set

ẘ j(V j23) := w j23.

We will then distinguish between the following three cases depending on the total amount of water in the partially 
flooded cell T j .

Case 1. There exist two points A2 = (xA2 , y A2 ) ∈ V j12 V j23 and A3 = (xA3 , y A3 ) ∈ V j13 V j23 such that B̃(A2) = B̃(A3) and 
the total amount of water in the cell T j is equal to

h j|T j| = w j23 − B̂ j23

3
|A2 A3 V j23|. (3.8)

In this case, T ∗
j is a triangle A2 A3 V j23, ẘ j(A2) = B̂2 := B̃(A2), ẘ j(A3) = B̂3 := B̃(A3), and ẘ j(x, y), shown in Fig. 3.4, is a 

linear piece that passes through the following three points: (A2, ̂B2), (A3, ̂B3) and (V j23, w j23), namely,∣∣∣∣∣∣∣
x − x̃ j23 y − ỹ j23 ẘ j(x, y) − w j23

xA2 − x̃ j23 y A2 − ỹ j23 B̂2 − w j23

xA3 − x̃ j23 y A3 − ỹ j23 B̂3 − w j23

∣∣∣∣∣∣∣= 0, (x, y) ∈ T ∗
j . (3.9)

In order to use (3.9), we need to determine xA2 , y A2 , xA3 , y A3 , ̂B2 and ̂B3. This can be done as follows. First, note that the 
location of the points A2 and A3 can be described using two constants k2, k3 ∈ (0, 1] such that A2 = k2 V j12 + (1 − k2)V j23

and A3 = k3 V j13 + (1 − k3)V j23, and thus by simple similarity considerations

B̂2 = k2 B̂ j12 + (1 − k2)B̂ j23, B̂3 = k3 B̂ j13 + (1 − k3)B̂ j23, |T ∗
j | = k3k2|T j|.

This together with (3.8) and the fact that B̂2 = B̂3 result in

k2 =
[

3h j(B̂ j13 − B̂ j23)

(w j23 − B̂ j23)(B̂ j12 − B̂ j23)

] 1
2

, k3 =
[

3h j(B̂ j12 − B̂ j23)

(w j23 − B̂ j23)(B̂ j13 − B̂ j23)

] 1
2

. (3.10)
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Fig. 3.5. Proposed linear piece ẘ j(x, y) in Case 2.

Since these quantities need to be between 0 and 1, we conclude that Case 1 is characterized by the following condition:

0 < h j ≤ (B̂ j12 − B̂ j23)(w j23 − B̂ j23)

3 (B̂ j13 − B̂ j23)
. (3.11)

Case 2. There exist two points A1 = (xA1 , y A1 ) ∈ V j13 V j12 and A3 = (xA3 , y A3 ) ∈ V j13 V j23 such that B̃(A1) = B̃(A3) and 
the total amount of water in the cell T j is equal to

h j|T j| = w j23 − B̂ j23

3
|A1 A3 V j23| + w j12 − B̂ j12 + w j23 − B̂ j23

3
|A1 V j12 V j23|. (3.12)

In this case, T ∗
j is a quadrilateral A1 A3 V j23 V j12, ẘ j(A1) = B̂1 := B̃(A1), ẘ j(A3) = B̂3 := B̃(A3), and ẘ j(x, y), shown in 

Fig. 3.5, is a linear piece that passes through the following three points: (A1, ̂B1), (A3, ̂B3) and (V j23, w j23), namely,∣∣∣∣∣∣∣
x − x̃ j23 y − ỹ j23 ẘ j(x, y) − w j23

xA1 − x̃ j23 y A1 − ỹ j23 B̂1 − w j23

xA3 − x̃ j23 y A3 − ỹ j23 B̂3 − w j23

∣∣∣∣∣∣∣= 0, (x, y) ∈ T ∗
j , (3.13)

and w j12 := ẘ j(V j12).
In order to use (3.13), we need to determine xA1 , y A1 , xA3 , y A3 , B̂1 and B̂3. This can be done as follows. First, note that 

the location of the points A1 and A3 can be described using two constants k1, k3 ∈ (0, 1] such that A1 = k1 V j13 + (1 −
k1)V j12 and A3 = k3 V j13 + (1 − k3)V j23, and thus by simple similarity considerations

B̂1 = k1 B̂ j13 + (1 − k1)B̂ j12, B̂3 = k3 B̂ j13 + (1 − k3)B̂ j23, (3.14)

|A1 V j12 V j23| = k1|T j|, |A1 A3 V j23| = k3(1 − k1)|T j|. (3.15)

Note that (3.14) implies that

k3 = 1 − B̂ j12 − B̂ j13

B̂ j23 − B̂ j13
(1 − k1). (3.16)

We then use the similarity considerations once again to obtain

B̂1 = k1 ẘ j(V j13) + (1 − k1)w j12 = k1 B̂ j13 + (1 − k1)B̂ j12,

B̂3 = k3 ẘ j(V j13) + (1 − k3)w j23 = k3 B̂ j13 + (1 − k3)B̂ j23,

which together with the fact that B̂1 = B̂3 gives

w j12 = B̂ j12 + k1(1 − k3)

k3(1 − k1)
(w j23 − B̂ j23). (3.17)

Next, we substitute (3.14), (3.15) and (3.17) into (3.12), and introduce α := 3 h j/(w j23 − B̂ j23) and β := (B̂ j12 −
B̂ j13)/(B̂ j23 − B̂ j13) and to obtain the following cubic equation for (1 − k1):

(1 − k1)
3 + α − 3

(1 − k1) + 1 + β − α
2

= 0. (3.18)

β β
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Fig. 3.6. Proposed linear piece ẘ j(x, y) in Case 3.

This equation can be solved analytically. We are interested in a solution k1 ∈ (0, 1], which may or may not exist. If it exists 
(see the discussion below), then k3 and w j12 are obtained from (3.16) and (3.17), respectively.

We note that in the limiting case of k1 = 1, (3.18) results in

h j = 2B̂ j13 − B̂ j23 − B̂ j12

3 (B̂ j13 − B̂ j23)
(w j23 − B̂ j23). (3.19)

Using the fact that in this case ẘ j(V j13) = B̂ j13 and thus 3 h j = (w j23 − B̂ j23) + (w j12 − B̂ j12), we obtain from (3.19) that

w j12 = w∗
j12 := (B̂ j13 − B̂ j12)

(B̂ j13 − B̂ j23)
(w j23 − B̂ j23) + B̂ j12. (3.20)

Notice that the value w∗
j12 is introduced here since it will be used in the description of Case 3 below.

Finally, we use (3.11) and (3.19) to conclude that Case 2 is characterized by the following condition:

(B̂ j12 − B̂ j23)(w j23 − B̂ j23)

3 (B̂ j13 − B̂ j23)
≤ h j ≤ 2B̂ j13 − B̂ j23 − B̂ j12

3 (B̂ j13 − B̂ j23)
(w j23 − B̂ j23). (3.21)

Case 3. The third possible case is characterized by the condition, which is complementary to (3.11) and (3.21):

h j ≥ 2B̂ j13 − B̂ j23 − B̂ j12

3 (B̂ j13 − B̂ j23)
(w j23 − B̂ j23). (3.22)

In this case, T ∗
j = T j , and the reconstruction (3.6) over T j consists of just one linear piece ẘ j(x, y) given by∣∣∣∣∣∣∣

x − x̃ j23 y − ỹ j23 ẘ j(x, y) − w j23

x̃ j12 − x̃ j23 ỹ j12 − ỹ j23 w j12 − w j23

x̃ j13 − x̃ j23 ỹ j13 − ỹ j23 w j13 − w j23

∣∣∣∣∣∣∣= 0, (x, y) ∈ T j; (3.23)

see Fig. 3.6.
In order to use (3.23), we need to determine the values w j13 and w j12. This is done by setting

w j12 = w∗
j12 + �w, w j13 = B̂ j13 + �w (3.24)

where w∗
j12 is given by (3.20) and �w is determined by the conservation requirement:

3h j = �w + (�w + w∗
j12 − B̂ j12) + (w j23 − B̂ j23),

which results in

�w = 3

2
h j −

[
2B̂ j13 − B̂ j23 − B̂ j12

2 (B̂ j13 − B̂ j23)

]
(w j23 − B̂ j23). (3.25)
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3.2.1. Summary of the second-order water surface reconstruction procedure
We now summarize the proposed piecewise linear well-balanced nonnegative reconstruction procedure.
1. Compute the first-order well-balanced nonnegative water surface reconstruction w j(x, y) as described in §3.1.
2. Compute the unlimited gradients (∇w) j using the method described in Remark 3.1.
3. In each partially flooded cell T j , compute the water level w jκ at the vertex with the lowest bed level in T j . This 

is described in (3.7) for the case of the lowest bed level being at the vertex V j23 (two alternative possibilities are treated 
similarly).

4. In each partially flooded cell T j , determine whether it corresponds to Case 1, 2 or 3 depending on which of the 
conditions, (3.11), (3.21) or (3.22), respectively, is satisfied.

• In Case 1, compute k2 and k3 using (3.10) and then ẘ j(x, y) is given by (3.9).
• In Case 2, compute k1 and k3 using (3.18) and (3.16) and then ẘ j(x, y) is given by (3.13).
• In Case 3, compute w j12 and w j13 using (3.20), (3.25) and (3.24) and then ẘ j(x, y) is given by (3.23).
Once ẘ j(x, y) is determined, we obtain w̃corr

j (x, y) using (3.6).
5. Finally, using the corrected piecewise linear reconstruction w̃corr

j (x, y), update the point values w jκ and w j(M jk) as 
well as the piecewise constant gradients ∇ w̃(x, y) in partially flooded cells. These new quantities are then used in the 
numerical scheme described in §2, §4 and §5.

4. Positivity correction of the central-upwind scheme

In order to preserve the positivity of water depth computed using the proposed numerical scheme, we generalize the 
“draining” time-step method from [3,4] to the triangular mesh used in this paper.

We begin by studying the positivity preserving property of the central-upwind scheme described in §2. To this end, 
we apply the forward Euler temporal discretization to the first component of the scheme (2.1), (2.2) (the obtained result 
will also apply to the discretization obtained by the three-stage third-order SSP method used in the numerical examples 
reported in §6 below):

w n+1
j = w n

j − �t

|T j|
3∑

k=1

� jk

ain
jk + aout

jk

[
ain

jkh jk(M jk)u⊥
jk(M jk) + aout

jk h j(M jk)u⊥
j (M jk)

]

+ �t

|T j|
3∑

k=1

� jk

ain
jkaout

jk

ain
ik + aout

ik

[
w jk(M jk) − w j(M jk)

]
,

(4.1)

where u⊥
j (M jk) := u j(M jk) cos(θ jk) + v j(M jk) sin(θ jk) and u⊥

jk(M jk) := u jk(M jk) cos(θ jk) + v jk(M jk) sin(θ jk). Using the fact 
that

w n+1
j − w n

j = h
n+1
j −h

n
j and w jk(M jk) − w j(M jk) = h jk(M jk) − h j(M jk),

the scheme (4.1) can be rewritten as:

h
n+1
j = h

n
j + �t

|T j|
3∑

k=1

� jkain
jk

ain
ik + aout

ik

h jk(M jk)
[
aout

jk − u⊥
jk(M jk)

]
− �t

|T j|
3∑

k=1

� jkaout
jk

ain
ik + aout

ik

h j(M jk)
[
ain

jk + u⊥
j (M jk)

]
.

(4.2)

For fully flooded cells,

h
n
j = 1

3

3∑
k=1

h j(M jk), (4.3)

which after being substituted into (4.2) leads to the positivity preserving result established in [7]: h
n+1
j > 0 provided

�t <
1

6
min

j,k

[
r jk

max(ain
jk,aout

jk )

]
. (4.4)

Notice that this time-step restriction is twice stricter than the one in (2.5).

In partially flooded cells, however, the condition (4.4) does not necessarily guarantee the positivity of h
n+1
j since (4.3)

may not be satisfied. Moreover, since the water depth h
n
j can be arbitrarily small, the upper bound of �t can also be 
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arbitrarily small. To overcome this numerical difficulty, we use the “draining” time-step technique originally developed 
in [4], which we extend to unstructured triangular meshes as follows.

We first introduce the “draining” time-step �tdrain
j which represents the minimum time needed for the cell T j to be 

completely drained. It is defined by

�tdrain
j := |T j|h n

j

3∑
k=1

max(0, H (1)

jk )

where H (1)

jk is the first component of the numerical flux H jk is the numerical flux given by (2.2). Notice that for fully flooded 
cells �tdrain

j = �t , while for dry cells �tdrain
j = 0.

We then define the local “draining” time-step �t jk for each edge � jk of the cell j:

�t jk =
⎧⎨⎩ min(�t,�tdrain

j ), if H (1)

jk > 0,

min(�t,�tdrain
jk ), if H (1)

jk ≤ 0,

where �tdrain
jk is the “draining” time-step in the neighboring cell T jk , and �t is computed by (4.4), but with the minimum 

taken there over the flooded cells only.
Finally, equipped with �tdrain

jk , we replace the forward Euler discretization of (2.1) with

U
n+1
j = U

n
j − 1

|T j|
3∑

k=1

�t jk H jk + �t S j. (4.5)

One can show that under the time-step restriction (4.4), the scheme (4.5) preserves positivity of h. We omit the proof as it 
is similar to the proof of the analogous result in [4].

5. Well-balanced discretization of the source terms

In this section, we develop a well-balanced discretization of the source terms, which guarantees that “lake at rest” 
steady-state solutions,

w = max
{

C, B(x, y)
}
, C = Const, u ≡ v ≡ 0, (5.1)

are exactly preserved by the resulting central-upwind scheme in the presence of wet/dry fronts. This means that in both par-
tially and fully flooded cells, the source discretization S j should exactly balance the numerical fluxes so that the right-hand 
side (RHS) of (2.1) vanishes at “lake at rest” steady states.

To this end, we substitute the “lake at rest” state (5.1) into (2.1), (2.2) and conclude that a well-balanced quadrature for 
S j should satisfy the following two conditions:

− g

2|T j|
3∑

k=1

� jk cos(θ jk) · �t jk

�t
· [C − B(M jk)

]2 + S
(2)

j = 0 (5.2)

and

− g

2|T j|
3∑

k=1

� jk sin(θ jk) · �t jk

�t
· [C − B(M jk)

]2 + S
(3)

j = 0, (5.3)

where

S
(2)

j ≈ − g

|T j|
¨

T j

(C − B(x, y))Bx(x, y)dxdy, S
(3)

j ≈ − g

|T j|
¨

T j

(C − B(x, y))B y(x, y)dxdy.

In order to derive a well-balanced quadrature, we follow the approach in [7] and first apply Green’s formula, ˜
T j

divG dxdy = ´
∂T j

G · n ds, to the vector field G = ( 1
2 (w(x, y) − B(x, y))2, 0) and obtain

−
¨

T j

(w(x, y) − B(x, y))Bx(x, y)dxdy =
3∑

k=1

ˆ

(∂T j)k

(w(x, y) − B(x, y))2

2
cos(θ jk)ds

−
¨

T

(w(x, y) − B(x, y))wx(x, y)dxdy,

(5.4)
j
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where (∂T j)k is the k-th side of the triangle T j , k = 1, 2, 3. Next, unlike the discretization in [7], which uses the midpoint 
rule for all of the integrals on the RHS of (5.4), we apply the midpoint rule to the line integrals there, while the double 
integral is approximated using the trapezoidal rule. This results in the following quadrature for S

(2)

j :

S
(2)

j = g

2|T j|
3∑

k=1

� jk cos(θ jk) · �t jk

�t
· [w(M jk) − B(M jk)

]2

− g

3

[
(w j12 − B̂ j12) wx(V j12) + (w j23 − B̂ j23) wx(V j23) + (w j13 − B̂ j13) wx(V j13)

]
.

(5.5)

A similar quadrature for S
(3)

j is

S
(3)

j = g

2|T j|
3∑

k=1

� jk sin(θ jk) · �t jk

�t
· [w(M jk) − B(M jk)

]2

− g

3

[
(w j12 − B̂ j12) w y(V j12) + (w j23 − B̂ j23) w y(V j23) + (w j13 − B̂ j13) w y(V j13)

]
.

(5.6)

Notice that the reconstruction procedure presented in §3.2 ensures that at the steady state (5.1), either w jκ = B̂ jκ or 
∇w(V jκ ) = 0 throughout the entire computational domain. This implies that (w jκ − B̂ jκ ) wx(V jκ ) ≡ (w jκ − B̂ jκ ) w y(V jκ ) ≡
0 and therefore the quadratures (5.5) and (5.6) satisfy the desired well-balanced requirements (5.2) and (5.3).

6. Numerical examples

In this section, we will demonstrate the performance of the developed “truly” well-balanced central-upwind scheme, 
which will be referred to as a “new scheme”, and in Examples 3 and 4, we will also compare the obtained results with the 
ones computed using the scheme described in §2, which will be referred to as an “old scheme”.

In all of the examples, we set the gravitational acceleration to be g = 9.8 and the desingularization parameters τ and ε
in (2.6) are taken to be τ = max j{|T j|2} and ε = 10−4 (except for Example 4, in which we take ε = 10−2).

Example 1—Accuracy test
In the first example taken from [47], we test the experimental order of accuracy of the proposed numerical scheme.
We use the following 1-D data,

B(x, y) = sin2(πx), h(x, y,0) = 5 + ecos(2πx),

(hu)(x, y,0) = sin(cos(2πx)), (hv)(x, y,0) ≡ 0,

which is artificially extended to the narrow 2-D computational domain [0, 1] × [−1/(2N), 1/(2N)], which is first divided 
into N uniform Cartesian cells, each of which is then split into 4 uniform triangles so that the total number of triangular 
cells is N × 4. We use the periodic boundary conditions at x = 0 and x = 1 and reflecting (solid wall) boundary conditions 
at the other boundaries.

We compute the solution until the final time t = 0.1. The reference solution is obtained using 3200 × 4 cells and then 
used to compute the L1-errors and experimental rates of convergence. The results presented in Table 6.1 demonstrate that 
the expected second order of accuracy is achieved.

Example 2—Dam-break wave propagating over an initially dry inclined plane
In the second test, we compare the performances of the “new scheme” implemented using the proposed first-order 

§3.1 and second-order §3.2 wet/dry reconstructions in the partially flooded cells at wave fronts. To this end, we capture a 
dam-break wave over an initially inclined plane. In this test taken from [9,47], the analytical formula for the wave front 
position is available.

Table 6.1
Example 1: L1-errors and experimental rates of convergence.

N × 4 h hu

L1-error Rate L1-error Rate

50 × 4 2.43 × 10−3 – 1.89 × 10−2 –
100 × 4 6.25 × 10−4 1.96 4.90 × 10−3 1.95
200 × 4 1.54 × 10−4 2.02 1.22 × 10−3 2.01
400 × 4 4.04 × 10−5 1.93 3.21 × 10−4 1.93
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Fig. 6.1. Example 2: w(x, 0, 0) and w(x, 0, 3) computed using the second-order wet/dry reconstruction described in §3.2 over the inclined bottom B(x, 0)

(left); the exact and computed wave front positions, computed using the first- and second-order wet/dry reconstructions (right).

In this test, the initial data are

h(x, y,0) =
{

1 − B(x, y), x < 0,

0, x ≥ 0,
u(x, y,0) ≡ v(x, y,0) ≡ 0,

and the bottom topography is given by

B(x, y) = x tan(α),

where α is the inclination angle, which is set to α = π/30.
This is a 1-D test, which we artificially extend to the narrow 2-D computational domain [−15, 15] × [−1/40, 1/40], 

which is first divided into 2400 uniform Cartesian cells, each of which is then split into 4 uniform triangles so that the total 
number of triangular cells is 9600. The reflecting (solid wall) boundary conditions are imposed at all of the boundaries.

According to [9,47], the exact position of the wave front as a function of time is given by

x f (t) = 2t
√

g cos(α) − g

2
t2 tan(α).

We run the simulations until the final time t = 3. In Fig. 6.1 (left), we plot the cross sections along y = 0 if the initial 
and computed (using the second-order wet/dry reconstruction described in §3.2) water surfaces over the inclined bottom. 
In Fig. 6.1 (right), we show the exact and computed wave fronts as functions of time. As one can clearly see, the “new 
scheme” implemented using the proposed second-order wet/dry reconstruction §3.2 predicts the wave front position more 
accurate than the same scheme, but implemented using the first-order wet/dry reconstruction from §3.1.

We would like to stress that in this comparison test, the same piecewise linear reconstructions are used in the fully 
flooded cells and different wet/dry reconstructions are only applied in partially flooded cells near the wet/dry front. We 
would also like to point out that the experimental location of the front is defined as the first cell where the water depth 
exceeds 10−4 if counted from the right to the left.

Example 3—“Lake at rest” steady state in the domain with wet/dry interfaces
This test case is designed to demonstrate the well-balanced property of the “new scheme” in the presence of wet/dry 

interfaces, which is enforced by applying the new well-balanced water surface reconstruction (§3.2) and corresponding 
discretization of the source terms (§5). To this end, we simulate a quiescent lake around an island using the “new scheme” 
and compare the obtained results with those computed by the “old scheme”.

In this example, we take the computational domain [0, 4] × [0, 2] (divided into 12800 triangular cells), the exponential-
shape bottom topography

B(x, y) = 0.8e−2(x−2)2−4(y−1)2
,

the “lake at rest” initial data

w(x, y,0) = max(0.5, B(x, y)), u(x, y) ≡ v(x, y) ≡ 0,

and reflecting (solid wall) boundary conditions.
We compute the solution at time t = 10 using the “new scheme” and show the three-dimensional (3-D) view of the 

obtained still water surface in Fig. 6.2. An undisturbed water surface around the island is observed throughout the entire 
simulation.
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Fig. 6.2. Example 3: Water surface around the partially submerged hump computed using the “new scheme”.

Fig. 6.3. Example 3: Water surface computed by the “new” (left) and “old” (right) schemes. (For interpretation of the colors in the figures, the reader is 
referred to the web version of this article.)

Fig. 6.4. Example 3: Water velocities u (top row) and v (bottom row) computed by the “new” (left column) and “old” (right column) schemes.

We then perform the same computation by the “old scheme”. In Fig. 6.3, we show the contour plots of the water surface 
computed by both schemes at time t = 10. It can be clearly observed that while the “new scheme” preserves the “lake at 
rest” steady states, the “old scheme” generates spurious oscillations on the quiescent lake surface.

In Fig. 6.4, we show the computed velocities u and v . Once again, while the velocities computed by the “new scheme” 
are almost zero (within the machine accuracy), the “old scheme” generates very large spurious velocities in the cells near 
the wet/dry interface (these spurious velocities are later spread outwards to quiescent water around the island). This clearly 
demonstrates that the “new scheme” outperforms the “old scheme”.
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Fig. 6.5. Example 4: 1-D slice of the bottom topography and water surface. The plot is not to scale.

Example 4—Small perturbation of the “lake at rest” steady state
In this example, we solve the initial value problem, which is a modification of the test problem proposed in [7]. We 

define a hump partially submerged in water so that there is a disk-shaped island at the origin; see Fig. 6.5.
In this example, we take the computational domain [0, 1] × [0, 1] (divided into 25600 triangular cells), the radially 

symmetric bottom topography

B(r) =

⎧⎪⎨⎪⎩
1.1, r ≤ 0.1,

11(0.2 − r), 0.1 < r ≤ 0.2,

0, otherwise,

r :=
√

(x − 0.5)2 + (y − 0.5)2,

the initial data

w(x, y,0) =
{

1 + ε0, 0.1 ≤ x ≤ 0.2,

max[1, B(r)], otherwise,
u(x, y,0) ≡ v(x, y,0) ≡ 0

with ε0 = 0.01, and the homogeneous Neumann boundary conditions.
We then simulate a small perturbation that travels on initial quiescent water surface around the island using both the 

“new” and “old” schemes and plot the water surface computed at times t = 0.06, 0.1, 0.14 and 0.2 in Fig. 6.6. As one can 
clearly see there, in the results obtained using the “old scheme” (see the right column of Fig. 6.6), spurious waves are 
generated in the cells at the wet/dry front and then they are spread outwards interacting with the right-going perturbation 
(notice that a much larger number of triangular cells was used in [7] to suppress the developed spurious waves). In contrast, 
as one can see in the left column of Fig. 6.6, such spurious waves are completely eliminated by using the “new scheme” 
even on a very coarse mesh. This clearly demonstrates the advantage of the “new scheme”.

Example 5—Oscillating lake in a parabolic basin
In this example, water sloshing in a frictionless parabolic basin involves simultaneously wetting and drying. The bottom 

topography is defined by

B(x, y) = hs

L2 (x2 + y2) (6.1)

where hs and L are positive parameters. As it was shown in [43], the system (1.1)–(1.3), (6.1) admits the following periodic 
solution:

w(x, y, t) = hs

[
1 + φ

L2
(2x cos(ωt) + 2y sin(ωt) − φ)

]
,

u(x, y, t) = −φ ω sin(ωt), v(x, y, t) = −φ ω cos(ωt),

(6.2)

where ω = 2π/T is the frequency of the circulation and T is its period. We use the parameters given in [33], that is, 
T = 3600, hs = 10, L = 8025.5 and φ = L/10. The water circulation is simulated in a [−10000, 10000] × [−10000, 10000]
computational domain which is divided into 11714 triangular cells. The initial conditions at t = 0 are provided by (6.2)
computed at t = 0 and the homogeneous Neumann boundary conditions are set.

Fig. 6.7 shows both the exact and computed water surfaces at times t = 1.25T and 1.75T . As one can clearly see, they 
are in good agreement and no distortion is observed near the shorelines.

In Fig. 6.8, we plot the velocity components u and v as functions of time at the point (x, y) = (1000, 0) for three 
periods. It can be observed that for both u and v the numerical results agree very well with the exact solution. Fig. 6.8 also 
demonstrates the converges of the computed solution to the analytical one as both the coarse (with 5808 triangular cells) 
and fine (with 11714 triangular cells) grid numerical solutions are presented there.

Finally, we measure the L1-errors for u(x, y, 1800) and v(x, y, 2700) computed using different numbers of triangular 
cell. The results together with two straight lines with slopes 1 and 2 (in the log–log scale) are shown in Fig. 6.9. As one can 
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Fig. 6.6. Example 4: Water surface computed by the “new” (left column) and “old” (right column) schemes.

Fig. 6.7. Example 5: 1-D slice (along x = 0) of the simulated and analytical water surfaces at different times.
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Fig. 6.8. Example 5: Simulated and analytical velocity components u and v at different times computed on the coarse and fine meshes.

Fig. 6.9. Example 5: L1-errors for u and v as functions of the number of triangular cells.

observe, the achieved experimental convergence rates (between 1 and 2) are comparable to those reported in the literature; 
see, e.g., [8,14,20].

Example 6—Dam-break wave propagating over irregular dry bed
In this example, we simulate a moving wet/dry front produced by a dam-break wave propagating over a frictional dry 

bed with three mounds. The dam-break is simulated in the [0, 6] × [0, 6] domain with the bottom topography defined by

B(x, y) = max
[

0.5e−8(x−2)2−10(y−3)2
,0.2e−3(x−4)2−4(y−4.8)2

,0.2e−3(x−4)2−4(y−1.2)2
]
.

In order to take into account the friction effect, we add the Manning friction terms and modify the governing equations 
(1.2) and (1.3) as follows:

(hu)t +
(

hu2 + g

2
h2
)

x
+ (huv)y = −ghBx − gn2

bu
√

u2 + v2

h1/3
,

(hv)t + (huv)x +
(

hv2 + g

2
h2
)

y
= −ghB y − gn2

b v
√

u2 + v2

h1/3
,

(6.3)

where nb is the Manning roughness coefficient. We take nb = 0.01.
We numerically solve the system (1.1), (6.3) using the developed well-balanced positivity preserving semi-discrete 

central-upwind scheme. Due to the presence of friction terms, the resulting ODE system (2.1) is now stiff. We therefore 
integrate it using the steady state and sign preserving semi-implicit Runge–Kutta methods from [10]; see also [11].

At t = 0, still water with w(x, y, 0) ≡ 0.5 is suddenly released from the [0, 1] × [0, 6] reservoir in the upstream. The 
boundary at x = 6 is set to be transmissive (the homogeneous Neumann boundary condition) and other boundaries are set 
to be reflecting (solid wall boundary conditions). The computational domain is divided into 25600 triangular cells.
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Fig. 6.10. Example 6: Simulated water surface at different times.

Fig. 6.11. Example 6: Simulated water depth at different times.

In Fig. 6.10, we show the 3-D view of the dam-break wave propagation over the initially dry bed at different times. It 
can be observed that the proposed scheme performs well when handling both wetting and drying processes. In Fig. 6.11, 
where the contour lines of the water depth computed at different times are plotted, the reflections and interactions of the 
waves can be clearly seen and no oscillations or disturbances are observed at the wet/dry boundaries.

Example 7—Two-dimensional solitary wave run-up on a conical island
In this example, we compare the proposed method with a laboratory experiment simulating a solitary wave that passes 

around a conical island. The laboratory experiments were performed at the Coastal and Hydraulics Laboratory (see [6]) and 
the measured data are compared with the simulated results. As described in [5,37], this experiment may not be an ideal 
test for the accuracy of developed numerical methods as the waves generated in the laboratory are dispersive. However, it 
can be used to test the robustness of the numerical methods for simulating long wave run-up on arbitrary 2-D topography 
with wet/dry interfaces. Therefore, this benchmark experiment has been widely used; see, e.g., [5,12,21,34–37,44,45].

The experiment was conducted in the domain, which is 25 m long in the x direction and 27.6 m long in the y direction. 
The bottom topography containing a 0.625 m high conical island is given by
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Fig. 6.12. Example 7: Triangular grid (left) and the bottom topography profile (right).

Fig. 6.13. Example 7: Comparisons between the measured (square symbol) and simulated (solid line) surface elevations at five different gauges.
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Fig. 6.14. Example 7: Simulated velocity vectors around the conical island at different times.

B(r) =

⎧⎪⎨⎪⎩
0.625, r ≤ 1.1,

0.25(3.6 − r), 1.1 < r ≤ 3.6,

0, otherwise,

r :=
√

(x − 12.96)2 + (y − 13.8)2;

see Fig. 6.12 (right). The computational domain [25 × 27.6] is divided into 72152 triangular cells with the grid refined in 
the island area as shown in Fig. 6.12 (left).

In the numerical test, the initial conditions correspond to the “lake at rest” with

w(x, y,0) = max
{

D, B(x, y)
}
, u(x, y,0) ≡ v(x, y,0) ≡ 0,

where D = 0.32 m. The boundaries at y = 0 and y = 27.6 are set to be reflecting (solid wall), the boundary at x = 25 is set 
to be outflow, and an inflow boundary at x = 0 is set to replicate the wave-maker produced planar solitary wave:

w(0, y, t) = D + H w sech2
[√

3H w

4D3
C(t − T )

]
, u(0, y, t) = C

(
1 − D

w(0, y, t)

)
, v(0, y, t) = 0,

where H w = 0.032 m is the amplitude of the incident wave, T = 2.45 s is the time at which the wave crest enters the 
domain, and C = √

g(D + H w) is the wave celerity. Bed friction is neglected based on the findings in [34].
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We numerically simulate the initial run-up and run-down processes occurring within the first 20 s. In Fig. 6.13, we 
compare the computed and experimentally measured water surfaces as functions of time at the following five gauges: 
WG3(6.82, 13.05), WG6(9.36, 13.80), WG9(10.36, 13.80), WG16(12.96, 11.22) and WG22(15.56, 13.80). As one can see, the 
proposed numerical method is capable of simulating correct tendency of the water surface changes and arrival times. The 
agreement between the simulated and experimental data are satisfactory. Similar predicted results are observed in [5,21,37]. 
The discrepancies, especially the underestimation of the steepness of the wave, could be explained by the underprediction 
in the secondary depression wave which follows the main wave; see [37].

In Fig. 6.14, we show the velocity vectors computed at different times when the wave passes around the conical island. 
As one can clearly see, no oscillations or artificially large velocity magnitudes are generated at the wave front during the 
wetting–drying process. This verifies the robustness of the proposed numerical method.

7. Conclusion

In this paper, we have developed a new “truly” well-balanced positivity preserving semi-discrete central-upwind scheme 
for the 2-D Saint-Venant system of shallow water equations. The well-balanced and positivity preserving properties are 
ensured with the help of a novel wet/dry water surface reconstruction on unstructured triangular grids. In partially flooded 
cells, the proposed reconstruction is based on a subcell resolution and may consist of two linear pieces designed to accu-
rately approximate the wet/dry interface within the cell. In addition, the use of the new wet/dry reconstruction requires a 
special discretization of the source term, which has been developed to guarantee that the resulting scheme is well-balanced. 
The positivity of the computed water depth has been enforced using a “draining” time-step technique. We have performed 
several numerical experiments designed to demonstrate the ability of the proposed scheme to capture involving wet/dry 
interfaces in a stable, non-oscillatory manner.
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