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Abstract
In this work, we propose efficient and accurate numerical algorithms based on difference
potentials method for numerical solution of chemotaxis systems and related models in 3D.
Thedeveloped algorithmshandle 3D irregular geometrywith the use of onlyCartesianmeshes
and employ Fast Poisson Solvers. In addition, to further enhance computational efficiency
of the methods, we design a difference-potentials-based domain decomposition approach
which allows mesh adaptivity and easy parallelization of the algorithm in space. Extensive
numerical experiments are presented to illustrate the accuracy, efficiency and robustness of
the developed numerical algorithms.

Keywords Chemotaxis models · Convection–diffusion–reaction systems · Finite
difference · Finite volume · Difference potentials method · Cartesian meshes · Irregular
geometry · Positivity-preserving algorithms · Spectral approximation · Spherical
harmonics · Mesh adaptivity · Domain decomposition · Parallel computing
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1 Introduction

In this work we develop efficient and accurate numerical algorithms based on difference
potentials method (DPM) for the Patlak–Keller–Segel (PKS) chemotaxis model and related
problems in 3D. The proposed methods handle irregular geometry with the use of only
Cartesian meshes, employ Fast Poisson Solvers, allow easy parallelization and adaptivity in
space.

Chemotaxis refers to mechanisms by which cellular motion occurs in response to an exter-
nal stimulus, for instance a chemical one. Chemotaxis is an essential process inmanymedical
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and biological applications, including cell aggregation and pattern formationmechanisms and
tumor growth. Modeling of chemotaxis dates back to the pioneering work by Patlak, Keller
and Segel [28,29,38]. The PKS chemotaxis model consists of coupled convection–diffusion
and reaction–diffusion partial differential equations:{

ρt + ∇·(χρ∇c) = �ρ,

αct = �c − γcc + γρρ,
(x, y, z) ∈ �⊂R

3, t > 0, (1)

subject to zero Neumann boundary conditions and the initial conditions on the cell density
ρ(x, y, z, t) and on the chemoattractant concentration c(x, y, z, t). In the system (1), the
coefficient χ is a chemotactic sensitivity constant, γρ and γc are the reaction coefficients.
The parameter α is equal to either 1 or 0, which corresponds to the “parabolic–parabolic” or
reduced “parabolic–elliptic” coupling, respectively. In this work, we will focus on the PKS
chemotaxis model (1) with α = γρ = γc = 1, but the developedmethods are not restricted by
this assumption and can be easily extended to more general chemotaxis systems and related
models.

In the past several years, chemotaxis models have been extensively studied (see, e.g. [19–
22,39] and references below). A known property of many chemotaxis systems is their ability
to represent a concentration phenomenon that is mathematically described by fast growth of
solutions in small neighborhoods of concentration points/curves. The solutions may blow up
or may exhibit a very singular behavior. This blow-up represents a mathematical description
of a cell concentration phenomenon that occurs in real biological systems, see, e.g. [1,5–
7,11,12,36,40].

Capturing blowing up or spiky solutions is a challenging task numerically, but at the
same time design of robust numerical algorithms is crucial for the modeling and analysis
of chemotaxis mechanisms. Let us briefly review some of the recent numerical methods
that have been proposed for the “parabolic–parabolic” coupling of chemotaxis models in the
literature.High-order discontinuousGalerkinmethods havebeenproposed in [15,16] and [30]
for chemotaxis models in 2D rectangular domains. A flux corrected finite element method is
designed in 2D in [44], and is extended to chemotaxis models on stationary surface domains
and cylindrical domains in [42,43]. A finite-volume based fractional step numericalmethod is
proposed in [47] formodels in 2D domains. However, the operator splitting approachmay not
be applicable when the convective part of the chemotaxis system is not hyperbolic. A simpler
and more efficient second order positivity-preserving finite-volume central-upwind scheme
is developed for 2D rectangular domains in [9], and is extended to fourth-order accurate
numerical method in [8]. A novel numerical method based on symmetric reformulation of the
2D PKS chemotaxis system has been developed and analyzed in [32]. The proposed method
is both positivity-preserving and asymptotic preserving. A random particle blob method for
PKS chemotaxis model has been proposed and analyzed in a series of papers [23,33]. A new
hybrid-variational approach which is based on the generalization of the implicit Wasserstein
scheme [26] has been proposed and analyzed for 2DPKSchemotaxis system in [4]. Finally, an
upwind difference potentials method is proposed in [13] to approximate chemotaxis models
in 2D irregular domains, using uniform Cartesian meshes and Fast Poisson Solvers. Note
that among the methods that have been proposed, only [43] is designed to handle chemotaxis
models in 3D irregular domains by the use of unstructured meshes. For a more detailed
review on recent developments of numerical methods for chemotaxis problems, the reader
can consult [10] and [46].

In general, the design of numerical methods on unstructured meshes is more computation-
ally intensive, in comparison to design of methods on structured meshes. Thus, in this work,
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we extend the numerical algorithm designed in [13] to chemotaxis systems in 3D irregular
domain. The developed numerical methods based on difference potentials method can han-
dle 3D irregular geometry with the use of only Cartesian meshes and employ Fast Poisson
Solvers. In addition, to further enhance computational efficiency of the numerical algorithms,
we design a difference-potentials-based domain decomposition approach which allows mesh
adaptivity and easy parallelization of the algorithm in space. The proposed numerical algo-
rithms are shown to be positivity-preserving, robust, accurate and computationally efficient.

The paper is organized as follows. In Sect. 2, we formulate a positivity-preserving upwind
difference potentials method for accurate and efficient approximations of solutions to chemo-
taxis models in spherical domains. Next, in Sect. 3, a domain decomposition approach based
on difference potentials method is introduced, which improves the efficiency of the algorithm
at no loss of accuracy. In Sect. 4, extensive numerical experiments (convergence studies in
space and in time, long-time simulations, etc.) are presented to illustrate the accuracy, effi-
ciency and robustness of the developed numerical algorithms.

2 An Algorithm Based on DPM

The current work is an extension of the work [13] in 2D, to 3D chemotaxis systems and
to adaptive algorithms in space that allows easy parallelization. For the time being, we will
consider the PKS chemotaxis model in a spherical domain, but the proposed methods can
be extended to more general domains in 3D (and the main ideas of the algorithms stay the
same). We employ a finite-volume-finite-difference scheme as the underlying discretization
of the model (1) in space, combined with the idea of difference potentials method ( [41]
and some very recent work [3,13,14,34], etc.), that provides flexibility to handle irregular
domains accurately and efficiently by the use of simple Cartesian meshes.

Introduction of the Auxiliary Domain As a first step of the proposed method, we embed the
domain � of model (1) into a computationally simple auxiliary domain �0⊂R

3 that we will
select to be a cube. Next we discretize the auxiliary domain �0 using a Cartesian mesh, with
uniform cells Dj,k,l = [x j− 1

2
, x j+ 1

2
] × [yk− 1

2
, yk+ 1

2
] × [zl− 1

2
, zl+ 1

2
] of volume �x�y�z

centered at the point (x j , yk, zl), ( j, k, l = 1, . . . , N ), and we assume here for simplicity,
h := �x = �y = �z. Note that, we select the same auxiliary domain and the same mesh
for the approximation of ρ and c, whereas in general, the auxiliary domains and meshes for
ρ and c need not be the same. After that, we define the standard 7-point stencil with center
placed at (x j , yk, zl) that we will consider as a part of the discretization of model (1):

N 7
j,k,l := {(x j , yk, zl), (x j±1, yk, zl), (x j , yk±1, zl), (x j , yk, zl±1)} (2)

Now we are ready to define point sets that will be used in the proposed hybrid finite-
volume-finite-difference approximation combined with DPM.

Definition 1 Introduce following point sets:

– M0 = {
(x j , yk, zl) | (x j , yk, zl) ∈ �0

}
denotes the set of all the cell centers (x j , yk, zl)

that belong to the interior of the auxiliary domain �0;
– M+ = M0 ∩ � = {

(x j , yk, zl) | (x j , yk, zl) ∈ �
}
denotes the set of all the cell centers

(x j , yk, zl) that belong to the interior of the original domain � (see Fig. 1a);
– M− = M0\M+ = {(x j , yk, zl) | (x j , yk, zl) ∈ �0\�} is the set of all the cell centers

(x j , yk, zl) that are inside of the auxiliary domain �0, but belong to the exterior of the
original domain �;
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(a) (b)

Fig. 1 Example in the cross-sectional view: a M+ (solid dots) as a subset of N+ (open circles), where solid
dots in open circles show the overlap between M+ and N+; and b the discrete grid boundary γ as the union
of γex (open circles) and γin (solid dots). The square auxiliary domain is denoted as �0 in both figures

– N+ =
{⋃

j,k,l N 7
j,k,l | (x j , yk, zl) ∈ M+

}
;

– N− =
{⋃

j,k,l N 7
j,k,l | (x j , yk, zl) ∈ M−

}
;

– N 0 =
{⋃

j,k,l N 7
j,k,l | (x j , yk, zl) ∈ M0

}
;

The point sets N± and N 0 are the sets of cell centers covered by the stencil N 7
j,k,l for

every cell center (x j , yk, zl) in M± and M0 respectively (see Fig. 1a);
– γ = N+ ∩ N− defines a thin layer of cell centers that straddles the continuous boundary

� and is called the discrete grid boundary (see Fig. 1b);
– γin = M+ ∩ γ and γex = M− ∩ γ are subsets of the discrete grid boundary that lie

inside and outside of the spherical domain � respectively (see Fig. 1b).

Construction of the System of Discrete Equations for Model (1) In each cell Dj,k,l of volume
|Dj,k,l |, we denote the approximation of the cell average of the density, the approximation
of point values of the density and the point values of the chemoattractant concentration at
time t as:

ρ̄ j,k,l(t) ≈ 1

|Dj,k,l |
∫
Dj,k,l

ρ(x, y, z, t)dxdydz, and ρ j,k,l(t) ≈ ρ(x j , yk, zl , t), (3)

c j,k,l(t) ≈ c(x j , yk, zl , t). (4)

We will also denote by ρ̄i
j,k,l , ρ

i
j,k,l and c

i
j,k,l the computed cell average of the density, point

value of the density and the point value of the chemoattractant concentration at cell center
(x j , yk, zl) at the discrete time level t i , respectively.

Next, we use a hybrid finite-volume-finite-difference scheme in space, similar to 2D
algorithms in [8,13] and first order implicit-explicit (IMEX) scheme in time as the underlying
discretization for the Patlak–Keller–Segel model (1) at time t i+1 for every (x j , yk, zl) inM+:
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{
(I − �t�h)ρ̄

i+1
j,k,l = ρ̄i

j,k,l − �tgij,k,l

(I − �t�h)c
i+1
j,k,l = (1 − �t)cij,k,l + �t ρ̄i

j,k,l

(x j , yk, zl) ∈ M+, (5)

where �h is the discrete Laplace operator obtained using standard second-order centered
finite difference approximation, I denotes the identity matrix of the same size with �h and
�t := t i+1 − t i . Here, in the right hand side of the density equation, gij,k,l denotes the
discretization of the convection term ∇·(χρ∇c) in (1) on M+ and is evaluated at previous
time level t i as:

gij,k,l =
χρi

j+ 1
2 ,k,l

∇h
x c

i
j+ 1

2 ,k,l
− χρi

j− 1
2 ,k,l

∇h
x c

i
j− 1

2 ,k,l

h

+
χρi

j,k+ 1
2 ,l

∇h
y c

i
j,k+ 1

2 ,l
− χρi

j,k− 1
2 ,l

∇h
y c

i
j,k− 1

2 ,l

h

+
χρi

j,k,l+ 1
2
∇h
z c

i
j,k,l+ 1

2
− χρi

j,k,l− 1
2
∇h
z c

i
j,k,l− 1

2

h
(6)

where ∇h
x c

i
j±1/2,k,l , ∇h

y c
i
j,k±1/2,l , ∇h

z c
i
j,k,l±1/2 are components of the discrete gradient of

concentration c at the center of the six faces in cell Dj,k,l . The component ∇h
x c

i
j+ 1

2 ,k,l
is

computed using the central finite difference:

∇h
x c

i
j+ 1

2 ,k,l
= cij+1,k,l − cij,k,l

h
, (x j , yk, zl) ∈ M+. (7)

The other components ∇h
x c

i
j− 1

2 ,k,l
, ∇h

y c
i
j,k±1/2,l , ∇h

z c
i
j,k,l±1/2 in the discrete gradient of c

are computed similarly as in (7).
In addition, ρi

j±1/2,k,l , ρ
i
j,k±1/2,l , ρ

i
j,k,l±1/2 are the approximation of density values at the

center of the six faces of the same cell Dj,k,l , which are evaluated in an upwind manner. For
example, the component in x-direction ρi

j+1/2,k,l is computed using the following piecewise
linear reconstruction:

ρi
j+ 1

2 ,k,l
=

{
ρ̃i (x j+ 1

2
− 0, yk, zl), ∇h

x c
i
j+ 1

2 ,k,l
> 0,

ρ̃i (x j+ 1
2

+ 0, yk, zl), otherwise,
(8)

where

ρ̃i (x, y, z) = ρ̄i
j,k,l + ∇h ρ̄i

j,k,l · 〈x − x j , y − yk, z − zl〉, (x, y, z) ∈ Dj,k,l , (9)

and, thus in (8),

ρ̃i (x j+ 1
2

− 0, yk , zl) = ρ̄i
j,k,l + h

2
∇h
x ρ̄i

j,k,l , and ρ̃i (x j+ 1
2

+ 0, yk , zl) = ρ̄i
j+1,k,l − h

2
∇h
x ρ̄i

j+1,k,l .

In the second order piecewise linear reconstruction (9), 〈x − x j , y − yk, z − zl〉 denotes the
vector defined by two points: (x, y, z) ∈ Dj,k,l and (x j , yk, zl) ∈ Dj,k,l , ∇h ρ̄i

j,k,l is the

discrete gradient of ρ̄i at cell center (x j , yk, zl) and time t i , and ∇h
x ρ̄i

j,k,l is its x-component.

Each component of the gradient ∇h ρ̄i
j,k,l is calculated using the minmod slope limiter. For

example, the x-component ∇h
x ρ̄i

j,k,l is computed as

∇h
x ρ̄i

j,k,l = minmod

(
2
ρ̄i
j+1,k,l − ρ̄i

j,k,l

h
,
ρ̄i
j+1,k,l − ρ̄i

j−1,k,l

2h
, 2

ρ̄i
j,k,l − ρ̄i

j−1,k,l

h

)
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where the minmod function is defined by

minmod(X1, X2, . . . , XM) =
⎧⎨
⎩

min j {X j }, if X j > 0,∀ j = 1, 2, . . . ,M,

max j {X j }, if X j < 0,∀ j = 1, 2, . . . ,M,

0, otherwise.
(10)

The density values ρi
j− 1

2 ,k,l
, ρi

j,k±1/2,l , ρ
i
j,k,l±1/2 at the center of the other faces in cell Dj,k,l

are computed similarly as in (8).

Remark 1 The non-negativity of the reconstructed point values of ρ is ensured by the
positivity-preserving generalized minmod limiter, [31,37,45,48] with minmod function as
defined in (10), under the assumption that the cell averages of the density are nonnegative.

The Discrete Auxiliary Problem (AP) One of the important steps of DPM-based methods
is the introduction of the auxiliary problem (AP). For brevity, we will denote ui+1 := ρ̄i+1

or ui+1 := ci+1. Thus, the two difference equations in (5), which are decoupled after dis-
cretization of model (1) with IMEX, can be cast into a compact form, i.e.

Lh,�t u
i+1
j,k,l = f ij,k,l , (x j , yk, zl) ∈ M+, (11)

where Lh,�t := (I − �t�h) and f ij,k,l is the right hand side function which is either

f ij,k,l = ρ̄i
j,k,l −�tgij,k,l (for the density equation) or f ij,k,l = (1−�t)cij,k,l +�t ρ̄i

j,k,l (for
the chemoattractant concentration equation), as in (5).

Next, we define the discrete Auxiliary Problem, which will play a key role in construction
of the Particular Solution and the Difference Potentials as a part of DPM-based algorithm
proposed in this work.

Definition 2 At time t i+1, given the grid function qi on M0, the following difference
Eqs. (12)–(13) are defined as the discrete Auxiliary Problem (AP):

Lh,�tv
i+1
j,k,l = qij,k,l , (x j , yk, zl) ∈ M0, (12)

vi+1
j,k,l = 0, (x j , yk, zl) ∈ N 0\M0. (13)

Here Lh,�t is the linear operator similar to the one in (11), but is defined now on a larger
point set M0.

Remark 2 The homogeneous Dirichlet boundary condition (13) in the AP is chosen merely
for efficiency of our algorithm, i.e. we employ Fast Poisson Solvers to solve the AP. In
general, other boundary conditions can be selected for the AP as long as the defined AP is
well-posed and can be solved computationally efficiently.

Construction of the Particular Solution Let us denote by Gh,�t f ij,k,l , (x j , yk, zl) ∈ N+
the Particular Solution which is defined on N+ of the fully discrete problem (11) at time
level t i+1. The Particular Solution is obtained by solving the AP (12)–(13) with the following
right hand side:

qij,k,l =
{
f ij,k,l , (x j , yk, zl) ∈ M+,

0, (x j , yk, zl) ∈ M−,
(14)

and by restricting the computed solution from N 0 to N+.

Remark 3 Note that, if the center (x j , yk, zl) of cell Dj,k,l belongs to γin , some points
(x j±1, yk, zl), (x j , yk±1, zl) or (x j , yk, zl±1) from stencil N 7

j,k,l with the center point
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(x j , yk, zl) will lie in γex , and hence, outside of the domain �. To construct the Particu-
lar Solution for the density approximation in (5)–(6) and (12)–(14), one needs to compute
the discretized convective term gij,k,l for every point (x j , yk, zl) ∈ M+. Hence, we need to
approximate values of ρ and c at the points that belong to set γex . We will take the following
strategy to define values of ρ and c on γex and γin :

– Initially, we approximate values ρ0
j,k,l and c

0
j,k,l for (x j , yk, zl) ∈ γ using 2-term exten-

sion operator (21) and zero Neumann boundary conditions, i.e.

ρ0
j,k,l ≈ ρ0(x

′
j , y

′
k, z

′
l) and c0j,k,l ≈ c0(x

′
j , y

′
k, z

′
l). (15)

Here, (x ′
j , y

′
k, z

′
l) is the orthogonal projection on the continuous boundary � correspond-

ing to a cell center (x j , yk, zl) ∈ γ , and ρ0 and c0 are the initial conditions.
– At later time level t i+1, gij,k,l is computed using the solution ρ̄i

j,k,l and cij,k,l obtained

from the discrete generalized Green’s formula (26) at previous time level t i .

Construction of the Difference Potentials To construct the Difference Potentials, let us first
define a linear space Vγ of all grid functions vi+1

γ (x j , yk, zl) at t i+1 on γ . The functions are

extended by zero to other points in N 0 set. These grid functions vi+1
γ are called densities on

the discrete grid boundary γ at the time level t i+1.

Definition 3 The Difference Potential associated with a given density vi+1
γ ∈ Vγ is the grid

function PN+γ vi+1
γ defined on N+ at the time level t i+1, and is obtained by solving the

AP (12)–(13) with the following right hand side:

qij,k,l =
{
0, (x j , yk, zl) ∈ M+,

Lh,�t [vi+1
γ ], (x j , yk, zl) ∈ M−,

(16)

and by restricting the solution from N 0 to N+. In Definition 3, PN+γ denotes the oper-
ator which constructs Difference Potential PN+γ vi+1

γ from the density vi+1
γ at time t i+1.

Note that Difference Potential is a linear operator of the density function, PN+γ vi+1
γ |m =∑

n∈γ Anmvi+1
n , where m ≡ ( j, k, l) is the index of the grid point in the set N+, n is the

index of the grid point in the set γ , PN+γ vi+1
γ |m is the value of the Difference Potential at

the grid point with index m and Anm are the coefficients of the Difference Potential.
Next we will introduce the trace operator. Given a grid function vi+1 defined on the point

set N+, we denote by Trγ vi+1 the trace or restriction of vi+1 from N+ to the discrete
grid boundary γ . Similarly, we define Trγinv

i+1 as the trace or restriction of vi+1 from
N+ to γin⊂γ . We are ready to define an operator Pγ : Vγ → Vγ such that Pγ vi+1

γ :=
Trγ PN+γ vi+1

γ . The operator Pγ is a projection operator. Now we will state the key theorem
in difference potentials method, which allows us to reformulate the difference equation (11)
defined in M+ into an equivalent Boundary Equation with Projections (BEP) defined on the
discrete grid boundary γ only (see [41] for more details).

Theorem 1 (Boundary Equations with Projections (BEP)) At time ti+1, the discrete density
ui+1

γ is the trace of some solution ui+1 on N+ to the difference equation (11), i.e. ui+1
γ :=

Trγ ui+1, if and only if the following BEP holds:

ui+1
γ − Pγ u

i+1
γ = Gh,�t f

i
γ , (x j , yk, zl) ∈ γ, (17)

where Gh,�t f iγ := Trγ Gh,�t f ij,k,l is the trace of the Particular Solution restricted to the
discrete grid boundary γ .
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Proof See Appendix 5.1. �
Remark 4 Note, using that Difference Potential is a linear operator, we can recast (17) as

ui+1
m −

∑
n∈γ

Anmu
i+1
n = Gh,�t f

i
m, m ∈ γ, (18)

where m is the index of the grid point in the set γ and Gh,�t f im is the value of the Particular
Solution at the grid point with index m in the set γ .

Proposition 1 The rank of linear equations in BEP (17) is |γin |, which is the cardinality of
the point set γin .

Proof See Appendix 5.2. �
Next we introduce the reduced BEP (19) defined only on γin and show that it is equivalent

to the BEP (17) defined on γ .

Theorem 2 The BEP (17) defined on γ in Theorem 1 is equivalent to the following BEP (19)
defined on a smaller subset γin⊂γ :

ui+1
γin

− Trγin Pγ u
i+1
γ = Trγin Gh,�t f

i
γ , (x j , yk, zl) ∈ γin (19)

Moreover, the reduced BEP (19) contains only linearly independent equations.

Proof See Appendix 5.3. �
Similarly to (17)–(18), the reduced BEP (19) can be recast as

ui+1
m −

∑
n∈γ

Anmu
i+1
n = Gh,�t f

i
m, m ∈ γin . (20)

Remark 5 The BEP (17) or (19) reduces degrees of freedom from O(h−3) in the difference
equation (11) toO(h−2). In addition, the reducedBEP (19) defined on γin reduces the number
of equations in BEP (17) by approximately one half, since |γin | ≈ |γ |/2. Thus, using the
reduced BEP (19) will further reduce the computational cost in our numerical algorithm and
we will use the reduced BEP as a part of the proposed numerical algorithm.

Additionally, let us note the BEP (17) or BEP (19) will admit multiple solutions ui+1
γ since

the system of Eq. (17) is equivalent to the system of difference Eq. (5) without imposing
boundary conditions yet. Therefore, to construct a unique solution to BEP (19), we need to
supply the BEP (19) with zero Neumann boundary conditions for the density and concen-
tration. To impose boundary conditions efficiently into BEP, we will introduce the extension
operator (21) below, similarly to [3,13,14,34], etc.

Definition 4 The extension operator πγ�[ui+1] of the function u(x, y, z, t i+1) is defined as:

πγ�[ui+1]|(x j ,yk ,zl ) := ui+1|� + d
∂ui+1

∂n

∣∣∣∣
�

+ β
d2

2

∂2ui+1

∂n2

∣∣∣∣
�

, (21)

where n is the unit outward normal vector on �, d is the signed distance between a point
(x j , yk, zl) ∈ γ and the point of its orthogonal projection on the continuous boundary � in
the direction of n. The parameter β controls the number of terms that will be used in the
extension operator. If β = 0, we call (21) the 2-term extension operator and if β = 1, we
call (21) the 3-term extension operator. We select β based on the regularity of the solution
and to achieve the overall second-order accuracy of the numerical approximation in space.
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Basically, the extension operator (21) defines values of the density ui+1
γ at the point of the

discrete grid boundary (x j , yk, zl) ∈ γ through the values of the continuous solution and its
gradients at time t i+1 at the continuous boundary � of the domain with the desired accuracy.

Spectral Approach With the extension operator (21) defined, the homogeneous Neumann
boundary condition is readily incorporated, i.e. the second term in the right hand side of (21)
will vanish. Hence, the extension operator (21) for our problem reduces to:

πγ�[ui+1]|(x j ,yk ,zl ) = ui+1|� + β
d2

2

∂2ui+1

∂n2

∣∣∣∣
�

. (22)

Therefore, we incorporate the extension operator (22) into BEP (19) to solve for the unique
density ui+1

γ (x j , yk, zl) ≈ πγ�[ui+1]|(x j ,yk ,zl ), (x j , yk, zl) ∈ γ at time t i+1 as described

below.However, to determine the unique density ui+1
γ at time t i+1 using theBEP (19) together

with (22), we need to solve for the unknown solution ui+1|� and its second order normal

derivative ∂2ui+1

∂n2

∣∣∣
�
at the continuous boundary� at t i+1. To do this efficiently and accurately,

we will employ spectral approximations for the two unknown terms on the boundary of the
domain:

ui+1|� ≈
M∑

ν=0

C0,i+1
ν φν(θ, ϕ), and

∂2ui+1

∂n2

∣∣∣∣
�

≈
M∑

ν=0

C2,i+1
ν φν(θ, ϕ), (23)

where we take the basis functions φν(θ, ϕ) to be spherical harmonics and (θ, ϕ) are the polar
and azimuthal angles respectively on the continuous boundary �. The spectral coefficients
{C0,i+1

ν ,C2,i+1
ν } (ν = 0, 1, . . . , M) are the unknown coefficients that will be computed using

BEP (19) at every time level t i+1.
After we incorporate the spectral approximation (23) into the extension operator (22), we

will have:

ui+1
γ ≈

M∑
ν=0

C0,i+1
ν φν(θ, ϕ) + β

d2

2

M∑
ν=0

C2,i+1
ν φν(θ, ϕ). (24)

Here, (θ, ϕ) are the polar and azimuthal angles for every point on the continuous boundary �

which is the orthogonal projection of each point in the discrete grid boundary γ . Therefore, at
every time level t i+1, the BEP (19) becomes an over-determined linear system of dimension
|γin | × [(β + 1)(M + 1)] for the unknown coefficients {C0,i+1

ν ,C2,i+1
ν } (ν = 0, 1, . . . , M):

M∑
ν=0

C0,i+1
ν

[
(I − Pγ )φν(θ, ϕ)

] + β

M∑
ν=0

C2,i+1
ν

[
(I − Pγ )

d2

2
φν(θ, ϕ)

]
= Gh,�t f

i
γ on γin,

(25)

where Least Squares Method can be used to solve for the coefficients {C0,i+1
ν ,C2,i+1

ν } (ν =
0, 1, . . . , M).

Remark 6 (i) In numerical experiments, we consider initial conditions for ρ and c in the form
of f (−a(x2 + y2 + b(z − c)2)). Hence, we will only need the zonal modes in the spherical
harmonics, i.e. φν(θ, ϕ) = P0

ν (cos θ) where P0
ν is the associated Legendre polynomial of

degree ν and order 0. If the highest degree of the zonal spherical harmonics is L , the total
number of harmonics for each term in (23) is only L + 1, which is significantly reduced
comparing to (L + 1)2 when full spectrum of spherical harmonics up to degree L is used.
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(ii) Moreover, the spectral approach reduces the degrees of freedom from O(h−2) in the
BEP (19) to O(M) in (25). In practice, we require (β + 1)(M + 1) � |γin | in the over-
determined linear system (25). This implies, that O(M) � O(h−2) since |γin | ∼ O(h−2).
Thus, we can solve the BEP (19) efficiently. See also Sect. 4 for the details on the number of
harmonics M and the mesh size h used in the numerical examples.

(iii) In addition, we used the same number of harmonics M + 1 for the terms ui+1|� and
∂2ui+1

∂n2

∣∣∣
�
for simplicity in our implementation. In general, the number of harmonics can be

chosen independently based on the regularity of each term. We should note that one can
select a different basis functions φν(θ, ϕ) too, for example, spherical radial basis functions
(see [24]). Additionally, when the bounded domain is of a more general shape but smooth,
instead of spherical harmonics as considered in this paper, one can investigate use of more
general local radial basis functions to represent Cauchy data on the boundary of the domain
as a part of the developed algorithms.

Discrete GeneralizedGreen’s Formula The final step of DPM is to use the computed density
ui+1

γ to construct the approximation to continuous solutions of the chemotaxis model (1) in
domain � subject to zero Neumann boundary conditions on ρ and c.

Proposition 2 (Discrete Generalized Green’s formula) The discrete solution ui+1 := ρ̄i+1

or ui+1 := ci+1 on N+ constructed using Discrete Generalized Green’s formula:

ui+1
j,k,l = PN+γ u

i+1
γ + Gh,�t f

i
j,k,l , (x j , yk, zl) ∈ N+, (26)

is the approximation to the exact solution u := ρ or u := c, respectively, at (x j , yk, zl) ∈ � at
time ti+1 of the continuous chemotaxismodel (1) subject to homogeneousNeumann boundary
condition. We also conjecture that we have the following accuracy of the proposed numerical
scheme: ∣∣∣∣∣∣ui+1

j,k,l − u(x j , yk, zl , t
i+1)

∣∣∣∣∣∣∞ = O(h2 + �t). (27)

Remark 7 Indeed, in our numerical results (Sect. 4), we observe second order convergence
in space and first order order convergence in time in the approximation of the solutions ρ and
c. Moreover, we use �t = 0.5h2 in the numerical tests before blow-up to achieve second
order accuracy of the proposed algorithms. See also [3,34] for a more detailed discussion.

Positivity in a Spherical Domain Now, we establish a positivity-preserving property of
the proposed hybrid finite-volume-finite-difference DPM scheme for the approximation of
solutions to (1).

Theorem 3 (Positivity in a Spherical Domain.) The discrete solution ui+1 = ρ̄i+1 or ui+1 =
ci+1 obtained using the Discrete Generalized Green’s formula (26) is non-negative on N+,
provided that the following conditions are satisfied:

1. The discrete solution ui is non-negative on N+ at the previous time level t i ;
2. The CFL-type condition is satisfied in M+:

�t ≤ min

⎧⎪⎨
⎪⎩

h

6χ max
j,k,l

|∇h
x c

i
j± 1

2 ,k,l
| ,

h

6χ max
j,k,l

|∇h
y c

i
j,k± 1

2 ,l
| ,

h

6χ max
j,k,l

|∇h
z c

i
j,k,l± 1

2
|

⎫⎪⎬
⎪⎭ (28)

where (x j , yk, zl) ∈ M+ and χ is the chemotactic sensitivity constant;
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3. The density ui+1
γ is non-negative on the discrete grid boundary γ at time level t i+1.

Proof First, the discrete solution ui+1 = ρ̄i+1 or ui+1 = ci+1 is constructed by using the
Discrete Generalized Green’s formula (26). Also, we assume that the associated density
ui+1

γ that was obtained by solving the BEP as discussed above is non-negative. From the

construction of our algorithm above, it can be seen that ui+1 satisfies the discrete system on
N 0:

Lh,�t u
i+1 =

{
f i , (x j , yk, zl) ∈ M+,

Lh,�t [ui+1
γ ], (x j , yk, zl) ∈ M−,

(29)

ui+1 = 0, (x j , yk, zl) ∈ N 0\M0, (30)

where Lh,�t ≡ I −�t�h on M0. Hence, ui+1 satisfies the following discrete system defined
on M+:

(I − �t�h)u
i+1 = f i , (x j , yk, zl) ∈ M+, (31)

where the right hand side f i is defined as the right hand side in (5) ( f i is either the right
hand side for ρ or the right hand side for c). We will use discrete system (31) with the known
density ui+1

γ to prove the non-negativity of the discrete solution ui+1.
To this end, we will first establish the CFL-type condition (28) to guarantee the non-

negativity of right hand side f i ≥ 0 in (31). When ui = ci , the right hand side f i in (31) is
automatically non-negative provided Condition 1 in Theorem 3 is satisfied, since we assume
that �t is sufficiently small, namely, �t < 1. When ui = ρ̄i , the right hand side f i in
(31) is non-negative provided the CFL-type condition (28) is satisfied. To show this, we will
proceed similarly to [8] and [13]. Let us first define the values at the center of six faces in a
cell Dj,k,l , (x j , yk, zl) ∈ M+, and introduce the convenient abbreviations:

West: ρW
j,k,l := ρ̃i (x j− 1

2
+ 0, yk, zl),

East: ρE
j,k,l := ρ̃i (x j+ 1

2
− 0, yk, zl),

South: ρS
j,k,l := ρ̃i (x j , yk− 1

2
+ 0, zl),

North: ρN
j,k,l := ρ̃i (x j , yk+ 1

2
− 0, zl),

Up: ρU
j,k,l := ρ̃i (x j , yk, zl+ 1

2
− 0),

Down: ρD
j,k,l := ρ̃i (x j , yk, zl− 1

2
+ 0),

(32)

where the function ρ̃i is the piecewise linear reconstruction defined in (9). Note that
ρW
j,k,l , ρ

E
j,k,l , ρS

j,k,l , ρ
N
j,k,l , ρ

U
j,k,l , ρ

D
j,k,l are non-negative due to Condition 1 of Theorem 3

and the positivity preserving property of the piecewise linear reconstruction (9). Further, the
value ρ̄i

j,k,l at the center of the cell Dj,k,l can be expressed as:

ρ̄i
j,k,l = 1

6

(
ρW
j,k,l + ρE

j,k,l + ρS
j,k,l + ρN

j,k,l + ρU
j,k,l + ρD

j,k,l

)
, (33)

due to conservation property of the piecewise reconstruction.
Next, we rewrite right hand side f ij,k,l in (31) at point (x j , yk, zl) ∈ M+ as:

f ij,k,l = ρ̄i
j,k,l − �tgij,k,l = FE

j,k,l + FW
j,k,l + FN

j,k,l + FS
j,k,l + FU

j,k,l + FD
j,k,l , (34)
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where

FE
j,k,l = 1

6
ρE
j,k,l −

�tχ∇h
x c

i
j+ 1

2 ,k,l

h
ρi
j+ 1

2 ,k,l
, (35)

FW
j,k,l = 1

6
ρW
j,k,l +

�tχ∇h
x c

i
j− 1

2 ,k,l

h
ρi
j− 1

2 ,k,l
, (36)

and FS
j,k,l , F

N
j,k,l , F

U
j,k,l , F

D
j,k,l in the other directions are defined similarly.

We will take the first term FE
j,k,l as an example to establish the CFL-type condition (28):

– When ∇h
x c

i
j+ 1

2 ,k,l
< 0, the upwind scheme gives ρi

j+ 1
2 ,k,l

= ρW
j+1,k,l . Then the coeffi-

cients for ρW
j+1,k,l and ρE

j,k,l are automatically non-negative, which ensures FE
j,k,l ≥ 0.

– When ∇h
x c

i
j+ 1

2 ,k,l
≥ 0, the upwind scheme gives ρi

j+ 1
2 ,k,l

= ρE
j,k,l . In this case, we

require the coefficient of ρE
j,k,l to be non-negative, and it leads us to the constraint on

�t :

�t ≤ h

6χ |∇h
x c

i
j+ 1

2 ,k,l
| ,

which will also ensure FE
j,k,l ≥ 0.

The details for non-negativity of FW
j,k,l , F

S
j,k,l , F

N
j,k,l , F

U
j,k,l , F

D
j,k,l are similar to FE

j,k,l . Thus,

we obtain the CFL-type condition (28) to ensure non-negative right hand sides f i for the cell
density ρ.

Thus far, we have shown that the right hand side f ij,k,l ≥ 0 in (31) is non-negative on

M+ under Conditions (1) and (2). What remains to be shown is that the solution ui+1 to the
discrete system (31) is non-negative on M+, provided that the discrete boundary condition
ui+1

γex
is non-negative on the point set γex .

Without loss of generality, let us assume that the center (x j , yk, zl) of a cell Dj,k,l belongs
to M+, and only the point (x j−1, yk, zl) in the 7-point stencil of (x j , yk, zl) is in γex . Since
the boundary condition ui+1

γex
to the discrete system (31) is given and non-negative, ui+1

j−1,k,l
is non-negative for (x j−1, yk, zl) ∈ γex . Note, that from the Eq. (31) for cell Dj,k,l , we have

ui+1
j,k,l − �t

h2

(
−6ui+1

j,k,l + ui+1
j±1,k,l + ui+1

j,k±1,l + ui+1
j,k,l±1

)
= f ij,k,l . (37)

Re-arranging the non-negative known value ui+1
j−1,k,l to the right hand side would give us:

ui+1
j,k,l − �t

h2

(
−6ui+1

j,k,l + ui+1
j+1,k,l + ui+1

j,k±1,l + ui+1
j,k,l±1

)
= f ij,k,l + �t

h2
ui+1
j−1,k,l . (38)

Now consider every point (x j , yk, zl) in M+ and we would have a modified version of (31):

(I − �t�̃h)u
i+1 = f̃ i , (x j , yk, zl) ∈ M+, (39)

where �̃h is the modified Laplace operator as we discussed in (38). Note that, the non-
negative boundary condition ui+1

γex
is already incorporated into the modified right hand side

f̃ i . Also, the discrete equation (39) admits a unique solution, since (31) supplemented with
condition ui+1 ≡ ui+1

γex
on γex has a unique solution.
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Note that, if the stencil N 7
j,k,l at point (x j , yk, zl) ∈ M+ has more than one point in γex ,

we simply move more boundary terms to the right hand side, like in (38). In other words, we
always add non-negative boundary terms to the right hand side, so the modified right hand
side f̃ i will always be non-negative if Conditions (1)–(3) of Theorem 3 are satisfied. Also,
note that we only remove off-diagonal entries in �h to obtain the modified Laplace operator
�̃h , hence I − �t�̃h is an M-matrix with a non-negative inverse, similar to I − �t�h

as discussed in [9,13,25]. Thus we conclude that the discrete system (31) admits a unique,
non-negative solution.

Finally, since ui+1 (constructed using the Discrete Generalized Green’s formula (26)) is
a solution to the discrete system (31), we conclude that ρ̄i+1 and ci+1 are non-negative on
N+, if Conditions (1)–(3) of Theorem 3 are satisfied. �

Remark 8 Theorem 3 is not restricted to a spherical domain and can be applied to a general
bounded domain �⊂R

3. In our algorithm, indeed when we require the density ui+1
γ to be

non-negative, we observe no negative values in the discrete solutions, as can be seen in Figs.
9 and 11, for example.

An Outline of Main Steps of Algorithm based on DPM Let us summarize the main steps of
the proposed algorithm:

– Step 1 Outside of the time loop: embed the spherical domain � inside a larger cubic
Auxiliary Domain �0 and formulate the Auxiliary Problem (AP) (12)–(13) on uniform
meshes. Note that, the APs in our algorithm are solved using Fast Poisson Solvers.

– Step 2 Outside of the time loop: construct the matrices (I − Pγ )φν(θ, ϕ) and (I −
Pγ )(d2/2)φν(θ, ϕ) (ν = 0, 1, . . . , M) as a part of the BEP (25) via several solutions of
the APs, using �t = 0.5h2. Then precompute the QR decomposition of the BEP matrix
in the left hand side of BEP (25).

– Step 3 Inside the time loop at each time level t i+1: update the time step �t using the
minimum between CFL-type condition (28) and 0.5h2.

– Step 4a At time level t i+1: construct the Particular Solution Gh,�t f i using the updated
�t on N+ for the density ρi+1 and concentration ci+1 respectively.

– Step 4b At time level t i+1: if the time step �t becomes smaller than the time step at
previous time level t i , recompute the BEP matrix using the same time step �t as in Step
4a. Then, recompute the QR decomposition of the BEP matrix as in Step 2. Otherwise,
skip this step.

– Step 5 At time level t i+1: use the precomputed QR decomposition of the BEP matrix and
solve BEP (25) for the spectral coefficients {C0,i+1

ν ,C2,i+1
ν } (ν = 0, 1, . . . , M). Then

reconstruct the density ui+1
γ using extension operator (24) with the obtained spectral

coefficients.
– Step 6 At time level t i+1: construct the Difference Potentials PN+γ u

i+1
γ using the same

time step �t as in Step 4a by solving the AP with the right hand side (16) and density
ui+1

γ obtained in Step 5.

– Step 7 At time level t i+1: construct the discrete solution ui+1 (ρ̄i+1 or ci+1) via the
Discrete Generalized Green’s formula (26).

– Step 8 Repeat Steps 3–7 till final time or the ∞-norm of the discrete solution of ρ̄i+1 is
above certain threshold.

Remark 9 When the solution ui+1 (ρ̄i+1 or ci+1) is sufficiently smooth, the time step stays
�t = 0.5h2 and Step 4b is skipped. Step 4b is only required near blow-up, when the time

123

Author's personal copy



Journal of Scientific Computing

step decreases due to the CFL-type condition (28). Hence, the proposed algorithm based on
Difference Potentials approach is very efficient for such problems.

3 A Domain Decomposition Approach Based on DPM

Note that, the most computationally expensive step in our algorithm proposed in Sect. 2 for
a single spherical domain is Step 4b, where we need to recompute the BEP (25) by solving
the APs as many times as the total number of basis functions. In particular, we need to
recompute BEP (25) at every time level near blow-up time in Step 4b, when the time step
�t decreases due to the CFL-type condition (28). In addition, as usual with any numerical
algorithm, the computational cost of the entire algorithm increases significantly with global
mesh refinement in 3D. However, the considered solutions (ρ and c) to chemotaxis model
(1) have a compact support, which means global mesh refinement introduces unnecessary
computation. Hence, to develop a more efficient scheme for chemotaxis models in 3D, we
introduce the adaptivity in space that is compatible with Fast Poisson Solvers for the AP (12)
and (13).

To this end, we consider a domain decomposition approach based on DPM. Our proposed
domain decomposition algorithm follows and extends the numerical algorithms for interface
problems in 2D [2,3,34]. In the domain decomposition approach, we decompose the spherical
domain � into two non-intersecting sub-domains �1 and �2. Next, similarly as in Sect. 2,
we introduce computationally simple auxiliary domains �0

� (cubic) and embed each sub-
domain �� into its corresponding auxiliary domain (� = 1, 2). We assume the large values
or the non-smooth parts of the solutions to chemotaxis system (1) near blow-up are located
in sub-domain �1 at any given time. Next, we discretize each auxiliary domain �0

� using
uniform Cartesian meshes of dimension N� × N� × N� and grid size h� (� = 1, 2).

Remark 10 By our assumption, the solutions in sub-domain �2 are smooth and changing
slowly. Hence, we can introduce mesh adaptivity in space and use a much coarser mesh for
sub-domain �2 without loss of global accuracy. Essentially, in contrast to the single domain
approach, the domain decomposition approach reduces the degrees of freedom significantly
while maintaining similar accuracy, as we will illustrate using numerical examples in Sect. 4.

We denote the artificial interface between the two sub-domains as Z . In this work, we
consider the following two types of interfaces: Z ∩ � = ∅ (Fig. 2) and Z ∩ � �= ∅ (Fig. 3),
where � := ∂� is the continuous boundary of the original spherical domain �. Therefore,
across the artificial interface Z , we impose the continuous interface conditions:

∂kui+1
1

∂nk

∣∣∣∣∣
Z

= ∂kui+1
2

∂nk

∣∣∣∣∣
Z

, k = 0, 1, 2, . . . (40)

where
∂kui+1

�

∂nk
denotes the k-th order normal derivative of ui+1

� at time t i+1, n denotes the

unit normal vector on the interface Z , and ui+1
� := ρ̄i+1

� or ui+1
� := ci+1

� in sub-domain ��

(� = 1, 2).
After we decompose the spherical domain � into two sub-domains, we proceed in each

sub-domain as in the single domain approach (see Sect. 2). Again, we define the point sets
N 0

� , M0
� , N±

� , M±
� (� = 1, 2) as in Definition 1 for each �� and �0

� (� = 1, 2). Next, we
define the discrete grid boundary along the continuous boundary � and the discrete grid
interface along the continuous interface Z in two cases respectively:
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(a) (b)

Fig. 2 Example of discrete grid boundary/interface for Case 1 (Z ∩ � = ∅) in the cross-sectional view: a
the discrete grid interface ζ1 (solid dots along continuous interface Z ) for sub-domain �1; and b the discrete
grid boundary γ (open squares along continuous boundary � of the spherical domain �) and the discrete grid
interface ζ2 (cross dots along continuous interface Z ), for sub-domain �2

Case 1 of domain decomposition (suitable for the blow-up at the center of the domain)
Z ∩ � = ∅. The discrete grid boundary γ for sub-domain �2 (Fig. 2b) is defined as the
intersection of N+

2 and N−
2 within a small neighborhood of the boundary �. The discrete

grid interfaces ζ� are defined as the intersection of N+
� and N−

� (� = 1, 2) within a small
neighborhood of the continuous interface Z for sub-domain �� (� = 1, 2). See Fig. 2 for
example of γ, ζ1, ζ2 in cross-sectional view.

Case 2 of domain decomposition (suitable for the blow-up at the boundary of the domain)
Z ∩ � �= ∅. In this case, we take the discrete grid boundary γ1 for sub-domain �1 to
illustrate how to define the discrete grid boundary and the discrete grid interface. First, define
the “discrete grid boundary” γ for the whole boundary � (similarly to Case 1). Next, include
a point p ∈ γ into the discrete grid boundary γ1 for sub-domain �1, if the polar angle of the
orthogonal projection of p on the continuous boundary � belongs to [0, θ∗ + ε]. Here, θ∗
is the polar angle at the intersection points of � and Z and the tolerance ε is introduced to
include extra layer of points near the “wedge”. The discrete grid boundary γ2 and the discrete
grid interfaces ζ1 and ζ2 are defined similarly. See Fig. 3 for example of γ1, γ2, ζ1, ζ2 for
geometry with wedges in cross-sectional view.

BEPs for Case 1: Z ∩� = ∅. Note that, ζ1 is the “discrete grid boundary” for sub-domain
�1 and the union γ ∪ ζ2 constitutes the “discrete grid boundary” for sub-domain �2 (see
Fig. 2). Next, we treat each sub-domain as a single domain and recall Theorem 1 to construct
BEP (41) for sub-domain �1 and BEP (42) for sub-domain �2:

ui+1
1,ζ1

− Pζ1u
i+1
1,ζ1

= Gh1,�t f
i
1,ζ1 , (41)(

ui+1
2,γ

ui+1
2,ζ2

)
− Pγ∪ζ2

(
ui+1
2,γ

ui+1
2,ζ2

)
=

(
Gh2,�t f i2,γ
Gh2,�t f i2,ζ2

)
, (42)

where the projection operators are defined as Pζ1 := Trζ1 PN+
1 ζ1

and Pγ∪ζ2 :=
Trγ∪ζ2 PN+

2 (γ∪ζ2)
. As discussed in Sect. 2 and for efficiency of our algorithms, we reduce
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(a) (b)

Fig. 3 Example of discrete grid boundary/interface for Case 2 (Z ∩ � �= ∅) in the cross-sectional view: a
discrete grid boundary γ1 (open circles along continuous boundary � of the spherical domain) and discrete
grid interface ζ1 (solid dots along continuous interface Z ). Solid dots in open circles show the intersection of
γ1 and ζ1 sets; and b discrete grid boundary γ2 (open squares along continuous boundary � of the spherical
domain) and discrete grid interface ζ2 (cross dots along continuous interface Z ). Crosses in squares show the
intersection of γ2 and ζ2 sets

the above coupled BEPs (41) and (42) to the interior of discrete grid boundary γin and the
discrete grid interface ζ1,in and ζ2,in :

ui+1
1,ζ1,in

− Trζ1,in Pζ1u
i+1
1,ζ1

= Trζ1,in Gh1,�t f
i
1,ζ1 on ζ1,in, (43)(

ui+1
2,γin

ui+1
2,ζ2,in

)
− Trγin∪ζ2,in Pγ∪ζ2

(
ui+1
2,γ

ui+1
2,ζ2

)
=

(
Trγin Gh2,�t f i2,γ
Trζ2,in Gh2,�t f i2,ζ2

)
on γin ∪ ζ2,in . (44)

Next, we follow the single domain approach in Sect. 2 and supplement the BEPs (43) and
(44) with extension operators and spectral approximations, to incorporate the zero Neumann
boundary condition and the continuous interface condition (40). Then we solve the coupled
BEPs (43) and (44) and obtain the densities ui+1

ζ1
, ui+1

γ and ui+1
ζ2

. Finally, the discrete solution

ui+1
� in each sub-domain �� (� = 1, 2) at time level t i+1 is constructed using the Discrete

Generalized Green’s formula (26) for each sub-domain.
BEPs for Case 2: Z ∩ � �= ∅. Similarly to Case 1, note that γ1 and ζ1 constitute the

“discrete grid boundary” for sub-domain�1, and γ2 and ζ2 form the “discrete grid boundary”
for sub-domain�2. Next, we treat each sub-domain as a single domain and recall Theorem 1
to formulate the BEP for sub-domain ��:

ui+1
γ�∨ζ�

− Pγ�∨ζ�
ui+1

γ�∨ζ�
=

(
Gh�,�t f i�,γ�

Gh�,�t f i�,ζ�

)
, (� = 1, 2) (45)

where ui+1
γ�∨ζ�

denotes the densities defined on both sets γ� and ζ�, and Pγ�∨ζ�
is defined as:

Pγ�∨ζ�
ui+1

γ�∨ζ�
:= Trγ�∨ζ�

PN+
� (γ�∨ζ�)

ui+1
γ�∨ζ�

, (� = 1, 2) (46)
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Remark 11 Note that, any point p ∈ γ� ∩ ζ� contributes two values in the density ui+1
γ�∨ζ�

:

one from density ui+1
γ�

and the other from density ui+1
ζ�

(� = 1, 2). Next, we follow [35]
and take the average of the two values corresponding to point p and assign the average to
be the “effective” density at point p. The “effective” density will be used in computing the
Difference Potentials PN+

� (γ�∨ζ�)
uγ�∨ζ�

. Also, note that we impose two equations at point

p ∈ γ� ∩ ζ� in the BEPs (45): one corresponds to ui+1
γ�

and the other for ui+1
ζ�

(� = 1, 2).

Again for efficiency of our algorithms, we reduce the coupled BEPs (45) to the interior
of the discrete grid boundary γ�,in and the interior of the discrete grid interface ζ�,in :

ui+1
γ�,in∨ζ�,in

− Trγ�,in∨ζ�,in Pγ�∨ζ�
ui+1

γ�∨ζ�
=

(
Trγ�,in Gh�,�t f i�,γ�

Trζ�,in Gh�,�t f i�,ζ�

)
, (� = 1, 2) (47)

on γ�,in and ζ�,in .
Similarly, we follow the single domain approach in Sect. 2 and supplement the BEPs (47)

with the extension operators and spectral approximations, to incorporate the zero Neumann
boundary condition and the continuous interface condition (40). After we solve the coupled
BEPs (47) and obtain densities ui+1

γ1
, ui+1

ζ1
, ui+1

γ2
and ui+1

ζ2
, the discrete solution ui+1

� in each

sub-domain �� (� = 1, 2) at time level t i+1 is constructed using the Discrete Generalized
Green’s formula (26) for each sub-domain.

Remark 12 (i) In both Case 1 and Case 2, the non-negativity of discrete solutions ui+1
1 in

sub-domain�1 and u
i+1
2 in sub-domain�2 follows from Theorem 3: ui+1

1 and ui+1
2 are non-

negative, provided that Conditions (1)–(3) in Theorem 3 are satisfied in each sub-domain ��

(� = 1, 2). Moreover, we expect to recover second order convergence in space and first order
convergence in time in each sub-domain as in Proposition 2, which indeed we observe in the
numerical tests (see Sect. 4).
(ii) In addition, note that, in general, the major steps of the proposed domain decomposition
algorithms will not change with a choice of subdomains �1 and �2. In the considered
numerical examples in Sect. 4,we selected�1 and�2 for the domain decomposition approach
to ensure similar accuracy with the single domain approach at a less computational cost.
Furthermore, the developed domain decomposition approach handles non-trivial geometries
of the subdomains by the use of simple Cartesian meshes that do not match at the interface.

4 Numerical Results

Throughout this section, we assume the single spherical domain � is centered at the origin
and is of radius r = 0.5. Also, to illustrate the idea of domain decomposition approach, we
assume the sub-domains �1 and �2 are non-intersecting parts of the spherical domain, and
� = �1 ∪ �2 with r1 = 0.25 for sub-domain �1 and r2 = 0.5 for sub-domain �2 for both
Cases 1 and 2 (see Sect. 3). We also assume χ = 1 in (1) in our numerical tests.

Initial Conditions Wewill study the following two examples of test problems to demonstrate
the accuracy, efficiency and robustness of our proposed algorithms:

– Initial conditions of ρ and c that will give blow-up at the center of the spherical domain:

ρ0 = 1000e−100(x2+y2+z2),

c0 = 500e−50(x2+y2+z2).
(A)
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– Initial condition of ρ and c that will give blow-up at the boundary of the spherical domain:

ρ0 = 2000e−100(x2+y2+(z−0.25)2),

c0 = 0.
(B)

Remark 13 Test (A) categorizes the typical radial symmetric initial condition in a radially
symmetric domain, which leads to blow-up at the center. Test (B) is more challenging in
the following sense: (i) the evolution of the density takes longer to develop into almost
singular solutions, which requires an efficient time stepping strategy to handle the longer-
time simulations; (ii) the time step�t decreases due to CFL-type condition (28) near blow-up
time; (iii) the blow-up occurs at the boundary of the irregular domain, which is more difficult
to resolve, compared to Test (A).

Choice of Meshes We illustrate the choices of uniform Cartesian meshes using the single
domain approach, and the domain decomposition approach follows similarly. In the single
domain approach, we take the auxiliary domain to be a cubic domain: [−r − 2h, r + 2h] ×
[−r − 2h, r + 2h] × [−r − 2h, r + 2h]. Here h := 2r/(N − 4), where r is the radius of
the spherical domain and N denotes that the cubic auxiliary domain is discretized by mesh
of dimension N × N × N , and N is the number of cells in x (or y, z) direction. Note that,
the choice of auxiliary domain here is only a few layers larger than the spherical domain �

to have efficient computations.
Next we introduce the notations for meshes in the single domain (SD) and in the domain

decomposition (DD) approaches:

– “N” denotes that the mesh for � in the SD approach is dimension N × N × N cells,
with grid size h = 2r/(N − 4);

– “N1/N2” denotes that the meshes for sub-domains �1 and �2 in the DD approach are
dimension N1×N1×N1 cells and N2×N2×N2 cells respectively,with h1 = 2r1/(N1−4)
for the sub-domain �1 and h2 = 2r2/(N2 − 4) for the sub-domain �2.

These choices of uniform Cartesian meshes are key to using Fast Poisson Solvers in 3D. We
employed Fast Poisson Solver based on FFTW3 library [17] with openMP which enabled
for better parallel efficiency. For other choices and comparison of high performance Fast
Poisson Solvers, see [18].

Basis Functions, ExtensionOperators and BEPs Asmentioned in Sect. 2, the basis functions
are selected to be the zonal spherical harmonics in the form of:

φν(θ, ϕ) = P0
ν (cos θ), ν = 0, 1, . . . , M . (48)

We use a different number of zonal harmonics in the spectral approximations along the
boundary and along the interface for Test (A) and Test (B). For Test (A), only 1 zonal
harmonic is needed for each term in the 3-term extension operator along the boundary or
the interface, due to: (i) the radial symmetry of the initial data and the solutions at later time
levels; and (ii) the symmetry of the spherical domain.

For Test (B), we use 20 harmonics for each term in the 3-term extension operator along
the continuous interface Z , since we expect the solutions to be smooth along the interface
Z at any time. However, we vary the number of harmonics used for each term in the 2-term
extension operator along the boundary � in both the SD and DD approaches, and the number
of harmonics used will be specified in the numerical results. The 2-term extension operators
are used along the boundary for Test (B) since solution ρ loses regularity at the boundary
due to blow-up at the boundary.

123

Author's personal copy



Journal of Scientific Computing

We should also note that all results from the SD approach are obtained using the reduced
BEP (19) and results from the DD approach are obtained using the reduced BEPs (43)–(44)
or (47) with � = 1, 2.

4.1 Comparisons Between Single Domain (SD) and Domain Decomposition (DD)
Approaches

In this subsection, we compare and contrast the numerical results obtained from the SD
approach and the DD approach using Test (A) in the following aspects:

– Convergence in space: Since there is no exact solution to the chemotaxis system (1),
we use the discrete solutions on a finer mesh to construct the reference solutions. The
∞-norm error for the density ρ in space is computed as:

E∞ = max
j,k,l

∣∣∣1M+(x j , yk, zl)(ρ̄
i
h − ρ̄i

h∗)
∣∣∣ , (SD) (49)

E∞ = max
j,k,l

∣∣∣1M+
�
(x j , yk, zl)(ρ̄

i
h�

− ρ̄i
h∗

�
)

∣∣∣ , � = 1, 2 (DD) (50)

where ρ̄i
h∗ and ρ̄i

h∗
�
(� = 1, 2) are reference solutions with grid sizes h∗ and h∗

� in the SD

and DD approaches respectively, and the function 1S denotes the characteristic function
for a point set S:

1S(x j , yk, zl) =
{
1, (x j , yk, zl) ∈ S,

0, (x j , yk, zl) /∈ S.
(51)

Here S = M+ in the SD approach, or S = M+
� (� = 1, 2) in the DD approach. The

∞-norm error of the chemoattractant concentration c in space for the SD or DD approach
is computed similarly.

– L2-norm of the relative error in time of the maximum value of the density ρ:

Erel =
(∑NT

i=1(||ρ̄i
h ||∞ − ||ρ̄i

h∗ ||∞)2�t
)1/2

(∑NT
i=1(||ρ̄i

h∗ ||∞)2�t
)1/2 , (SD) (52)

Erel =

(∑NT
i=1(max

�=1,2
{||ρ̄i

h�
||∞} − max

�=1,2
{||ρ̄i

h∗
�
||∞})2�t

)1/2

(∑NT
i=1(max

�=1,2
{||ρ̄i

h∗
�
||∞})2�t

)1/2 , (DD) (53)

where NT is the total number of time steps taken, and || · ||∞ is the maximum value of
ρ in space at time t i . Note that, the time steps �t in (52) and (53) are set to be the same
in our numerical results, see also Table 3.

– Convergence in time: We test convergence in time by fixing the meshes and refining the
time steps: �t = �T /τ , where �T is a constant chosen to be 10−7 and τ is a multiple
of 2. Then, the error of the density ρ at the final time t i = 10−6 is computed as:

Et = max
j,k,l

∣∣∣1M+(x j , yk, zl)(ρ̄
i
�t − ρ̄i

�t∗)
∣∣∣ , (SD) (54)

Et = max
j,k,l

∣∣∣1M+
�
(x j , yk, zl)(ρ̄

i
�,�t − ρ̄i

�,�t∗)
∣∣∣ , � = 1, 2 (DD) (55)
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where ρ̄i
�t∗ and ρ̄i

�,�t∗ are the reference solutions at the same final time with the time
step �t∗ in the SD and DD approaches respectively. The convergence in time for the
concentration c at the final time t i = 10−6 for the SD or the DD approach is computed
similarly.

– Max density at time t i :

||ρ̄i ||∞ = max
j,k,l

∣∣∣1M+(x j , yk, zl)ρ̄
i
j,k,l

∣∣∣ , (SD) (56)

||ρ̄i ||∞ = max
�=1,2

max
j,k,l

∣∣∣1M+
�
(x j , yk, zl){ρ̄i

�} j,k,l
∣∣∣ , (DD) (57)

which we will use to approximate the blow-up time.
– Second moment of ρ at time t i (see [27]):

Mi
h =

N∑
j,k,l=1

1M+(x j , yk, zl)h
3(x2j + y2k + z2l )ρ̄

i
j,k,l , (SD) (58)

Mi
h =

2∑
�=1

N�∑
j,k,l=1

1M+
�
(x j , yk, zl)h

3
�(x

2
j + y2k + z2l ){ρ̄i

�} j,k,l (DD) (59)

– Free energy (see [27,39]) of the chemotactic system (1) at time t i :

E ih =
N∑

j,k,l=1

1M+h3
{
ρ̄i
j,k,l ln ρ̄i

j,k,l − ρ̄i
j,k,l c

i
j,k,l + 1

2
(cij,k,l)

2

+ 1

8h2
[
(cij+1,k,l − cij−1,k,l)

2 + (cij,k+1,l − cij,k−1,l)
2

+ (cij,k,l+1 − cij,k,l−1)
2]}, (SD) (60)

E ih =
2∑

�=1

N�∑
j,k,l=1

1M+
�
h3�

{
{ρ̄i

�} j,k,l ln{ρ̄i
�} j,k,l − {ρ̄i

�} j,k,l{ci�} j,k,l + 1

2
({ci�} j,k,l)2

+ 1

8h2�

[
({ci�} j+1,k,l − {ci�} j−1,k,l)

2 + ({ci�} j,k+1,l − {ci�} j,k−1,l)
2

+ ({ci�} j,k,l+1 − {ci�} j,k,l−1)
2]} (DD) (61)

In particular, we expect to see a decrease in free energy over time according to the second
law of thermodynamics.

4.1.1 Comparison of the Convergence at Time 10−6

In this subsection, we present the comparison of convergence studies both in space and in
time for the SD and the DD approaches using Test (A). The final time for the convergence
test is set to be 10−6 so that (i) the solutions ρ and c are sufficiently smooth; and (ii) the
reference solution on the finest mesh 516 × 516 × 516 in the SD approach can be obtained
within a reasonable wall-clock time.

Remark 14 Note that the single domain approach is more computationally expensive than
the domain decomposition approach.

123

Author's personal copy



Journal of Scientific Computing

Table 1 Comparison of the errors in space (as computed in (49) and (50)) and the order of the convergence
between SD and DD approaches to approximate ρ in Test (A) at time 10−6, with fixed time step �t = 10−8

Single domain Domain decomposition (h1/h2 = 1/2)

N E∞: � Rate: � N1/N2 E∞: �1 Rate: �1 E∞: �2 Rate: �2

36 1.4046e+00 – 20/20 1.4046e+00 – 3.5954e−02 –

68 3.6990e−01 1.93 36/36 3.6990e−01 1.93 8.3515e−03 2.11

132 1.2224e−01 1.60 68/68 1.2224e−01 1.60 2.6776e−03 1.64

260 2.7815e−02 2.14 132/132 2.7815e−02 2.14 7.7097e−04 1.80

Domain decomposition (h1/h2 = 1/4)

N1/N2 E∞: �1 Rate: �1 E∞: �2 Rate: �2

20/12 1.4046e+00 – 1.1226e−01 –

36/20 3.6990e−01 1.93 3.7364e−02 1.59

68/36 1.2224e−01 1.60 1.0093e−02 1.89

132/68 2.7815e−02 2.14 3.2778e−03 1.62

The reference solutions in both SD and DD approaches are obtained using the discrete solution on mesh
516 × 516 × 516 in the SD approach

Table 2 Comparison of the errors in space (computed similarly to (49) and (50)) and the order of the con-
vergence between SD and DD approaches to approximate c in Test (A) at time 10−6, with fixed time step
�t = 10−8

Single domain Domain decomposition (h1/h2 = 1/2)

N E∞: � Rate: � N1/N2 E∞: �1 Rate: �1 E∞: �2 Rate: �2

36 5.6759e+00 – 20/20 5.6759e+00 – 1.0804e+00 –

68 1.4766e+00 1.94 36/36 1.4766e+00 1.94 2.8497e−01 1.92

132 3.5615e−01 2.05 68/68 3.5615e−01 2.05 7.1525e−02 1.99

260 7.1459e−02 2.32 132/132 7.1459e−02 2.32 1.7233e−02 2.05

Domain decomposition (h1/h2 = 1/4)

N1/N2 E∞: �1 Rate: �1 E∞: �2 Rate: �2

20/12 5.6759e+00 – 3.4957e+00 –

36/20 1.4766e+00 1.94 1.0809e+00 1.69

68/36 3.5615e−01 2.05 2.8524e−01 1.92

132/68 7.1459e−02 2.32 7.1702e−02 1.99

The reference solutions in both SD and DD approaches are obtained using the discrete solution on mesh
516 × 516 × 516 in the SD approach

Convergence in Space Observe that in Tables 1 and 2 the errors in sub-domain �1 from
both DD (h1/h2 = 1/2) and DD (h1/h2 = 1/4) are identical to those from using SD
approach, if the grid spacing h and h1 are the same. Also, the errors in sub-domain �2 are
less in magnitude than errors in sub-domain �1, even though the meshes for sub-domain �2

are coarser than meshes for sub-domain �1. This shows that our strategy of using domain
decomposition as in Fig. 2 is effective and the error in the entire domain � is dominated by
the error from �1. In addition, the errors in sub-domain �2 from using DD (h1/h2 = 1/2)
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Table 3 Convergence of relative errors of ρ (as computed in (52) and (53)) for Test (A)

SD DD (h1/h2 = 1/2) DD (h1/h2 = 1/4)

N Erel Rate N1/N2 Erel Rate N1/N2 Erel Rate

36 1.0196e−01 – 20/20 1.0196e−01 – 20/12 1.0196e−01 –

68 2.6378e−02 1.95 36/36 2.6378e−02 1.95 36/20 2.6378e−02 1.95

132 6.3461e−03 2.06 68/68 6.3461e−03 2.06 68/36 6.3461e−03 2.06

260 1.2724e−03 2.32 132/132 1.2724e−03 2.32 132/68 1.2724e−03 2.32

The results are obtained using fixed time step �t = 10−8 to final time 10−6. The reference solutions for both
SD and DD approaches are obtained using the discrete solution on mesh 516× 516× 516 in the SD approach

are smaller than using DD (h1/h2 = 1/4), since DD (h1/h2 = 1/2) employs finer mesh for
sub-domain �2. Overall, errors from sub-domain �1 dominate the errors in �, and second
order convergence in space are observed as expected in the SD approach, DD (h1/h2 = 1/2)
or DD (h1/h2 = 1/4) for both ρ and c.

Convergence of Max Density in Space In Table 3, we observe identical relative errors and
second order convergence among SD, DD (h1/h2 = 1/2) and DD (h1/h2 = 1/4), which
shows the robustness of the domain decomposition approach.

Convergence in Time In Tables 4 and 5, we observe first order convergence in time for
SD approach and for both sub-domains in DD approach as we expected. The errors in sub-
domain�1 are similar to errors in the single domain�, regardless of the ratio h1/h2 = 1/2 or
h1/h2 = 1/4. Although the meshes for �2 are coarser than meshes for �1, the errors in sub-
domain �2 are much smaller than errors in sub-domain �1. We should note that errors from
using SD approach and from using DD approach are similar, but are not exactly the same,
because the mesh sizes are slightly different, i.e. h1/h2 ≈ 1/2 as opposed to h1/h2 = 1/2.
Overall, the errors from sub-domain�1 dominate the errors in the entire� as in the previous
tests.

4.1.2 Comparison of the Evolution of� to Final Time 6× 10−5

The reason for choosing the final time 6 × 10−5 is that blow-up already occurs around
T = 6×10−5 (see Fig. 8).We considermesh size h for the SD approach andmesh sizes h1/h2
for the DD approach in sub-domain �1 and sub-domain �2 respectively. Before blow-up,
the time step is selected to be �t = 0.5h2 for the SD approach and �t = min{0.5h21, 0.5h22}
for the DD approach. Near blow-up, the time step is selected according to the CFL-type
condition (28). Through Figs. 4, 5 and 6, we obtain similar results in all aspects (||ρ||∞,
free energy, etc.) between the SD and the DD approaches, as long as the finest grid sizes h
and h1 are close. DD approaches with ratios h1/h2 ≈ 1/2 and h1/h2 ≈ 1/4 give similar
approximations, due to smooth solutions in �2.

We have seen that the domain decomposition approach gives similar accuracy as the single
domain approach. Now, to illustrate the efficiency of the domain decomposition approach,
we first define the following speedup ratio RS :

RS = TSD
TDD

(62)
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Table 4 Comparison of the accuracy in time (as computed in (54) and (55)) and the order of the convergence
between SD and DD for ρ in Test (A) at the final time 10−6 with time step �t = 10−7/τ

Single domain Domain decomposition (h1/h2 ≈ 1/2)

τ Et : � Rate: � τ Et : �1 Rate: �1 Et : �2 Rate: �2

16 8.2335e−03 – 16 8.2331e−03 – 2.0476e−11 –

32 3.9846e−03 1.05 32 3.9844e−03 1.05 1.0063e−11 1.02

64 1.8596e−03 1.10 64 1.8595e−03 1.10 5.0106e−12 1.01

128 7.9700e−04 1.22 128 7.9697e−04 1.22 2.3668e−12 1.08

256 2.6567e−04 1.58 256 2.6566e−04 1.58 9.4522e−13 1.32

Domain decomposition (h1/h2 ≈ 1/4)

τ Et : �1 Rate: �1 Et : �2 Rate: �2

16 8.2331e−03 – 2.0316e−11 –

32 3.9844e−03 1.05 9.9324e−12 1.03

64 1.8595e−03 1.10 4.8182e−12 1.04

128 7.9697e−04 1.22 2.3817e−12 1.02

256 2.6566e−04 1.58 1.0446e−12 1.19

The underlying mesh for SD is N = 255 and the meshes for DD are N1/N2 = 127/127 (h1/h2 ≈ 1/2) and
N1/N2 = 127/63 (h1/h2 ≈ 1/4). The reference solutions are obtained using time step �t = 10−7/512 at
the same final time 10−6

Table 5 Comparison of the accuracy in time (computed similarly to (54) and (55)) and the order of the
convergence between SD and DD for c in Test (A) at the final time 10−6 with time step �t = 10−7/τ

Single domain Domain decomposition (h1/h2 ≈ 1/2)

τ Et : � Rate: � τ Et : �1 Rate: �1 Et : �2 Rate: �2

16 6.1248e−08 – 16 1.2023e−07 – 2.6835e−08 –

32 2.9665e−08 1.05 32 5.8245e−08 1.05 1.2975e−08 1.05

64 1.3889e−08 1.09 64 2.7205e−08 1.10 6.0458e−09 1.10

128 5.9737e−09 1.22 128 1.1680e−08 1.22 2.5827e−09 1.23

256 2.0236e−09 1.56 256 3.9206e−09 1.57 8.5743e−10 1.59

Domain decomposition (h1/h2 ≈ 1/4)
τ Et : �1 Rate: �1 Et : �2 Rate: �2

16 3.3382e−07 – 2.1151e−09 –

32 1.6168e−07 1.05 1.0236e−09 1.05

64 7.5496e−08 1.10 4.7699e−10 1.10

128 3.2382e−08 1.22 2.0256e−10 1.24

256 1.0826e−08 1.58 6.7669e−11 1.58

The underlying mesh for SD is N = 255 and the mesh for DD is N1/N2 = 127/127 (h1/h2 ≈ 1/2) and
N1/N2 = 127/63 (h1/h2 ≈ 1/4). The reference solutions are obtained using time step �t = 10−7/512 at
the same final time 10−6
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(a) (b)

Fig. 4 Max Density (56) and (57) for Test (A)

(a) (b)

Fig. 5 Second Moment (58) and (59) for Test (A)

(a) (b)

Fig. 6 Free Energy (60) and (61) for Test (A)
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Table 6 Comparison of speedup ratio RS as computed in (62) betweenDD (h1/h2 ≈ 1/2)/DD (h1/h2 ≈ 1/4)
and SD (h ≈ h1) to a final time 6 × 10−5

SD: N SD: h DD: N1/N2 DD: h1/h2 ≈ 1/2 RS DD: N1/N2 DD: h1/h2 ≈ 1/4 RS

127 1/123 63/63 1
118 / 1

59 3.27 63/31 1
118 / 1

27 4.5

255 1/251 127/127 1
246 / 1

123 6.46 127/63 1
246 / 1

59 9.26

511 1/507 255/255 1
502 / 1

251 3.70 255/127 1
502 / 1

123 7.14

The speedup ratios RS are computed using wall-clock time obtained by running the codes on the University
of Utah CHPC cluster using one Notchpeak node (32 cores, 96/192 GB memory)

(a) (b)

(c)

Fig. 7 Test (A) to final time 10−4 using DD (h1/h2 ≈ 1/4)

where TSD is the wall-clock time of running the simulation with mesh size h to the final
time T in the single domain approach, and TDD is the wall-clock time of running the same
simulation with mesh sizes h1/h2 to the same final time T in the domain decomposition
approach.

In Table 6, we summarize and compare the speedup ratio between two choices of mesh
adaptivity in the domain decomposition approach. We observe that DD approach with
h1/h2 ≈ 1/4 gives approximately 7×/8× speedup, while DD approach with h1/h2 ≈ 1/2
gives approximately 4× speedup, in comparison to using the SD approach with similar accu-
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(a) (b)

(c)

Fig. 8 Cutline plots along z-axis of ρ at different times for Test (A) on mesh N1/N2 = 255/127 with grid
sizes h1/h2 ≈ 1/4 using domain decomposition approach

racy in space. The speedup is mainly due to the reduction of degrees of freedom and better
parallelization properties of DD algorithms.

4.2 Numerical Results for Test (A) to Final Time 10−4

As can be seen in the last two subsections, DD (h1/h2 ≈ 1/4) gives similar accuracy to
SD and DD (h1/h2 ≈ 1/2), but is much more efficient. Hence we will continue with DD
(h1/h2 ≈ 1/4) for Test (A) to explore and simulate the chemotactic process on finer meshes
to a longer time T = 10−4. This final time is already post blow-up, as can be seen in
Fig. 8. Before blow-up, the time step is also selected to be �t = 0.5h2 for the SD approach
and �t = min{0.5h21, 0.5h22} for the DD approach. Near blow-up, the time step is selected
according to the CFL-type condition (28).

123

Author's personal copy



Journal of Scientific Computing

(a) (b)

Fig. 9 Isosurface plots of ρ (left) and c (right) for Test (A) on mesh N1/N2 = 255/127 with grid sizes
h1/h2 ≈ 1/4 using domain decomposition approach at t = 3 × 10−5

(a) (b)

(c) (d)

Fig. 10 Evolution of quantities for Test (B). 150, 300, 300 and 500 harmonics are used for each term in the
2-term extension operator along the boundary on mesh 127/63, 127/127, 255 and 255/127 respectively
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Table 7 ||ρ||∞ at different times
for Test (B). 500 harmonics are
used on mesh 255/127 and 300
harmonics on mesh 127/127 for
each term in the 2-term extension
operator along the boundary

DD (N1/N2 = 127/127) DD (N1/N2 = 255/127)
t ||ρ||∞ t ||ρ||∞

tmin 0.079744 3.825078E+04 0.079792 6.981745E+04

tmax 0.079804 4.714852E+04 0.079846 1.014028E+05

Before commenting on the longer-time simulation results, we should note that DD with
mesh N1/N2 = 255/127 gives similar results to SD with mesh N = 511, but SD with mesh
N = 511 would take significantly longer time to finish as we observed in simulations.

We plot the evolution of ||ρ||∞ versus time in Fig. 7a, and this test can be used to detect
blow-up time, similar to [8,9,13]. In Fig. 7b, c, we show that the second moment and the
free energy are both decreasing, which obey the second law of thermodynamics. In addition,
the decrease rates of free energy are similar on different meshes before time step becomes
restrictive due to the CFL-type condition (28) near blow-up time. After the time step becomes
smaller, the decrease rates of the free energy are even larger, especially on finer meshes. This
might be explained by the faster aggregations of cells on finer meshes.

In Fig. 8, snapshots of the cutline plots along z-axis of the solutions ρ at different times
are given.We can see that the max value of ρ increases by twomagnitudes from t = 3×10−5

to t = 5×10−5. Density ρ already starts to develop singularity at the origin at t = 5×10−5.
Eventually at t = 6 × 10−5, ρ develops a almost singular solution.

In Fig. 9, we present the 3D view of the isosurface plots of the solutions ρ and c at time
t = 3 × 10−5, from which we saw that indeed the peak values of both solutions ρ and c
occur at the origin only. We chose this time t = 3× 10−5 to give a better 3D visualization of
the isosurface plots. As can be seen in Fig. 8, ρ at later times will be highly concentrated at
the origin, which makes the 3D isosurface plots at later time levels uninformative. Moreover,
the outlines of two cubic auxiliary domains (for �1 and �2 respectively) are also given in
Fig. 9, from which we can observe that the peak values indeed occur in sub-domain �1.

4.3 Selected Numerical Results for Test (B)

In this subsection,we present selected simulation results for Test (B). The blow-up is expected
to occur at the north pole and our simulation results agree with our expectations. Again, the
time step is selected to be �t = 0.5h2 for the SD approach and �t = min{0.5h21, 0.5h22}
for the DD approach before blow-up. Near blow-up, the time step is selected according to
the CFL-type condition (28). In our simulations, the codes are terminated once the change
in ||ρ||∞ over two consecutive time steps exceeds 1000, i.e.

�||ρ||∞ ≥ 1000 (63)

We use criterion (63) to determine that the solutions have reached blow-up. As can be seen in
Fig. 10a, b and Table 7, the max density ||ρ||∞ undergoes a drastic increase in a very small
time interval.

The second moment in Fig. 10c is increasing as the cells are moving away from the
origin. The free energy in Fig. 10d are decreasing, which also obeys the second law of
thermodynamics. We should note that the free energies highly agree on difference meshes.
This is due to the relatively small value of c (in the magnitude of 10). Overall, we observe in
Fig. 10 that the SD approach, DD (h1/h2 ≈ 1/2) and DD (h1/h2 ≈ 1/4) approaches give
similar results for Test (B) as well.
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(a) (b)

(c) (d)

(e) (f)

Fig. 11 Isosurface plots of ρ (left) and c (right) for Test (B) on mesh N1/N2 = 255/127 with grid sizes
h1/h2 ≈ 1/4 using domain decomposition approach at different times. 500 harmonics are used for each term
of the 2-term extension operator along the boundary
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(a) (b)

Fig. 12 Isosurface plots of ρ (left) and c (right) for Test (B) on mesh N1/N2 = 255/127 with grid sizes
h1/h2 ≈ 1/4 using domain decomposition approach at later time t ≈ 0.079846. 500 harmonics are used for
each term of the 2-term extension operator along the boundary

Finally, in Fig. 11, we present the 3D view of isosurface plots of ρ and c for Test (B) at
different times:

– At time t = 0.03, we observe that both solutions ρ and c are in motion towards the north
pole and continuity of solutions are also observed across the interface.

– At time t = 0.04, we observe that the peak value of c already occurs at the north pole,
while the peak value of ρ is still in motion towards the north pole. This unveils the role
that the chemoattractant plays and might help to explain why the blow-up solution of ρ

occurs at the north pole eventually.
– At time t ≈ 0.079812, indeed we observe an almost singular solution at the north pole

only. For both ρ and c, the values are stratified away from the point of aggregation, i.e.
the north pole. Moreover, no negative values are observed. We should also note that the
simulations can proceed to a longer final time by choosing a different stopping criterion,
but the simulation will not give a significant difference (see Fig. 12 for simulation results
at t ≈ 0.079846).

The two cubic domains with white outlines in Figs. 11 and 12 are auxiliary domains for
sub-domain �1 and sub-domain �2 respectively.
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5 Appendix

5.1 Proof to Theorem 1

Proof For the reader’s convenience, let us recall proof of Theorem 1 in [13,41]. First of all, let
us assume that there is a density ui+1

γ that satisfies the BEP (17). Using ui+1
γ , we can construct

a superposition of the Particular Solution using (12–14) and the Difference Potential using
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(12–13) and (16):

ui+1
j,k,l = PN+γ u

i+1
γ + Gh,�t f

i , (x j , yk, zl) ∈ M0. (64)

It can be seen that ui+1 defined in (64) is a solution to the following discrete system on N 0:

Lh,�t u
i+1
j,k,l =

{
f ij,k,l , (x j , yk, zl) ∈ M+,

Lh,�t [ui+1
γ ], (x j , yk, zl) ∈ M−,

ui+1
j,k,l = 0, (x j , yk, zl) ∈ N 0\M0,

(65)

which implies that ui+1
j,k,l , (xi , y j , zk) ∈ M+ in (64) is some solution to (11) on M+, and

note that the trace of ui+1 satisfies

Trγ u
i+1 = Trγ

(
PN+γ u

i+1
γ + Gh,�t f

i
)

= Pγ u
i+1
γ + Gh,�t f

i
γ , (66)

from the definition of trace operator. Moreover, from our assumption on the density ui+1
γ , we

have Pγ ui+1
γ + Gh,�t f iγ = ui+1

γ . Thus, Trγ ui+1 = ui+1
γ and we can conclude that if some

density ui+1
γ satisfies the BEP (17), it is a trace to some solution of system (11).

Now assume the density ui+1
γ is a trace to some solution of system (11): ui+1

γ = Trγ ui+1

where ui+1
j,k,l , (x j , yk, zl) ∈ N+ is the unique solution to the difference equation (11) subject

to certain boundary condition. Then by our assumption on ui+1, ui+1 with zero extension
from N+ to N 0 is also a solution to the system of difference equation (65) on N 0. Since
PN+γ u

i+1
γ +Gh,�t f i is also a solution the system of difference equation (65), we conclude

that:

ui+1 ≡ PN+γ u
i+1
γ + Gh,�t f

i , (x j , yk, zl) ∈ N+, (67)

by the uniqueness argument. Finally, restriction of the ui+1 from N+ to the discrete grid
boundary γ would give us

Trγ u
i+1 = Trγ

(
PN+γ u

i+1
γ + Gh,�t f

i
)

= Pγ u
i+1
γ + Gh,�t f

i
γ . (68)

and ui+1
γ = Pγ ui+1

γ + Gh,�t f iγ , since u
i+1
γ = Trγ ui+1 by our assumption. In other words,

if ui+1
γ is a trace to some solution of system (11), it satisfies the BEP (17). �

5.2 Proof to Proposition 1

Proof The proof is similar to ideas in [13,41]. Without boundary conditions, the difference
equations (11) would admit infinite number of solutions and so will the BEP (17), due to
Theorem 1. However, if we provide density values ui+1

γex
on γex , the difference equation (11)

will be well-posed and will admit a unique solution. Hence, the BEP (17) will have a unique
solution if ui+1

γex
is given. The solution to BEP (17) is uniquely determined by densities on

γex , thus the solution ui+1
γ to BEP (17) has dimension |γex |, which is the cardinality of set

γex . As a result, the BEP (17) has rank |γ | − |γex | = |γin |. �

5.3 Proof to Theorem 2

Proof The proof is based on ideas in [13,41]. First, define the grid function:

vi+1 := Pi+1 + Gi+1 − ui+1
γ , on N 0, (69)
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where Pi+1 is a solution to the AP (12)–(13) on N 0 with right hand side (16) using density
ui+1

γ , Gi+1 is a solution to the AP (12)–(13) on N 0 with right hand side (14), and ui+1
γ

is extended from γ to N 0 by zero. By the construction of vi+1, one can see that vi+1 is a
solution to the following difference equation:

Lh,�t [vi+1] =
{
f i − Lh,�t [ui+1

γ ], on M+,

0, on M−.
(70)

Thus, we conclude that vi+1 solves the following homogeneous difference equations on M−:

Lh,�tv
i+1 = 0, on M−. (71)

In addition, due to the construction of vi+1, Pi+1 and Gi+1, the grid function vi+1 satisfies
the following boundary condition:

vi+1 = 0, on N 0\M0. (72)

Next, observe that the BEP (17) and the reduced BEP (19) can be reformulated using grid
function vi+1 in (69) as follows:

vi+1 = 0, on γ, (BEP (17)), (73)

and

vi+1 = 0, on γin, (BEP (19)). (74)

Hence, it is enough to show that (73) is equivalent to (74) to prove the equivalence between
the BEP (17) and the reduced BEP (19). First, note that if (73) is true, then (74) is obviously
satisfied.

Now, assume that (74) is true and let us show that (73) holds. Let us consider problem (71):
Lh,�tv

i+1 = 0 on M−, subject to boundary conditions (72) and (74), since the set γin ∪
(N 0\M0) is the boundary set for set M−. Then we have the following discrete boundary
value problem:

Lh,�tv
i+1 = 0, on M−, (75)

vi+1 = 0, on N 0\M0, (76)

vi+1 = 0, on γin, (77)

which admits a unique zero solution: vi+1 = 0 on M−. Since γex⊂M−, we conclude that
vi+1 = 0 on γex , as well as on γ ≡ γex ∪ γin , which shows that (74) implies (73).

Thus, we showed that (73) is equivalent to (74), and therefore, BEP (17) is equivalent to
the reduced BEP (19). Moreover, due to Proposition 1, the reduced BEP (19) consists of only
linearly independent equations. �
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