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Abstract
In this work, we consider parabolic models with dynamic boundary conditions and
parabolic bulk-surface problems in 3D. Such partial differential equations–based
models describe phenomena that happen both on the surface and in the bulk/domain.
These problems may appear in many applications, ranging from cell dynamics in
biology, to grain growth models in polycrystalline materials. Using difference poten-
tials framework, we develop novel numerical algorithms for the approximation of the
problems. The constructed algorithms efficiently and accurately handle the coupling
of the models in the bulk and on the surface, approximate 3D irregular geometry in
the bulk by the use of only Cartesian meshes, employ fast Poisson solvers, and utilize
spectral approximation on the surface. Several numerical tests are given to illustrate
the robustness of the developed numerical algorithms.
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1 Introduction

The parabolic models with dynamic boundary conditions and parabolic bulk-surface
models can be found in a variety of applications in fluid dynamics, materials
science, and biological applications, see for example, [4, 5, 7, 10–12, 15, 16,
19, 22, 24, 26, 28]. In many of these problems, partial differential equations
(PDE)–based models are used to capture dynamic phenomena that occur on the
surface of the domain and in the bulk/domain. For instance, cell polarizations
can be modeled by the switches of Rho GTPases between the active forms on
the membrane (surface) and inactive forms in the cytosol (bulk) [12]. Another
example is the modeling of the receptor-ligand dynamics [15], to name a few
examples here.

In the current literature, there are only few numerical methods developed for such
problems, and most of the methods are finite-element based. For instance, a novel
finite element scheme is proposed and analyzed for 3D elliptic bulk-surface prob-
lems in [14], where polyhedral elements are constructed in the bulk region, and
the piecewise polynomial boundary faces serve as the approximation of the sur-
face. The method in [14] employs two finite-element spaces, one in the bulk, and
one on the surface. See also the review paper [13] on the finite element meth-
ods for PDEs on curved surfaces and the references therein. Also, space and time
discretizations of 2D heat equations with dynamic boundary conditions are stud-
ied in [21], in a weak formulation that fits into the standard variational framework
of parabolic problems. A flexible unfitted finite element method (cut-FEM) is pro-
posed for 3D elliptic bulk-surface problems in [6]. The developed cut-FEM utilizes
the same finite element space defined on a structured background mesh to solve the
PDEs in the bulk region and on the surface. Another space-time cut-FEM approach,
with continuous linear elements in space and discontinuous piecewise linear ele-
ments in time, is designed for 2D parabolic bulk-surface problems on time-dependent
domains in [20]. Furthermore, a hybrid finite-volume-finite-element method is devel-
oped for 3D bulk-surface models in [9]. The hybrid method employs a monotone
nonlinear finite volume method in the bulk, and the trace finite element method
[29, 30] is used to solve equations on the reconstructed polygonal approximation of
the surface.

In this work, we develop novel numerical algorithms for 3D models with dynamic
boundary conditions and bulk-surface coupling, within the framework of difference
potentials method (DPM). The constructed numerical schemes efficiently and accu-
rately handle the coupling of the models in the bulk and on the surface, approximate
3D irregular geometry in the bulk by the use of only Cartesian grids, employ fast
Poisson solvers, and apply spectral approximation on the surface.

The paper is organized as follows. In Section 2, we discuss the two distinct yet
related model problems that are considered in the current work, the parabolic model
with dynamic boundary condition and parabolic bulk-surface problem in 3D. Next,
in Section 3, we develop numerical methods based on difference potentials for these
problems, and give the main steps of the constructed numerical algorithms. Lastly, in
Section 4, we present the extensive numerical results (convergence, 3D views of the
solutions, etc.) that show the robustness of the developed algorithms.
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2 Themodel with dynamic boundary condition and bulk-surface
problem

In this work, we consider the following two models in 3D:
Heat equation with dynamic boundary condition on the surface (see related examples
in [21, 34]):

ut − Δu = f, (x, y, z, t) ∈ Ω × R
+, (1)

ut + u + n · ∇u = ΔΓ u + g, (x, y, z, t) ∈ Γ × R
+, (2)

u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ Ω ∪ Γ . (3)

The bulk-surface problem (see related examples in [15, 20]):

ut − Δu = f, (x, y, z, t) ∈ Ω × R
+, (4)

−n · ∇u = h(u, v), (x, y, z, t) ∈ Γ × R
+, (5)

vt − ΔΓ v = g + h(u, v), (x, y, z, t) ∈ Γ × R
+, (6)

u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ Ω, (7)

v(x, y, z, 0) = v0(x, y, z), (x, y, z) ∈ Γ . (8)

In the above models, Γ is a smooth boundary/surface of a bounded domain/bulk Ω ⊂
R

3, ΔΓ is the Laplace-Beltrami operator defined on Γ , and n denotes the outward
unit normal vector. The function h(u, v) is the coupling relation between the bulk and
the surface, and g in Eq. 2 or Eq. 6 is the source function on the surface. The initial
data for the models (1) and (2) are given by function u0(x, y, z), (x, y, z) ∈ Ω ∪ Γ

and the initial data in (4)–(6) are given by functions u0(x, y, z), (x, y, z) ∈ Ω and
v0(x, y, z), (x, y, z) ∈ Γ .

3 Algorithms based on DPM

The current work is a continuation of the recent work in [2, 3, 18, 23]. For the time
being, we will consider the model with dynamic boundary conditions and the bulk-
surface problem in a spherical domain, but the proposed methods can be extended to
domains with more general geometry in 3D (and the main ideas of the algorithms will
stay the same, see Remark 5 below). We employ a finite-difference scheme for the
underlying space discretization of the models in the bulk (1) or (4), combined with
the idea of DPM ([32] and very recent works [2, 3, 17, 18, 33], etc.) that provides
flexibility to handle irregular domains and nontrivial boundary conditions (including,
but not limited to, dynamic boundary conditions like Eq. 2, or surface equations like
Eq. 6) accurately and efficiently.

3.1 The numerical algorithm based on DPM

Discretization in the bulk:

Introduction of the auxiliary domain. As a first step of the numerical algorithm, we
embed the original domain Ω into a computationally simple auxiliary domain Ω0 ⊂
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R
3, that we will select to be a cube in this work. Next, we introduce a Cartesian

mesh to discretize the auxiliary domain Ω0, with mesh nodes (xj , yk, zl) = (x0 +
jΔx, y0 + kΔy, z0 + lΔz), (j, k, l = 0, 1, 2 . . . , N). Here, (x0, y0, z0) is the left-
bottom corner point of the cubical auxiliary domain Ω0. For simplicity, we assume
that the Cartesian mesh is uniform, i.e., h := Δx = Δy = Δz. To discretize the PDE
(1) or (4) in the bulk, with a second-order accuracy in space, we will consider the
standard 7-point finite-difference stencil with a center placed at the point (xj , yk, zl):

N 7
j,k,l = {

(xj , yk, zl), (xj±1, yk, zl), (xj , yk±1, zl), (xj , yk, zl±1)
}

. (9)

Next, we define the important point sets that we will use as a part of the difference
potentials framework (see Fig. 1):

Definition 1 Introduce the following point sets:

– M0 = {
(xj , yk, zl) | (xj , yk, zl) ∈ Ω0

}
denotes the set of all mesh nodes

(xj , yk, zl) that belong to the interior of the auxiliary domain Ω0;
– M+ = M0 ∩ Ω = {

(xj , yk, zl) | (xj , yk, zl) ∈ Ω
}

denotes the set of all mesh
nodes (xj , yk, zl) that belong to the interior of the original domain Ω;

– M− = M0\M+ = {(xj , yk, zl) | (xj , yk, zl) ∈ Ω0\Ω} is the set of all mesh
nodes (xj , yk, zl) that are inside of the auxiliary domain Ω0, but belong to the
exterior of the original domain Ω;

– N+ =
{⋃

j,k,l N 7
j,k,l | (xj , yk, zl) ∈ M+

}
;

– N− =
{⋃

j,k,l N 7
j,k,l | (xj , yk, zl) ∈ M−

}
;

Fig. 1 Examples of point sets in the cross-sectional view: M+ (solid dots) as a subset of N+ (open circles),
where solid dots in open circles show the overlap between M+ and N+ in the left figure; and the discrete
grid boundary γ as the union of γex (open circles) and γin (solid dots) in the right figure. The auxiliary
domain is denoted as Ω0 in both figures
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– N0 =
{⋃

j,k,l N 7
j,k,l | (xj , yk, zl) ∈ M0

}
;

The point sets N± and N0 are the sets of all mesh nodes covered by the stencil
N 7

j,k,l for every mesh node (xj , yk, zl) in M± and M0 respectively;
– γ = N+ ∩ N− defines a thin layer of mesh nodes that straddles the continuous

boundary Γ and is called the discrete grid boundary;
– γin = M+ ∩ γ and γex = M− ∩ γ are subsets of the discrete grid boundary that

lie inside and outside of the spherical domain Ω respectively.

Construction of the system of discrete equations for models (1) and (4) In this work,
we will use the trapezoidal time stepping (Crank-Nicolson scheme) to illustrate the
approach based on difference potentials for the models with dynamic boundary con-
ditions and for the bulk-surface problems. In general, any other stable time marching
scheme can be employed in a similar way.

For the spatial discretization, we will employ the second-order finite-difference
scheme using the 7-point stencil N 7

j,k,l as defined above. Assume now that ui
j,k,l

denotes a discrete solution computed at the time level t i at the mesh node (xj , yk, zl).
Then, the discrete system of equations for Eqs. 1 and 4 obtained using trape-
zoidal time approximation combined with the second-order central finite-difference
approximation in space is:

Lh,Δtu
i+1
j,k,l = F i+1

j,k,l , (xj , yk, zl) ∈ M+, (10)

where, we introduced the discrete linear difference operator Lh,Δt ≡ Δh − σI

with σ = 2/Δt , Δh–the discrete Laplace operator defined on point set M+, I–
the identity matrix of the same size as Δh, the right-hand side function F i+1

j,k,l ≡
−(Δh + σI)ui

j,k,l − f i+1
j,k,l − f i

j,k,l , and ui+1
j,k,l ≈ u

(
xj , yk, zl, t

i+1
)
.

The discrete auxiliary problem One of the important steps of DPM-based methods is
the introduction of the auxiliary problem (AP). The discrete APs play a key role in
construction of the particular solution and the difference potentials operators as part
of DPM-based algorithm proposed in this work.

Definition 2 At time t i+1, given the grid function qi+1 on M0, the following
difference equations (11)–(12) are defined as the discrete AP:

Lh,Δtw
i+1
j,k,l = qi+1

j,k,l, (xj , yk, zl) ∈ M0, (11)

wi+1
j,k,l = 0, (xj , yk, zl) ∈ N0\M0. (12)

Here, the discrete linear operator Lh,Δt = Δh − σI is the linear operator similar
to the one introduced in Eq. 10, but is defined now on a larger point set M0.

Remark 1 The homogeneous Dirichlet boundary condition (12) in the AP is chosen
merely for efficiency of our algorithm, i.e., we employ fast Poisson solvers to solve
the APs. In general, other boundary conditions can be selected for the AP as long as
the defined AP is well-posed and can be solved computationally efficiently.
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Construction of the particular solution Let us denote by Gh,ΔtF
i+1
j,k,l , (xj , yk, zl) ∈

N+, the particular solution of the fully discrete problem (10). The particular solution
is defined on N+ at time level t i+1, and is obtained by solving the AP (11)–(12) with
the following right-hand side:

qi+1
j,k,l =

{
F i+1

j,k,l , (xj , yk, zl) ∈ M+,

0, (xj , yk, zl) ∈ M−,
(13)

and by restricting the computed solution from N0 to N+.

Construction of the difference potentials and boundary equations with projections
To construct the difference potentials, let us first define a linear space Wγ of all grid
functions wi+1

γ (xj , yk, zl) at t i+1 on γ . The functions are extended by zero to other

points in N0 set. These grid functions wi+1
γ are called densities on the discrete grid

boundary γ at the time level t i+1.

Definition 3 The difference potential associated with a given density wi+1
γ ∈ Wγ is

the grid function PN+γ wi+1
γ defined on N+ at the time level t i+1, and is obtained by

solving the AP (11)– (12) with the following right-hand side:

qi+1
j,k,l =

{
0, (xj , yk, zl) ∈ M+,

Lh,Δt

[
wi+1

γ

]
, (xj , yk, zl) ∈ M−,

(14)

and by restricting the solution from N0 to N+.
Next, we will introduce the trace operator. Given a grid function wi+1 defined on

the point set N+, we denote by T rγ wi+1 the trace or restriction of wi+1 from N+ to
the discrete grid boundary γ . Similarly, we define T rγin

wi+1 as the trace or restric-
tion of wi+1 from N+ to γin ⊂ γ . We are ready to define an operator Pγ : Wγ → Wγ

such that Pγ wi+1
γ := T rγ PN+γ wi+1

γ . The operator Pγ is a projection operator. Now,
we will state the key theorem for difference potentials method, which allows us to
reformulate the difference Eq. 10 defined on M+ into equivalent boundary equations
with projections (BEP) defined on the discrete grid boundary γ only.

Theorem 1 (BEP) At time t i+1, the discrete density ui+1
γ is the trace of some solution

ui+1 on N+ to the difference equations (10), i.e., ui+1
γ := T rγ ui+1, if and only if the

following BEP holds:

ui+1
γ − Pγ ui+1

γ = Gh,ΔtF
i+1
γ , (xj , yk, zl) ∈ γ, (15)

where Gh,ΔtF
i+1
γ := T rγ Gh,ΔtF

i+1
j,k,l is the trace of the particular solution on the

discrete grid boundary γ .

Proof See [32] or [18].
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Remark 2 Note, using that difference potential is a linear operator, we can recast (15)
as:

ui+1
m −

∑

n∈γ

Anmui+1
n = Gh,ΔtF

i+1
m , m ∈ γ, (16)

where m is the index of a grid point in the set γ , and Gh,ΔtF
i+1
m is the value of the

particular solution at the grid point with index m in the set γ .

Proposition 1 The rank of linear equations in BEP (15) is |γin|, which is the
cardinality of the point set γin.

Proof The proof follows the lines of the proof in [18, 32], and we will present it
below for the reader’s convenience. If the density ui+1

γex
on γex to the difference equa-

tions (10) is given, then such discrete system will admit a unique solution ui+1
j,k,l

defined on a set N+. Hence, the BEP (15) will have a unique solution, if ui+1
γex

is given.

Thus, the solution ui+1
γ to BEP (15) has dimension |γex |, which is the cardinality of

set γex . As a consequence, the BEP (15) has rank |γ | − |γex | = |γin|.

Next, we introduce the reduced BEP (17) defined only on γin that can be shown
to be equivalent to the BEP (15) defined on γ .

Theorem 2 The BEP (15) defined on γ in Theorem 1 is equivalent to the following
BEP (17) defined on a smaller subset γin ⊂ γ :

ui+1
γin

− T rγin
Pγ ui+1

γ = T rγin
Gh,ΔtF

i+1
γ , (xj , yk, zl) ∈ γin (17)

Moreover, the reduced BEP (17) contains only linearly independent equations.

Proof The proof follows the lines of the proof in [18, 32] and we will present it below
for the reader’s convenience. First, define the grid function:

Φi+1 := P i+1 + Gi+1 − ui+1
γ , on N0, (18)

where P i+1 is a solution to the AP (11)–(12) on N0 with the right-hand side (14)
using density ui+1

γ , Gi+1 is a solution to the AP (11)–(12) on N0 with the right-hand

side (13), and ui+1
γ is extended from γ to N0 by zero. By the construction of Φi+1,

one can see that Φi+1 is a solution to the following difference equation:

Lh,Δt [Φi+1] =
{

F i+1 − Lh,Δt

[
ui+1

γ

]
, on M+,

0, on M−.
(19)

Therefore, we conclude that Φi+1 solves the following homogeneous difference
equations on the set M−:

Lh,ΔtΦ
i+1 = 0, on M−. (20)
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Additionally, by construction of functions Φi+1, P i+1 and Gi+1, the grid function
Φi+1 satisfies the following boundary condition:

Φi+1 = 0, on N0\M0. (21)

Next, observe that the BEP (15) and the reduced BEP (17) can be reformulated
using grid function Φi+1 in formula (18) as follows:

Φi+1 = 0, on γ, (BEP (15)), (22)

and
Φi+1 = 0, on γin, (BEP (17). (23)

Hence, it is enough to show that Eq. 22 is equivalent to Eq. 23 to prove the equiva-
lence between the BEP (15) and the reduced BEP (17). First, note that if (22) is true,
then (23) is obviously satisfied.

Now, assume that Eq. 23 is true and let us show that Eq. 22 holds. Consider prob-
lem (20): Lh,ΔtΦ

i+1 = 0 on M−, subject to boundary conditions (21) and (23), since
the set γin ∪ (N0\M0) is the boundary set for set M−. Then, we have the following
discrete boundary value problem:

Lh,ΔtΦ
i+1 = 0, on M−, (24)

Φi+1 = 0, on N0\M0, (25)

Φi+1 = 0, on γin, (26)

which admits a unique zero solution: Φi+1 = 0 on M−. Since γex ⊂ M−, we
conclude that Φi+1 = 0 on γex , as well as on γ ≡ γex ∪γin, which shows that Eq. 23
implies Eq. 22.

Thus, we showed that Eq. 22 is equivalent to Eq. 23; therefore, BEP (15) is equiv-
alent to the reduced BEP (17). Moreover, due to Proposition 1, the reduced BEP (17)
consists of only linearly independent equations.

Similarly to (15)–(16), the reduced BEP (17) can be recast as:

ui+1
m −

∑

n∈γ

Anmui+1
n = Gh,ΔtF

i+1
m , m ∈ γin. (27)

Remark 3 The BEP (15) or BEP (17) reduces degrees of freedom from O(h−3)

in the difference Eq. 10 to O(h−2). In addition, the reduced BEP (17) defined on
γin reduces the number of equations in BEP (15) by approximately one-half, since
|γin| ≈ |γ |/2. Thus, using the reduced BEP (17) will further improve the computa-
tional cost in our numerical algorithm, especially in 3D, and we will use the reduced
BEP as a part of the proposed numerical algorithm.

Additionally, let us note that the BEP (15) or the BEP (17) will admit multiple
solutions since the system of Eqs. 15 (and hence Eqs. 17) is equivalent to the system
of difference equations (10) without imposed boundary conditions yet. Therefore, to
construct a unique solution to BEP (17), we need to supply the BEP (17) with either
the dynamic boundary condition (2), or the coupling conditions on the surface (5) and
(6). To impose these conditions efficiently into BEP, we will introduce the extension
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operator (28) and combine (28) with the spectral approach discussed below for the
approximation of the boundary conditions/surface equations.

Definition 4 The extension operator πγΓ

[
ui+1

]
of the function u

(
x, y, z, t i+1

)

from a point (x, y, z) ∈ Γ to (xj , yk, zl) ∈ γ is defined as:

πγΓ

[
ui+1

] ∣∣∣(xj ,yk,zl ) := ui+1(x, y, z)

∣∣∣
Γ

+ d
∂ui+1(x, y, z)

∂n

∣∣∣∣
Γ

+ d2

2

∂2ui+1(x, y, z)

∂n2

∣∣∣∣
Γ

, (28)

where n is the unit outward normal vector on Γ , d is the signed distance between
a point (xj , yk, zl) ∈ γ , and the point of its orthogonal projection (x, y, z) on the
continuous boundary Γ in the direction of n.

Basically, the extension operator (28) defines values of πγΓ [ui+1] at the point
of the discrete grid boundary (xj , yk, zl) ∈ γ with the desired accuracy through the
values of the continuous solution and its gradients at time t i+1 at the continuous
boundary Γ of the domain. In particular, we consider the extension operator (28)
defined in (xj , yk, zk) ∈ γin when we solve the reduced BEP (17). In addition, note
that d and n need not to be known precisely (see Tables 2–5 in Section 4.3).

Discretization on the surface:
Here, for simplicity, we assume that the surface Γ is a sphere with radius R.

However, the proposed numerical algorithms can be extended to more general smooth
domains and, hence, more general surfaces, and the main steps of the methods will
stay the same (see Remark 5 below).

Case 1: Dynamic boundary conditions (2) We will use trapezoidal in time scheme for
(2), but other time discretizations can be employed as well. Since, in this work Γ is
a sphere, we have that the normal derivative satisfies:

∂u(x, y, z, t)

∂n
= ∂u(x, y, z, t)

∂r
, (x, y, z) ∈ Γ, (29)

where n is the unit outward normal vector and r is the variable radius in the spherical
coordinates, and similarly, unn = urr .

The discrete in time dynamic boundary condition (2) is

ui+1(x, y, z) − ui(x, y, z)

Δt

= 1

2

(
ΔΓ ui+1(x, y, z) − ui+1(x, y, z) − ∂ui+1(x, y, z)

∂r
+ gi+1(x, y, z)

+ΔΓ ui(x, y, z) − ui(x, y, z) − ∂ui(x, y, z)

∂r
+ gi(x, y, z)

)
,

(30)

for (x, y, z) ∈ Γ . Here, ui+1(x, y, z) is an approximation in time of u(x, y, z, t i+1),
and gi+1(x, y, z) is an approximation of g(x, y, z, t i+1) at time level t i+1. Also, note
that the Laplace-Beltrami operator on the sphere Γ with a radius R at time t i+1 can
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be obtained as:

ΔΓ ui+1(x, y, z) = 1

R2 sin θ

∂

∂θ

(
sin θ

∂ui+1(x, y, z)

∂θ

)
+ 1

R2 sin2 θ

∂2ui+1(x, y, z)

∂ϕ2
, (31)

where (θ, ϕ) are the polar and azimuthal angles for a point (x, y, z) ∈ Γ .
Next, from Eq. 30, we can express the term ui+1

r (x, y, z) as:

∂ui+1(x, y, z)

∂r
= ΔΓ ui+1(x, y, z) − (1 + σ)ui+1(x, y, z) + σui(x, y, z) + gi+1(x, y, z)

+ΔΓ ui(x, y, z) − ui(x, y, z) − ∂ui(x, y, z)

∂r

+gi(x, y, z), (x, y, z) ∈ Γ

= ΔΓ ui+1(x, y, z) − (1 + σ)ui+1(x, y, z)

+σui(x, y, z) + gi+1(x, y, z) + ui
t (x, y, z), (x, y, z) ∈ Γ, (32)

where σ = 2/Δt as before, and ui
t (x, y, z) denotes the time derivative of u(x, y, z, t)

at time level t i :

ui
t (x, y, z) = ΔΓ ui(x, y, z) − ui(x, y, z) − ∂ui(x, y, z)

∂r
+ gi(x, y, z). (33)

We assume that u0
t (x, y, z) is known initially, since u0(x, y, z) and g0(x, y, z) are

known at the initial time. Note that the time derivative ui+1
t (x, y, z) at the next time

level t i+1 can be updated efficiently using the following formula (consequence of (2)
and (30)),

ui+1
t (x, y, z) = σui+1(x, y, z) − σui(x, y, z) − ui

t (x, y, z), (x, y, z) ∈ Γ, (34)

once we have computed ui+1(x, y, z) at time level t i+1.
Furthermore, we note that ui+1

rr (x, y, z) can be expressed in terms of ui+1
r (x, y, z)

if one subtracts (2) from (1) by extending (1) outside of domain Ω:

∂2ui+1(x, y, z)

∂r2
= −ui+1(x, y, z) −

(
1 + 2

R

)
∂ui+1(x, y, z)

∂r
− f i+1(x, y, z) + gi+1(x, y, z), (35)

for (x, y, z) ∈ Γ . Also, note that the normal derivative ui+1
r (x, y, z) depends linearly

on ui+1(x, y, z) as in Eq. 32; hence, we only need to determine one unknown term
ui+1(x, y, z) in the extension operator (28).

Spectral approach To combine extension operator (28) accurately and efficiently
with dynamic boundary condition (30) (and hence with Eq. 32), we will introduce
the spectral approximations at each time level t i+1 of the following term:

ui+1(x, y, z) ≈
L∑

κ=1

ai+1
κ φκ(θ, ϕ), (x, y, z) ∈ Γ, (36)

where (θ, ϕ) are the polar and the azimuthal angles for a point (x, y, z) ∈ Γ .

Remark 4 Here, the number of spherical harmonics L does not depend on the
underlying mesh sizes and depends on the properties of the solutions to the models.
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Now, combining relations (32), (35), and (36) with the extension operator (28), we
obtain:

πγΓ [ui+1]|(xj ,yk,zl ) = ui+1(x, y, z)|Γ + d
∂ui+1(x, y, z)

∂r

∣∣∣∣
Γ

+ d2

2

∂2ui+1(x, y, z)

∂r2

∣∣∣∣
Γ

(37)

=
(

1 − d(1 + σ) + d2

2

((
2

R
+ 1

)
(1 + σ) − 1

))
ui+1(x, y, z)

+
(

d − d2

2

(
2

R
+ 1

))
ΔΓ ui+1(x, y, z)

+d(σui(x, y, z) + gi+1(x, y, z) + ui
t (x, y, z)) (38)

−d2

2

((
2

R
+ 1

)
(σui(x, y, z) + gi+1(x, y, z) + ui

t (x, y, z))

)

+d2

2

(
−f i+1(x, y, z) + gi+1(x, y, z)

)

≈ ui+1
γ (xj , yk, zl) (39)

= Aai+1 + ci+1, (xj , yk, zl) ∈ γ and (x, y, z) ∈ Γ, (40)

where ai+1 is the vector of the unknown spectral coefficients ai+1
κ , ci+1 denotes the

known vector:

ci+1 = d
(
σui(x, y, z) + gi+1(x, y, z) + ui

t (x, y, z)
)

−d2

2

((
2

R
+ 1

)(
σui(x, y, z) + gi+1(x, y, z) + ui

t (x, y, z)
))

+d2

2

(
−f i+1(x, y, z) + gi+1(x, y, z)

)
, (41)

and d is the signed distance from the point (xj , yk, zl) in γ to its foot point (x, y, z)

on the continuous boundary Γ . The coefficient matrix A is assembled using the basis
functions, i.e.:

Am,κ =
(

1 − dm(1 + σ) + d2
m

2

((
2

R
+ 1

)
(1 + σ) − 1

))
φκ(θm, ϕm)

+
(

dm − d2
m

2

(
2

R
+ 1

))
ΔΓ φκ(θm, ϕm) (42)

where m is the index that represents a point in γ , (θm, ϕm) are the polar and azimuthal
angles for the foot point (x, y, z) ∈ Γ of a point m in γ , and dm is the signed dis-
tance for this point. Note A is assembled using whole point set γ . However, only the
rows corresponding to γin will be used in our algorithm when we solve the reduced
BEP (17).

Remark 5 (a) In the special case of a sphere, the surface Laplacian of a spher-
ical harmonic is conveniently obtained by the following eigenvalue-eigenfunction
relation:

ΔΓ Ym
� (θ, ϕ) = −�(� + 1)R2Ym

� (θ, ϕ) (43)
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where Ym
� (θ, ϕ) is the spherical harmonic function of degree � and order m (see

detailed formulas (83)–(84) in Section 4.1) and R is the radius of the sphere (see also
[27, 31]). Another equivalent approach is to use (31) and (36), where the derivatives

of the spherical harmonics ∂φi+1
κ

∂θ
, ∂2φi+1

κ

∂θ2 ,
∂2φi+1

κ

∂ϕ2 can be obtained using recursive for-
mula [1]. In the numerical section, we adopt the relation (43) for the efficiency of the
codes.

(b) In this work, we showcase the versatility of the DPM framework for dynamic
BC and bulk-surface problems, and we illustrate the ideas of the method using
spherical geometry in 3D. We should note that the basis functions in the spectral
approximation of the terms in the extension operator in the DPM framework are not
limited to spherical harmonics. For example, in the case of smooth geometry other
than spheres, local radial basis functions can be employed instead of spherical har-
monics. In addition, DPM-based algorithms were developed for models on domains
with corners (2D) [25] or wedges (3D) [18]. Furthermore, one possible future direc-
tion is to replace the spectral approximation on the surface with a more general
method that can handle arbitrary geometry, for instance using ideas of the trace finite
element method (trace-FEM) [8, 9] that utilizes the restriction (trace) of a volumetric
finite element space of piecewise continuous trilinear functions, and to solve surface
equations. In addition, the choice of the discretization of the bulk equation in the
DPM framework has also a flexibility (and can be selected to be FEM, for example).

Case 2: Bulk-surface coupling (5)–(6). As for the bulk-surface problems, we assume
here that the surface Γ is also a sphere with radius R; and thus, the Laplace-Beltrami
operator ΔΓ at time t i+1 is computed using the eigenvalue approach (43). Again,
the first order normal derivative is computed as un(x, y, z, t) ≡ ∇u(x, y, z, t) · n =
ur(x, y, z, t) for (x, y, z) ∈ Γ .

To discretize in time equation on the surface (6), we will use trapezoidal in time
scheme as it is used in the bulk (10). The discrete in time surface equation is (as a
result of Eq. 6):

vi+1(x, y, z) − vi(x, y, z)

Δt
= 1

2

(
ΔΓ vi+1(x, y, z) + gi+1(x, y, z) + h(ui+1(x, y, z), vi+1(x, y, z)

)

+vi
t (x, y, z)), (x, y, z) ∈ Γ, (44)

where vi
t = ΔΓ vi + gi + h

(
ui, vi

)
. Note that, to compute the term vi

t efficiently,
we use the formula:

vi
t (x, y, z) = σvi(x, y, z) − σvi−1(x, y, z) − vi−1

t (x, y, z), (x, y, z) ∈ Γ, (45)

which is consequence of the discretization (44) and (6). Moreover, since from (5), we
have that h(ui+1, vi+1) = −ui+1

r , we obtain the following expression for ui+1
r :

∂ui+1(x, y, z)

∂r
= −σvi+1(x, y, z) + ΔΓ vi+1(x, y, z)

+σvi(x, y, z) + gi+1(x, y, z) + vi
t (x, y, z), (x, y, z) ∈ Γ, (46)

where, as before, σ = 2/Δt .

Author's personal copy



Adv Comput Math           (2020) 46:67 Page 13 of 39   67 

(a) Linear bulk-surface coupling For simplicity, we first consider the case of linear
coupling function h(u, v) in (5) similar to, for example, [6] and [14]:

h(u, v) = u − v, on Γ . (47)

Since h
(
ui+1, vi+1

) = ui+1−vi+1 at time level t i+1, and using Eq. 44, we have that:

ui+1(x, y, z) = (1 + σ)vi+1(x, y, z) − ΔΓ vi+1(x, y, z)

−σvi(x, y, z) − gi+1(x, y, z) − vi
t (x, y, z), (x, y, z) ∈ Γ . (48)

Spectral approach Similarly to model with dynamic boundary conditions, to cou-
ple accurately and efficiently discretization of the bulk equations, hence, the reduced
BEP (17) with the discretization of the surface equation (6) combined with coupling
function (47), we will employ idea of extension operator (28) together with the spec-

tral approximation of the functions vi+1(x, y, z) and ∂2ui+1(x,y,z)

∂r2 , (x, y, z) ∈ Γ at

each time level t i+1.
Hence, for the density ui+1

γ , we combine the extension operator (28) together with
relations (46)–(48), to obtain:

πγΓ

[
ui+1

]
|(xj ,yk,zl ) = ui+1(x, y, z) + d

∂ui+1(x, y, z)

∂r
+ d2

2

∂2ui+1(x, y, z)

∂r2
(49)

=
[
(1 + σ)vi+1 − ΔΓ vi+1

]
+ d

[
−σvi+1 + ΔΓ vi+1

]

+d2

2

∂2ui+1

∂r2
+
[
−σvi − gi+1 − vi

t

]
+ d

[
σvi + gi+1 + vi

t

]
, (50)

where (x, y, z) ∈ Γ is the foot point of a point (xj , yk, zl) in the discrete grid
boundary γ , and d is the signed distance from a point (xj , yk, zl) in γ to its foot point
(x, y, z) ∈ Γ .

Next, similarly to the approximation of the dynamic boundary conditions, to
construct density ui+1

γ efficiently for the bulk model Eq. 4, we assume spectral

approximations of the terms vi+1(x, y, z) and, also of the term ∂2ui+1(x,y,z)

∂r2 in the
extension operator (50), i.e.:

vi+1(x, y, z) ≈
L∑

κ=1

ai+1
κ φκ(θ, ϕ), (x, y, z) ∈ Γ, (51)

∂2ui+1(x, y, z)

∂r2
≈

L∑

κ=1

bi+1
κ φκ(θ, ϕ), (x, y, z) ∈ Γ, (52)

where θ and ϕ are the polar and the azimuthal angles of the point (x, y, z) ∈ Γ .

Then, after we replace vi+1 and ∂2ui+1(x,y,z)

∂r2 in (50) using the spectral approximations
above, the approximation to the extension operator (50) is given by:

πγΓ

[
ui+1

]
|(xj ,yk,zl ) ≈ ui+1

γ = Aai+1 + Bbi+1 + ci+1, (53)
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where ai+1, bi+1 are the vectors that store the unknown spectral coefficients, and
ci+1 denotes the known term:

ci+1 =
[
−σvi(x, y, z) − gi+1(x, y, z) − vi

t (x, y, z)
]

+d
[
σvi(x, y, z) + gi+1(x, y, z) + vi

t (x, y, z)
]
, (x, y, z) ∈ Γ . (54)

The coefficient matrices A and B are computed as:

Am,κ = (1 + σ)φκ(θm, ϕm) − ΔΓ φκ(θm, ϕm)

+dm [−σφκ(θm, ϕm) + ΔΓ φκ(θm, ϕm)] , (55)

Bm,κ = d2
m

2
φκ(θm, ϕm). (56)

Here, m is the index that represents a point in γ , (θm, ϕm) are the polar and azimuthal
angles for the foot point (x, y, z) ∈ Γ of a point m in γ , and dm is the signed distance
for this point. Similarly, matrices A and B are assembled using the whole point set γ ,
but only the rows corresponding to the γin set will be used in our algorithm to solve
the reduced BEP (17).

(b) Nonlinear bulk-surface coupling. Here, we consider the example of nonlinear
coupling function h(u, v) in (5), similar to, for example, [15]:

h(u, v) = uv. (57)

And, as before, at time level t i+1, we will have ui+1vi+1 = −ui+1
r .

Spectral approach Similar to model with linear bulk-surface coupling Eq. 47, to
couple accurately and efficiently discretization of the bulk equations, hence, the
reduced BEP (17) with the discretization of the surface Eq. 6, we will employ idea
of extension operator (28) together with the spectral approximation of the functions

vi+1(x, y, z), ui+1(x, y, z) and ∂2ui+1(x,y,z)

∂r2 , (x, y, z) ∈ Γ at the time level t i+1, i.e.:

vi+1(x, y, z) ≈
L∑

κ=1

ai+1
κ φκ(θ, ϕ), (x, y, z) ∈ Γ, (58)

ui+1(x, y, z) ≈
L∑

κ=1

ci+1
κ φκ(θ, ϕ), (x, y, z) ∈ Γ, (59)

∂2ui+1(x, y, z)

∂r2
≈

L∑

κ=1

bi+1
κ φκ(θ, ϕ), (x, y, z) ∈ Γ, (60)

where, as before, (θ,ϕ)are the polar and the azimuthal angles of the point (x,y,z)∈Γ .
Then, the extension operator (28) becomes:
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πγΓ

[
ui+1

]
|(xj ,yk ,zl ) = ui+1(x, y, z) + d

∂ui+1(x, y, z)

∂r
+ d2

2

∂2ui+1(x, y, z)

∂r2
(61)

= ui+1 + d
(
−σvi+1 + ΔΓ vi+1 + σvi + gi+1 + vi

t

)
+ d2

2

∂2ui+1

∂r2
(62)

= ui+1 + d
(
−σvi+1 + ΔΓ vi+1

)
+ d2

2

∂2ui+1

∂r2
+ d

(
σvi + gi+1 + vi

t

)
(63)

≈ ui+1
γ (xj , yk, zl)

= Aai+1 + Bbi+1 + Cci+1 + di+1, (xj , yk, zl) ∈ γ and (x, y, z) ∈ Γ, (64)

where the coefficient matrices A, B, C for the unknown spectral coefficients
ai+1, bi+1, ci+1 are computed as:

Am,κ = dm [−σφκ(θm, ϕm) + ΔΓ φκ(θm, ϕm)] , (65)

Bm,κ = d2
m

2
φκ(θm, ϕm), (66)

Cm,κ = φκ(θm, ϕm). (67)

Here, m is the index that represents a point in γ , (θm, ϕm) are the polar and azimuthal
angles for the foot point (x, y, z) ∈ Γ of a point m in γ , and dm is the signed distance
for this point. The vector di+1 in (64) represents the known quantity:

di+1 = d(σvi(x, y, z) + gi+1(x, y, z) + vi
t (x, y, z)), (x, y, z) ∈ Γ, (68)

and is computed at the same foot point (x, y, z) ∈ Γ of a point m in γ . Again,
matrices A, B, and C are assembled for the entire point set γ , but only the rows
corresponding to the γin set will be used to solve the reduced BEP (17).

Linearization of the nonlinear coupling (57) To efficiently combine the coupling (57)
with the BEP (17) and with the discretization of the surface equation (44), we will
consider linearization of Eq. 57 at time level t i+1.

To linearize, we replace vi+1(x, y, z) in Eq. 57 at the time level t i+1 by the
following approximation in time:

vi+1(x, y, z) = vi(x, y, z) + Δtvi
t (x, y, z) + O

(
Δt2

)
(69)

where Δt = O(h). Then, the linearization of Eq. 57 gives us:

− n · ∇ui+1(x, y, z) ≈ ui+1(x, y, z)
(
vi(x, y, z) + Δtvi

t (x, y, z)
)

, (x, y, z) ∈ Γ, (70)

where vi
t term is computed via the relation (45). Note, that using Eq. 46 together

with spectral approximation in Eqs. 58–59, we can formulate coupling relation (57)
at t i+1 as:

⇒ −
(
−σvi+1(x, y, z) + ΔΓ vi+1(x, y, z) + σvi(x, y, z) + gi+1(x, y, z) + vi

t (x, y, z)
)

= ui+1(x, y, z)
(
vi(x, y, z) + Δtvi

t (x, y, z)
)

, (71)

⇒ A′ai+1 − σvi(x, y, z) − gi+1(x, y, z) − vi
t (x, y, z) = C′ci+1, (72)

⇒ −A′ai+1 + C′ci+1 = −σvi(x, y, z) − gi+1(x, y, z) − vi
t (x, y, z). (73)

The expression (73) gives the linear relation between unknown spectral coefficients
ai+1
κ and ci+1

κ . Here, the matrices A′ and C′ are defined as:
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A′
m,κ = −(−σφκ(θm, ϕm) + ΔΓ φκ(θm, ϕm)), (74)

C′
m,κ = φκ(θm, ϕm)(vi + Δtvi

t ). (75)

Here, (θm, ϕm) corresponds to the angles of the foot point (x, y, z) ∈ Γ of a point m

in γin (since we employ the reduced BEP), and vi + Δtvi
t is the corresponding value

for the same foot point m.

Remark 6 One possible improvement is to approximate vi+1 in Eq. 57 at t i+1 using
the following higher order in time approximation:

vi+1(x, y, z) ≈ vi(x, y, z)+Δtvi
t (x, y, z)+ Δt2

2
vi
tt (x, y, z), (x, y, z) ∈ Γ, (76)

where vi
tt (x, y, z) can be approximated using the finite difference approximation in

time.

Reconstruction of the solutions at time t i+1:

Case 1: Dynamic boundary conditions Next, we use the reduced BEP (17) combined
with the approximation of the extension operator in the form (40), to obtain the least
squares (LS) system of dimension |γin| × L for the unknown spectral coefficients
ai+1:

[A − Pγ A]ai+1 = Gh,ΔtF
i+1
γ −

(
ci+1 − Pγ ci+1

)
, on γin. (77)

After that, we solve for the unknown spectral coefficients ai+1, using the normal
equation of the reformulated BEP (77).

Case 2: (a) Linear bulk-surface coupling Similarly to the model with dynamic bound-
ary conditions, we combine the reduced BEP (17) and the approximation of the
extension operator in the form (53), to obtain the LS system of dimension |γin|×(2L)

for the unknown spectral coefficients ai+1 and bi+1:

[A−Pγ A]ai+1+[B −Pγ B]bi+1 = Gh,ΔtF
i+1
γ −

(
ci+1 − Pγ ci+1

)
, on γin. (78)

Again, we solve for the unknown spectral coefficients ai+1 and bi+1 using the normal
equation of the reformulated BEP (78).

Case 2: (b) Nonlinear bulk-surface coupling Similarly to the model with dynamic
boundary conditions and bulk-surface model with linear coupling, we combine the
reduced BEP (17), the approximation to the extension operator in the form (64), and
the coupling condition (73), to obtain the LS system of dimension 2|γin| × (3L) for
the unknown spectral coefficients ai+1, bi+1, and ci+1:

[A − Pγ A]ai+1 + [B − Pγ B]bi+1 + [C − Pγ C]ci+1 = Gh,ΔtF
i+1
γ −

(
di+1 − Pγ di+1

)
, on γin, (79)

−A′ai+1 + C′ci+1 = −σvi − gi+1 − vi
t , on γin. (80)

Similarly, we solve for the unknown spectral coefficients ai+1, bi+1, and ci+1, using
the normal equation of the LS system (79)–(80).
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Remark 7 For the LS system in case 1, case 2: (a), and case 2: (b) described above,
the normal equation approach reduces the computational cost of the algorithms sig-
nificantly, since the size of the normal matrices will be L × L, 2L × (2L) or
3L × (3L) respectively, and |γin| � L. As for the condition numbers of the nor-
mal matrices, they can be reduced to the magnitude of approximately 103 on all
meshes when one, for example, uses a simple preconditioner based on the maxi-
mum value in the column scaling in the LS system, i.e., for LS system Ax = b, the
normal matrix is P T AT AP where P is a diagonal matrix with Pii = 1/max(Ai),
where Ai is the ith column of the matrix A. See Table 12 for examples of the
condition numbers.

Once we get the spectral coefficients (see case 1, case 2: (a), and case 2: (b)), we
will be able to reconstruct (i) the solutions ui+1(x, y, z) or vi+1(x, y, z) for (x, y, z)

on the surface at the time level t i+1 using the spectral approximations; and (ii) the
density ui+1

γ at time level t i+1 using (40) (dynamic boundary conditions), (53) (bulk-
surface model with linear coupling), or (64) (bulk-surface model with nonlinear
coupling). Finally, the approximated solution ui+1

j,k,l , (xj , yk, zl) ∈ N+ to the mod-

els (1)–(3) or (4)–(8) at the time level t i+1 is obtained using the discrete generalized
Green’s formula (81) below.

Discrete generalized Green’s formula The final step of DPM is to use the computed
density ui+1

γ to construct the approximation to the continuous solution in the bulk of
the models (1)–(3), or of (4)–(8).

Proposition 2 (Discrete generalized Green’s formula) The discrete solution ui+1
j,k,l on

N+ constructed using discrete generalized Green’s formula:

ui+1
j,k,l = PN+γ ui+1

γ + Gh,ΔtF
i+1
j,k,l , (xj , yk, zl) ∈ N+, (81)

is the approximation to the exact solution u at (xj , yk, zl) ∈ Ω at time t i+1 of the con-
tinuous model (1)–(3), or of (4)–(8). We also conjecture that we have the following
accuracy of the proposed numerical scheme:

∣∣∣
∣∣∣ui+1

j,k,l − u
(
xj , yk, zl, t

i+1
)∣∣∣
∣∣∣∞ = O

(
h2 + Δt2

)
. (82)

Remark 8 The accuracy (82) is observed in all numerical experiments presented in
Section 4. The reader can consult [32] for the detailed theoretical foundation of DPM.

Remark 9 We solve the LS systems (77) in case 1, (78) in case 2: (a), and (79)–
(80) in case 2: (b) using the normal equation approach. For the normal equations
of the resulting algebraic systems, the inverse matrices of the normal matrices are
pre-computed outside of the time loop for case 1 and case 2: (a) using Cholesky
decomposition.

For case 2: (b), the normal matrix needs to be assembled and the Cholesky decom-
position is performed at each time step since the matrix C′ is updated at each time
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Algorithm 1 An outline of main steps of the DPM-based algorithm.

1: Construct point sets M±, M0, N±, N0, γex and γin from uniform meshes on the
auxiliary domain Ω0, which embeds Ω

2: Assemble matrices for the reduced BEP:
3: if Case 1 then
4: Assemble A, then compute A − Pγ A with restriction to the point set γin in

(77)
5: else if Case 2: (a) then
6: Assemble A and B, then compute A−Pγ A, B −Pγ B with restriction to the

point set γin in (78)
7: else if Case 2: (b) then
8: Assemble A, B and C, then compute A − Pγ A, B − Pγ B, C − Pγ C with

restriction to the point set γin in (79), and assemble A′ in γin

9: end if
10: if Case 1 or Case 2: (a) then
11: Precompute the inverse of the coefficient matrix in the normal equation of

the LS system (77) or (78), using Cholesky decomposition
12: end if
13: Initialize the bulk/surface solutions using the initial conditions
14: while t i+1 ≤ Tf inal do
15: if Case 2: (b) then
16: Assemble matrix C′ in γin and compute the Cholesky decomposition of

the coefficient matrix of the normal equation corresponding to the LS system
(79)–(80)

17: end if
18: Construct the Particular Solution Gh,ΔtF

i+1
j,k,l on N+ using the discrete AP

19: Solve the BEP for the unknown spectral coefficients using the normal
equations

20: Reconstruct the density ui+1
γ using extension operator (40) for Case 1, (53)

for Case 2: (a), or (64) for Case 2: (b)
21: Obtain bulk solution ui+1 using the discrete generalized Green’s for-

mula (81), and surface solution ui+1 or vi+1 using the spectral approximation
22: Update and march in time
23: end while

level inside the time loop. However, if the size of the normal matrix is large, for effi-
ciency, one can exploit the block structures of the normal matrix and update only the
blocks associated with C′ at each time step.

4 Numerical results

In this section, we illustrate setup of the numerical tests and present the numeri-
cal results (errors and convergence rates, 3D views of the bulk/surface solutions,
etc.) for the models with dynamic boundary condition (BC) (1)–(3), and for the
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bulk-surface problems (4)–(8). In this work, we restrict our discussion to a spherical
domain with radius R centered at the origin. For a general domain in 3D, the pro-
posed algorithms can be extended in a straightforward way, for example, by selecting
a different set of basis functions or replacing the spectral approach on the surface
with the trace-FEM [8, 9] (see Remark 5 in Section 3.1), which will be reported in
future work.

4.1 Setup of numerical tests

The auxiliary domain is chosen to be a cube, i.e., [−R − R/5, R + R/5] × [−R −
R/5, R + R/5] × [−R − R/5, R + R/5]. Then, the auxiliary domain is discretized
using meshes of dimension N × N × N and the grid spacing of the mesh is h =
2(R + R/5)/N . We adopt the notation N × N × N for meshes throughout this
numerical section. Note that other choices of the auxiliary domains will also work.

For the basis functions φκ(θ, ϕ), we use the following spherical harmonics:

Ym
� (θ, ϕ) =

⎧
⎨

⎩

Pm
� (cos θ), m = 0,

Pm
� (cos θ) cos(mϕ), m > 0,

P
|m|
� (cos θ) sin(|m|ϕ), m < 0,

for − � ≤ m ≤ �. (83)

where Ym
� (θ, ϕ) is the spherical harmonic function of degree � and order m. For the

index κ in φκ(θ, ϕ), it is related to (�,m), i.e.:

κ =
{

�2 + 2m + 1, m ≥ 0,

�2 + 2|m|, m < 0,
(84)

The total number of spherical harmonics used in the tests is determined by
the exact solutions u(x, y, z, t) and v(x, y, z, t) on the boundary Γ . Generally,
the spectral coefficients of the spherical harmonic basis functions for the initial
data of u and v can be computed. This helps determine the degree and the order
of the spherical harmonics to be included in the spectral approximations. Thus,
the total number of harmonics used in the numerical tests is independent of the
grid spacing h. The only constraint on the number of the harmonics is that the
total number of unknown spectral coefficients in the BEPs ((77) for case 1, (78)
for case 2: (a), and (79) for case 2: (b)) is much less than |γin|. Generally, this
condition is easily satisfied due to the abundance of mesh nodes in γin in 3D,
and the relative small number of basis functions required to resolve u and v on
the boundary.

In all the numerical tests in this section, we set the final time to be T = 0.1.
For the time approximation of the models, we adopt the second-order trapezoidal
scheme, and we use the time step Δt = h, since we consider the second-order
approximation in space. There is no particular reason of the choice of the trapezoidal
rule, and other second-order implicit time stepping techniques can also be employed.
For example, one can use the second-order implicit Runge-Kutta scheme, and the
numerical results will not be significantly different from the ones obtained with the
trapezoidal rule.

Author's personal copy



   67 Page 20 of 39 Adv Comput Math           (2020) 46:67 

4.2 The bulk/surface errors

The approximation to the ∞-, L2- and H 1-norm errors in the bulk are computed
using the following formulas respectively:
∥∥∥u − ui

h

∥∥∥∞(Ω)
≈ E∞(Ω) = max

i,j,k,l
1M+

∣∣∣ue
(
xj , yk, zl, t

i
)

− ui
j,k,l

∣∣∣ (85)

∥∥∥u − ui
h

∥∥∥
L2(Ω)

≈ EL2(Ω) = max
i

⎡

⎣
∑

j,k,l

1M+
(
u
(
xj , yk, zl, t

i
)

− ui
j,k,l

)2
h3

⎤

⎦

1
2

(86)

∥∥∥u − ui
h

∥∥∥
H 1(Ω)

≈ EH 1(Ω) = max
i

⎡

⎣
∑

j,k,l

1M+
(
u(xj , yk, zl, t

i ) − ui
j,k,l

)2
h3

+ 1M+

(
u
(
xj + h, yk, zl, t

i
) − u

(
xj − h, yk, zl, t

i
)

2h
− ui

j+1,k,l − ui
j−1,k,l

2h

)2

h3

+ 1M+

(
u
(
xj , yk + h, zl, t

i
) − u

(
xj , yk + h, zl, t

i
)

2h
− ui

j,k+1,l − ui
j,k−1,l

2h

)2

h3

+ 1M+

(
u
(
xj , yk, zl + h, t i

) − u
(
xj , yk, zl − h, t i

)

2h
− ui

j,k,l+1 − ui
j,k,l−1

2h

)2

h3

⎤

⎦

1
2

(87)

where ui
j,k,l ≈ u

(
xj , yk, zl, t

i
)

and ui
h denotes also the numerical approximation

to the exact solution at time t i using grid spacing h. Also, 1M+ is the characteristic
function for the point set M+.

Additionally, we consider the ∞-norm error for the components in the gradient
of the bulk solution ui

j,k,l at time level t i . For example, the ∞-norm error of the
x-component can be computed using the following formula:

E∞(Ω) = max
i,j,k,l

1M+

∣∣∣∣∣
u
(
xj + h, yk, zl , t

i
) − u

(
xj − h, yk, zl , t

i
)

2h
− ui

j+1,k,l − ui
j−1,k,l

2h

∣∣∣∣∣
, (88)

and the errors in y, z-components are computed similarly.
The approximations to the ∞-, L2-norm and H 1-norm errors on the surface are

computed using the following formulas respectively:
∥∥∥v − vi

h

∥∥∥∞(Γ )
≈ E∞(Γ ) = max

i,j,k

∣∣∣v
(
R, θj , ϕk, t

i
)

− vi
j,k

∣∣∣ (89)

∥∥∥v−vi
h

∥∥∥
L2(Γ )

≈EL2(Γ ) =max
i

⎡

⎣
∑

j,k

(
v
(
R, θj , ϕk, t

i
)
−vi

j,k

)2
sin θjΔθΔϕ

⎤

⎦

1
2

(90)
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∥∥∥v − vi
h

∥∥∥
H 1(Γ )

≈ EH 1(Γ ) = max
i

[∑

j,k

(
v
(
R, θj , ϕk, t

i
)

− vi
j,k

)2
sin θj ΔθΔϕ

+
(

v
(
R, θj + Δθ, ϕk, t

i
) − v

(
R, θj , ϕk, t

i
)

RΔθ
− vi

j+1,k − vi
j,k

RΔθ

)2

sin θj ΔθΔϕ

+
(

v
(
R, θj , ϕk + Δϕ, ti

) − v
(
R, θj , ϕk, t

i
)

R sin θj Δϕ
− vi

j,k+1 − vi
j,k

R sin θj Δϕ

)2

sin θj ΔθΔϕ

] 1
2

(91)

where vi
j,k ≈ v(R, θj , ϕk, t

i) and vi
h denotes also the numerical approximation of

the exact solution at time t i . The increments in the discretization of θ and ϕ are Δθ

and Δϕ respectively. Moreover, in (91), we require sin θj �= 0. For the surface errors
of the model (1)–(3) with dynamic boundary condition, one simply replaces v with u

in the formulas (89)–(91).
Note that, for all the ∞-, L2- and H 1-norm errors in space, the ∞-norm is taken

in time.

4.3 Dynamic boundary conditions

In this subsection, we present the numerical results for models (1)–(3) with dynamic
boundary conditions in a spherical domain with radius R = 0.5.

4.3.1 Test 1

For the first test, we employ the exact solution u(x, y, z, t) = et
(
x2 + 2y2 + 3z2

)
.

The consideration of such a test problem is that it offers both simplicity and
asymmetry in space.

In Table 1, we observe that in the bulk, the L2-norm errors are smaller than the
∞ errors, which is as expected. However, on the surface, the L2-norm errors are
larger than the ∞-norm errors. This can be explained by the following estimate of
the L2-norm errors:

EL2(Γ ) = max
i

⎡

⎣
∑

j,k

(
u
(
R, θj , ϕk, t

i
)

− ui
j,k

)2
sin θjΔθΔϕ

⎤

⎦

1
2

(92)

≤ max
i,j,k

∣∣∣u
(
R, θj , ϕk, t

i
)

− ui
j,k

∣∣∣

⎡

⎣
∑

j,k

sin θjΔθΔϕ

⎤

⎦

1
2

(93)

≈
√

4πR2max
i,j,k

∣∣∣u
(
R, θj , ϕk, t

i
)

− ui
j,k

∣∣∣ (94)

= 2R
√

πE∞(Γ ) (95)

We observe the overall second-order convergence in all norms of the errors for
solutions, both on the surface and in the bulk. Note that, the ∞-norm errors of the
gradients in the bulk also obey the second-order convergence, as well as the H 1-norm
errors in the bulk and on the surface.

In Tables 2, 3, 4, and 5, we present the convergence results for the dynamic BC
model (1)–(3) with perturbed d , θ , and ϕ in the extension operator (28). (The per-
turbations in θ and ϕ mimic the “errors” in the normal vector n.) We investigated
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Table 1 Convergence of the ∞-, L2-, and H 1-norm errors of the solutions in the bulk/surface, and the
∞-norm errors of the gradients in the bulk for the dynamic BC models (1)–(3) with exact solution u =
et
(
x2 + 2y2 + 3z2

)
until final time T = 0.1 in the sphere of R = 0.5. The number of spherical harmonics

for term u is 9

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 5.7519E−06 — 3.4724E−06 — 4.7239E−06 —

63 × 63 × 63 1.6449E−06 1.81 9.3307E−07 1.90 1.2730E−06 1.89

127 × 127 × 127 4.0469E−07 2.02 2.3127E−07 2.01 3.1149E−07 2.03

255 × 255 × 255 1.0445E−07 1.95 5.8647E−08 1.98 7.9459E−08 1.97

N × N × N E∞(Γ ) : u Rate EL2(Γ ) : u Rate EH 1(Γ ) : u Rate

31 × 31 × 31 5.8021E−06 — 8.9307E−06 — 9.6440E−06 —

63 × 63 × 63 1.6613E−06 1.80 2.4687E−06 1.86 2.7621E−06 1.80

127 × 127 × 127 4.0576E−07 2.03 6.1087E−07 2.01 6.7467E−07 2.03

255 × 255 × 255 1.0469E−07 1.95 1.5629E−07 1.97 1.7384E−07 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 1.8856E−06 — 4.6662E−06 — 7.7164E−06 —

63 × 63 × 63 4.1092E−07 2.20 1.1122E−06 2.07 1.8944E−06 2.03

127 × 127 × 127 9.8629E−08 2.06 2.7337E−07 2.02 4.6526E−07 2.03

255 × 255 × 255 2.4337E−08 2.02 6.7944E−08 2.01 1.1611E−07 2.00

Table 2 Convergence: d perturbed by εh3 for for the dynamic BC models (1)–(3) with exact solution
u = et

(
x2 + 2y2 + 3z2

)
until final time T = 0.1 in the sphere of R = 0.5. The number of spherical

harmonics for term u is 9

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 1.6347E−04 — 4.8011E−05 — 2.9914E−04 —

63 × 63 × 63 2.4156E−05 2.76 6.4637E−06 2.89 4.9519E−05 2.59

127 × 127 × 127 3.4620E−06 2.80 9.1209E−07 2.83 8.3727E−06 2.56

255 × 255 × 255 5.5230E−07 2.65 1.4151E−07 2.69 1.4736E−06 2.51

N × N × N E∞(Γ ) : u Rate EL2(Γ ) : u Rate EH 1(Γ ) : u Rate

31 × 31 × 31 1.6052E−05 — 1.1379E−05 — 3.3818E−05 —

63 × 63 × 63 3.0297E−06 2.41 3.0092E−06 1.92 5.5188E−06 2.62

127 × 127 × 127 4.7815E−07 2.66 6.9355E−07 2.12 8.9181E−07 2.63

255 × 255 × 255 1.1105E−07 2.11 1.6069E−07 2.11 1.7645E−07 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 1.8435E−03 — 1.8622E−03 — 1.8753E−03 —

63 × 63 × 63 4.8836E−04 1.92 4.5222E−04 2.04 4.6395E−04 2.02

127 × 127 × 127 1.2831E−04 1.93 1.1405E−04 1.99 1.0923E−04 2.09

255 × 255 × 255 3.4607E−05 1.89 3.2892E−05 1.79 3.1182E−05 1.81
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Table 3 Convergence: θ perturbed by εh3 for for the dynamic BC models (1)–(3) with exact solution
u = et

(
x2 + 2y2 + 3z2

)
until final time T = 0.1 in the sphere of R = 0.5. The number of spherical

harmonics for term u is 9

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 3.1314E−05 — 5.5099E−06 — 5.8781E−05 —

63 × 63 × 63 4.9768E−06 2.65 1.0797E−06 2.35 1.1369E−05 2.37

127 × 127 × 127 9.7584E−07 2.35 2.3402E−07 2.21 2.2574E−06 2.33

255 × 255 × 255 1.8121E−07 2.43 5.9103E−08 1.99 4.7119E−07 2.26

N × N × N E∞(Γ ) : u Rate EL2(Γ ) : u Rate EH 1(Γ ) : u Rate

31 × 31 × 31 3.0261E−05 — 2.6860E−05 — 7.6184E−05 —

63 × 63 × 63 4.7251E−06 2.68 4.0207E−06 2.74 9.6476E−06 2.98

127 × 127 × 127 7.7908E−07 2.61 7.1346E−07 2.49 1.3434E−06 2.84

255 × 255 × 255 1.5157E−07 2.36 1.6333E−07 2.13 2.2525E−07 2.58

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 4.7534E−04 — 3.6962E−04 — 4.0036E−04 —

63 × 63 × 63 1.3972E−04 1.77 1.0855E−04 1.77 1.2844E−04 1.64

127 × 127 × 127 3.7348E−05 1.90 2.8852E−05 1.91 3.4981E−05 1.88

255 × 255 × 255 1.0169E−05 1.88 7.8385E−06 1.88 9.6735E−06 1.85

Table 4 Convergence: ϕ perturbed by εh3 for the dynamic BC models (1)–(3) with exact solution u =
et
(
x2 + 2y2 + 3z2

)
until final time T = 0.1 in the sphere of R = 0.5. The number of spherical harmonics

for term u is 9

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 1.2008E−05 — 3.5593E−06 — 2.1347E−05 —

63 × 63 × 63 2.2351E−06 2.43 9.5723E−07 2.89 4.1701E−06 2.59

127 × 127 × 127 4.8683E−07 2.20 2.3412E−07 2.83 7.9991E−07 2.56

255 × 255 × 255 1.0523E−07 2.21 5.8696E−08 2.69 1.5425E−07 2.51

N × N × N E∞(Γ ) : u Rate EL2(Γ ) : u Rate EH 1(Γ ) : u Rate

31 × 31 × 31 1.3088E−05 — 1.1687E−05 — 3.8782E−05 —

63 × 63 × 63 2.2948E−06 2.51 2.6848E−06 1.92 5.2359E−06 2.62

127 × 127 × 127 4.4200E−07 2.38 6.2695E−07 2.12 8.5292E−07 2.63

255 × 255 × 255 1.0517E−07 2.07 1.5687E−07 2.11 1.8487E−07 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 1.6985E−04 — 1.6487E−04 — 1.4704E−04 —

63 × 63 × 63 4.8808E−05 1.92 5.2182E−05 2.04 4.5240E−05 2.02

127 × 127 × 127 1.4275E−05 1.93 1.4329E−05 1.99 1.2582E−05 2.09

255 × 255 × 255 3.9625E−06 1.89 3.9751E−06 1.79 3.6156E−06 1.81
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Table 5 Convergence: d, θ, ϕ perturbed by εh3 for the dynamic BC models (1)–(3) with exact solution
u = et

(
x2 + 2y2 + 3z2

)
until final time T = 0.1 in the sphere of R = 0.5. The number of spherical

harmonics for term u is 9

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 1.6943E−04 — 4.8339E−05 — 3.0187E−04 —

63 × 63 × 63 2.4949E−05 2.76 6.5310E−06 2.89 5.0688E−05 2.59

127 × 127 × 127 3.4388E−06 2.80 9.1301E−07 2.83 8.6516E−06 2.56

255 × 255 × 255 5.5585E−07 2.65 1.4177E−07 2.69 1.5262E−06 2.51

N × N × N E∞(Γ ) : u Rate EL2(Γ ) : u Rate EH 1(Γ ) : u Rate

31 × 31 × 31 3.0730E−05 — 2.6648E−05 — 8.3318E−05 —

63 × 63 × 63 4.4242E−06 2.41 3.8308E−06 1.92 8.5970E−06 2.62

127 × 127 × 127 8.4725E−07 2.66 8.1565E−07 2.12 1.5920E−06 2.63

255 × 255 × 255 1.4816E−07 2.11 1.6760E−07 2.11 2.3146E−07 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 2.0305E−03 — 1.7989E−03 — 1.7563E−03 —

63 × 63 × 63 5.5069E−04 1.92 5.0127E−04 2.04 5.0564E−04 2.02

127 × 127 × 127 1.3554E−04 1.93 1.2851E−04 1.99 1.2397E−04 2.09

255 × 255 × 255 3.9576E−05 1.89 3.5780E−05 1.79 3.2330E−05 1.81

numerically with different choices of perturbations and present the results with εh3

(ε is a pseudo-random number sampled uniformly from [0, 1]), which preserves the
second-order accuracy of the solution in ∞-, L2-, and H 1-norm, and the gradient
components in ∞-norm. Since the random perturbation is added at every point in γ

set, the total perturbation is in the order of O(h). Note that tests with perturbations in
Tables 2–5 illustrate that the proposed DPM-based algorithm preserves the second-
order accuracy even in situations where the signed distances and the normal vectors
to the surface boundary are not known exactly.

In Fig. 2, we observe that the behaviors of the L2- and H 1-norm errors are very
similar in the bulk and on the surface. Besides, the errors in the bulk are smaller
than the errors on the surface in both norms. Also, as already mentioned, the H 1-
norm errors give the second-order convergence, as opposed to the results obtained,
for example, from the finite-element method, e.g., [20]. Moreover, the errors are far
below the reference dashed lines, which implies a small error constant in (82). In
Fig. 3, we show the 3D isosurface plots (analogous to the contour plots in 2D) in the
top figure and the plot of surface solution in the bottom figure, obtained using mesh
255 × 255 × 255 at the final time T = 0.1.

4.3.2 Test 2

In this subsection, we use the exact solution u(x, y, z, t) = et sin(x) sin(2y) sin(3z).
Compared with the first test, this choice of test is more oscillatory and requires a
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Fig. 2 Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H 1-norm errors (right
figure) for the dynamic BC models (1)–(3) with the exact solution u = et

(
x2 + 2y2 + 3z2

)
in the sphere

of R = 0.5

larger number of spherical harmonics to resolve u and urr accurately on the bound-
ary Γ . Nevertheless, the total number of harmonics is still much less than |γin|; see
Table 6, for example.

In Table 6, again, we observe second-order accuracy in all norms of the solutions
in the bulk and on the surface.

Table 6 Convergence of the ∞-, L2- and H 1-norm errors of the solutions in the bulk/surface, and the
∞-norm errors of gradients in the bulk for the dynamic BC models (1)–(3) with the exact solution u =
et sin(x) sin(2y) sin(3z) until final time T = 0.1 in the sphere of R = 0.5. The number of spherical
harmonics for terms u is 400 per each term

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 8.7147E−06 — 2.4039E−06 — 2.8357E−05 —

63 × 63 × 63 1.7811E−06 2.29 5.3478E−07 2.17 5.6563E−06 2.33

127 × 127 × 127 4.3585E−07 2.03 1.3077E−07 2.03 1.3353E−06 2.08

255 × 255 × 255 1.0849E−07 2.01 3.2659E−08 2.00 3.3032E−07 2.02

N × N × N E∞(Γ ) : u Rate EL2(Γ ) : u Rate EH 1(Γ ) : u Rate

31 × 31 × 31 5.8527E−06 — 5.1084E−06 — 3.7771E−05 —

63 × 63 × 63 1.4134E−06 2.05 1.2405E−06 2.04 9.0795E−06 2.06

127 × 127 × 127 3.4714E−07 2.03 3.0530E−07 2.02 2.2280E−06 2.03

255 × 255 × 255 8.5729E−08 2.02 7.5389E−08 2.02 5.5028E−07 2.02

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 8.5641E−05 — 9.0012E−05 — 1.6055E−04 —

63 × 63 × 63 2.3716E−05 1.85 2.0313E−05 2.15 5.1744E−05 1.63

127 × 127 × 127 5.0683E−06 2.27 5.2314E−06 1.96 1.1111E−05 2.22

255 × 255 × 255 1.3229E−06 1.94 1.1629E−06 2.17 2.8860E−06 1.94
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(a)

(b)

Fig. 3 3D views of the bulk (top figure) and the surface (bottom figure) approximations from mesh 255 ×
255 × 255 at T = 0.1 to the dynamic BC models (1)–(3) with the exact solution u = et

(
x2 + 2y2 + 3z2

)

in the sphere of R = 0.5
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Fig. 4 Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H 1-norm errors (right
figure) for the dynamic BC models (1)–(3) with the exact solution u = et sin(x) sin(2y) sin(3z) in the
sphere of R = 0.5

Similarly, in Fig. 4, the errors in the bulk are smaller than the errors on the surface.
In Fig. 5, we give the 3D isosurface plots in the top figure and the plot of surface
solution in the bottom figure, obtained using mesh 255 × 255 × 255 at final time
T = 0.1.

4.4 Linear bulk-surface coupling

In this subsection, we present the numerical results for the models (4)–(8), with
linear bulk-surface coupling, i.e., h(u, v) = u − v in a spherical domain of
radius R = 1. In particular, the exact solutions u(x, y, z, t) = et e−x(x−1)−y(y−1)

and v(x, y, z, t) = et e−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) are such
that the coupling condition (5) is satisfied exactly on the surface (the test
is modification of the tests from [6, 14]). Additionally, we provide numer-
ical results to compare with the ones obtained using the cut finite-element
method in [6].

Remark 10 We should note that the comparisons between the DPM-based method in
this work and the cut-FEM approach in [6] are not precise, since the exact solutions
u(x, y, z) = e−x(x−1)−y(y−1) and v(x, y, z) = e−x(x−1)−y(y−1)(1+x(1−2x)+y(1−
2y)) in [6] are considered for the elliptic type bulk-surface problems. Nevertheless,
we add et in the exact solutions and take the ∞-norm errors in time, in the hope to
discuss the difference and similarity between the two approaches.

In Table 7, we observe second-order accuracy for all norms of the solutions in the
bulk and on the surface, together with the second-order accuracy in the components
of the gradients. The relative larger errors of L2-norm on the surface, compared with
the ∞-norm, again can be similarly explained by the inequalities (92)–(95).

In Fig. 6, we observe second-order convergence for both the L2- and H 1-norm
errors in the bulk and on the surface. In contrast, the bulk/surface H 1-norm errors in
the cut finite element approach [6, Fig. 4] are only first order accurate. Furthermore,
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Fig. 5 3D views of the bulk (top figure) and the surface (bottom figure) approximations from mesh
255 × 255 × 255 at T = 0.1 to the dynamic BC models (1)–(3) with the exact solution u =
et sin(x) sin(2y) sin(3z) in the sphere of R = 0.5
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Table 7 Convergence of the ∞-, L2-, and H 1-norm errors of the solutions in the bulk/surface, and the
∞-norm errors of gradients in the bulk for the models (4)–(8) with linear bulk-surface coupling. The exact
solutions are u = et e−x(x−1)−y(y−1) and v = et e−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) until final
time T = 0.1 in the sphere of R = 1. The number of spherical harmonics for terms v and urr is 529 per
each term

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 1.2537E−03 — 9.5344E−04 — 3.5388E−03 —

63 × 63 × 63 2.9791E−04 2.07 2.2803E−04 2.06 7.0225E−04 2.33

127 × 127 × 127 7.2333E−05 2.04 5.5188E−05 2.05 1.7337E−04 2.02

255 × 255 × 255 1.7734E−05 2.03 1.3555E−05 2.03 4.2658E−05 2.02

N × N × N E∞(Γ ) : v Rate EL2(Γ ) : v Rate EH 1(Γ ) : v Rate

31 × 31 × 31 9.3119E−05 — 1.2573E−04 — 2.9557E−04 —

63 × 63 × 63 2.3982E−05 1.96 3.2923E−05 1.93 7.3660E−05 2.00

127 × 127 × 127 6.3155E−06 1.93 8.5321E−06 1.95 1.9781E−05 1.90

255 × 255 × 255 1.5774E−06 2.00 2.1147E−06 2.01 4.9585E−06 2.00

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 8.2067E−03 — 8.2067E−03 — 2.5934E−03 —

63 × 63 × 63 1.1452E−03 2.84 1.1452E−03 2.84 3.6088E−04 2.85

127 × 127 × 127 2.9309E−04 1.97 2.9309E−04 1.97 6.3228E−05 2.51

255 × 255 × 255 7.6635E−05 1.94 7.6635E−05 1.94 1.5690E−05 2.01

compared with [6, Fig. 4], the approach based on DPM in this work gives much
smaller L2-norm errors both in the bulk and on the surface.

In the meantime, we notice that in Fig. 6, the errors on the surface are smaller than
the errors in the bulk, which is different from the results of the models with dynamic
boundary conditions (see Figs. 2 and 4). Nevertheless, the second-order convergence
rates are recovered in all cases.

In Fig. 7, we illustrate the solution via the 3D isosurface plots in the top figure and
the plot of the surface solution in the bottom figure, obtained on mesh 255×255×255
at final time T = 0.1. The bottom figure in Fig. 7 can also be compared with [6, Fig.
3]. In this work, we are able to recover a better resolution of the solution on the
surface using the DPM-based algorithms.

4.5 Nonlinear bulk-surface coupling

In this subsection, we demonstrate the numerical results for the models (4)–(8) with
nonlinear bulk-surface coupling h(u, v) = uv in the spherical domain of radius R =
1. The considered model is motivated by the examples of the nonlinear bulk-surface
coupling from [15, 20].
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Table 8 Convergence of the ∞-, L2-, and H 1-norm errors of the solutions in the bulk/surface, and the
∞-norm errors of gradients in the bulk for the models (4)–(8) with nonlinear bulk-surface coupling. The
exact solutions are u = et e−x(x−1)−y(y−1) and v = et e−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) until
final time T = 0.1 in the sphere of R = 1. The number of spherical harmonics for terms u, v, and urr is
529 per each term, and vi+1 ≈ vi + Δtvi

t

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 2.1745E−03 — 1.4171E−03 — 4.5547E−03 —

63 × 63 × 63 6.6223E−04 1.72 4.0246E−04 1.82 1.1225E−03 2.02

127 × 127 × 127 1.8343E−04 1.85 1.0690E−04 1.91 3.1453E−04 1.84

255 × 255 × 255 4.6212E−05 1.99 2.7124E−05 1.98 7.8796E−05 2.00

N × N × N E∞(Γ ) : v Rate EL2(Γ ) : v Rate EH 1(Γ ) : v Rate

31 × 31 × 31 1.2462E−04 — 1.7529E−04 — 3.6232E−04 —

63 × 63 × 63 5.6149E−05 1.15 7.6767E−05 1.19 1.5940E−04 1.18

127 × 127 × 127 1.7791E−05 1.66 2.3819E−05 1.69 4.9687E−05 1.68

255 × 255 × 255 4.6461E−06 1.94 6.3801E−06 1.90 1.2982E−05 1.94

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 8.5460E−03 — 8.5460E−03 — 4.2336E−03 —

63 × 63 × 63 1.0922E−03 2.97 1.0922E−03 2.97 1.3177E−03 1.68

127 × 127 × 127 3.1575E−04 1.79 3.1575E−04 1.79 3.6751E−04 1.84

255 × 255 × 255 7.5933E−05 2.06 7.5933E−05 2.06 9.9683E−05 1.88

4.5.1 Test 1 for nonlinear coupling

As a first test here, we consider the exact solutions u(x, y, z, t) = et e−x(x−1)−y(y−1)

in the bulk and v(x, y, z, t) = et e−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) on the

Fig. 6 Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H 1-norm errors (right
figure) for the models (4)–(8) with linear bulk-surface coupling h(u, v) = u − v. The exact solutions are
u = et e−x(x−1)−y(y−1) and v = et e−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) with final time T = 0.1
in the sphere of R = 1
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Fig. 7 3D views of the bulk (top figure) and the surface (bottom figure) approximations from mesh 255 ×
255 × 255 at T = 0.1 to the models (4)–(8) with linear bulk-surface coupling h(u, v) = u − v. The exact
solutions are u = et e−x(x−1)−y(y−1), v = et e−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) in the sphere of
R = 1
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Table 9 Convergence of the ∞-, L2-, and H 1-norm errors of the solutions in the bulk/surface, and the
∞-norm errors of gradients in the bulk for the models (4)–(8) with nonlinear bulk-surface coupling. The
exact solutions are u = et e−x(x−1)−y(y−1) and v = et e−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) until
final time T = 0.1 in the sphere of R = 1. The number of spherical harmonics for terms u, v, and urr is
529 per each term, and vi+1 ≈ vi + Δtvi

t + Δt2vi
tt /2

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 1.2442E−03 — 9.5589E−04 — 3.6512E−03 —

63 × 63 × 63 3.0007E−04 2.05 2.2875E−04 2.06 7.1388E−04 2.35

127 × 127 × 127 7.2477E−05 2.05 5.4911E−05 2.06 1.7713E−04 2.01

255 × 255 × 255 1.7687E−05 2.03 1.3390E−05 2.04 4.3475E−05 2.03

N × N × N E∞(Γ ) : v Rate EL2(Γ ) : v Rate EH 1(Γ ) : v Rate

31 × 31 × 31 1.1314E−04 — 1.3360E−04 — 2.9799E−04 —

63 × 63 × 63 2.9023E−05 1.96 3.4459E−05 1.96 7.6480E−05 1.96

127 × 127 × 127 7.7800E−06 1.90 9.2502E−06 1.90 2.0684E−05 1.89

255 × 255 × 255 1.9908E−06 1.97 2.3611E−06 1.97 5.2992E−06 1.96

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 8.5799E−03 — 8.5799E−03 — 2.4914E−03 —

63 × 63 × 63 1.1211E−03 2.94 1.1211E−03 2.94 4.0347E−04 2.63

127 × 127 × 127 2.9313E−04 1.94 2.9313E−04 1.94 1.0618E−04 1.93

255 × 255 × 255 7.6440E−05 1.94 7.6440E−05 1.94 2.6384E−05 2.01

surface. The motivation to use the same exact solutions as in the linear coupling is that
we can compare the performance of the algorithm for linear/nonlinear bulk-surface
coupling and test the robustness of the numerical algorithm based on DPM.

Fig. 8 Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H 1-norm errors (right
figure) for the models (4)–(8) with nonlinear bulk-surface coupling h(u, v) = uv. The exact solutions are
u = et e−x(x−1)−y(y−1) and v = et e−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) until final time T = 0.1
in the sphere of R = 1, and vi+1 ≈ vi + Δtvi

t + Δt2vi
tt /2
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Fig. 9 3D views of the bulk (top figure) and surface (bottom figure) approximations from mesh 255 ×
255 × 255 at T = 0.1 to the models (4)–(8) of nonlinear bulk-surface coupling h(u, v) = uv. The exact
solutions are u = et e−x(x−1)−y(y−1), v = et e−x(x−1)−y(y−1)(1 + x(1 − 2x) + y(1 − 2y)) in the sphere of
R = 1, and vi+1 ≈ vi + Δtvi

t + Δt2vi
tt /2
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Table 10 Convergence of the ∞-, L2-, and H 1-norm errors of the solutions in the bulk/surface, and the
∞-norm errors of gradients in the bulk for the models (4)–(8) with nonlinear bulk-surface coupling. The
exact solutions are u = v = et sin(x) sin(2y) sin(3z) until final time T = 0.1 in the sphere of R = 1. The
number of spherical harmonics for terms u, v, and urr is 400 per each term and vi+1 ≈ vi + Δtvi

t

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 1.3914E−03 — 1.0543E−03 — 5.0230E−03 —

63 × 63 × 63 3.6065E−04 1.95 2.6657E−04 1.98 1.2706E−03 1.98

127 × 127 × 127 9.4354E−05 1.93 6.6522E−05 2.00 3.1710E−04 2.00

255 × 255 × 255 2.3408E−05 2.01 1.6608E−05 2.00 7.9165E−05 2.00

N × N × N E∞(Γ ) : v Rate EL2(Γ ) : v Rate EH 1(Γ ) : v Rate

31 × 31 × 31 2.1011E−05 — 2.7089E−05 — 9.9342E−05 —

63 × 63 × 63 6.5900E−06 1.67 7.7509E−06 1.81 2.6332E−05 1.92

127 × 127 × 127 1.8191E−06 1.86 2.3303E−06 1.73 7.1906E−06 1.87

255 × 255 × 255 4.6581E−07 1.97 6.0249E−07 1.95 1.8064E−06 1.99

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 3.3321E−03 — 4.5730E−03 — 4.9888E−03 —

63 × 63 × 63 8.3625E−04 1.99 1.0630E−03 2.11 1.1784E−03 2.08

127 × 127 × 127 2.0870E−04 2.00 2.6904E−04 1.98 2.8762E−04 2.03

255 × 255 × 255 5.2251E−05 2.00 6.7303E−05 2.00 7.3246E−05 1.97

Note that we do not have exact nonlinear coupling as in (5) if we use the above
exact solutions. Instead, we need to supply a source function w in the coupling, i.e.:

− n · ∇u = uv + w, (x, y, z, t) ∈ Γ × R
+. (96)

Here, the source function w is computed from the exact solutions u and v. The
discrete version of (96) is:

− n · ∇ui+1 = ui+1vi+1 + wi+1 (97)

which can be linearized, if the term vi+1 is approximated by either the 2-term
approximation (69), or the 3-term approximation (76).

The errors in Table 8 correspond to 2-term approximation (69) for vi+1. With the
2-term approximation (69), the ∞-, L2-, and H 1-norm errors of solutions in the bulk
and ∞-norm errors of the gradients in the bulk all obey optimal second-order conver-
gence. Meanwhile, the ∞-, L2-, and H 1-norm errors of the solution on the surface
give sub-optimal second-order accuracy in the first few coarser meshes. However, the
second-order accuracy is recovered on finer meshes, e.g., on mesh 255 × 255 × 255.

In Table 9, we adopt the 3-term approximation (76) for the vi+1 term. There are
slight improvements of the accuracy for the solutions and gradients in the bulk. In
the meantime, the accuracy of the solution on the surface is improved and second-
order accuracy is recovered even on coarser meshes. Note that, there are barely any
added computational cost, when one switches from using 2-term approximation (69)
to 3-term approximation (76) for the vi+1 term.

Author's personal copy



Adv Comput Math           (2020) 46:67 Page 35 of 39   67 

Table 11 Convergence of the ∞-, L2-, and H 1-norm errors of the solutions in the bulk/surface, and
the ∞-norm errors of gradients in the bulk for the models (4)–(8) with nonlinear bulk-surface coupling.
The exact solutions are u = v = et sin(x) sin(2y) sin(3z) until final time T = 0.1 in the sphere of
R = 1. The number of spherical harmonics for terms u, v, and urr is 400 per each term and vi+1 ≈
vi + Δtvi

t + Δt2vi
tt /2

N × N × N E∞(Ω) : u Rate EL2(Ω) : u Rate EH 1(Ω) : u Rate

31 × 31 × 31 1.5302E−03 — 1.0646E−03 — 5.0709E−03 —

63 × 63 × 63 4.1025E−04 1.90 2.6970E−04 1.98 1.2861E−03 1.98

127 × 127 × 127 1.0691E−04 1.94 6.7408E−05 2.00 3.2158E−04 2.00

255 × 255 × 255 2.6478E−05 2.01 1.6839E−05 2.00 8.0352E−05 2.00

N × N × N E∞(Γ ) : v Rate EL2(Γ ) : v Rate EH 1(Γ ) : v Rate

31 × 31 × 31 3.4599E−05 — 4.8766E−05 — 1.2807E−04 —

63 × 63 × 63 9.7036E−06 1.83 1.3621E−05 1.84 3.5923E−05 1.83

127 × 127 × 127 2.6424E−06 1.88 3.6432E−06 1.90 9.6663E−06 1.89

255 × 255 × 255 6.7367E−07 1.97 9.3640E−07 1.96 2.4564E−06 1.98

N × N × N E∞(Ω) : ∇xu Rate E∞(Ω) : ∇yu Rate E∞(Ω) : ∇zu Rate

31 × 31 × 31 3.4453E−03 — 4.6325E−03 — 5.0779E−03 —

63 × 63 × 63 8.8748E−04 1.96 1.0970E−03 2.08 1.1997E−03 2.08

127 × 127 × 127 2.1871E−04 2.02 2.7758E−04 1.98 3.0294E−04 1.99

255 × 255 × 255 5.5442E−05 1.98 6.9999E−05 1.99 7.5981E−05 2.00

Moreover, the errors in the bulk and on the surface for the nonlinear bulk-surface
coupling in Table 9 are very similar to the errors for linear bulk-surface coupling in
Table 7. This illustrates the robustness of the designed DPM-based algorithm. Also
note that the algorithm for nonlinear coupling is very similar to the ones for linear
coupling. The only difference is that the matrix C′ in the least square system (80)

Fig. 10 Log-log plots of bulk/surface L2-norm errors (left figure) and bulk/surface H 1-norm errors (right
figure) for the models (4)–(8) with nonlinear bulk-surface coupling h(u, v) = uv. The exact solutions
are u = v = et sin(x) sin(2y) sin(3z) until final time T = 0.1 in the sphere of R = 1, and vi+1 ≈
vi + Δtvi

t + Δt2vi
tt /2
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Fig. 11 3D views of the bulk (top figure) and surface (bottom figure) approximations from mesh 255 ×
255 × 255 at T = 0.1 to the models (4)–(8) of nonlinear bulk-surface coupling h(u, v) = uv. The exact
solutions are u = v = et sin(x) sin(2y) sin(3z) in the sphere of R = 1, and vi+1 ≈ vi + Δtvi

t + Δt2vi
tt /2
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Table 12 Condition number of the normal matrices of BEP (notation “w/o vtt ” denotes 2-term approxi-
mation (69) and notation “w/ vtt ” denotes 3-term approximation (76))

N Case 1 Test 2
(at t = 0)

Case 2:(a)
(at t = 0)

Case 2:(b) Test 1
(w/o vtt at t = 0)

Case 2:(b) Test 1
(w/ vtt at t = 0)

Case 2:(b) Test 1
(w/ vtt at t = 0.1)

31 3.4838e+01 1.7962e+04 2.7494e+04 2.7565e+04 2.2402e+04

63 4.4475e+01 1.7659e+03 3.7456e+03 3.7483e+03 3.8275e+03

127 3.2709e+01 3.4449e+02 8.3878e+02 8.3901e+02 7.5131e+02

255 4.0182e+01 6.9272e+02 9.1638e+02 9.1639e+02 9.0053e+02

needs to be updated and the resulting normal matrices need to be inverted at each time
step, which makes it more expensive. Hence, it is advantageous to use the reduced
BEPs as it is done in the current work.

Again, the plots of L2- and H 1-norm errors of the nonlinear coupling in Fig. 8 are
similar to the plots of errors in the linear coupling (see Fig. 6). In Fig. 9, there is no
observable difference in the isosurface plots in the bulk and the surface plots from
the plots for the linear-coupling case, obtained on mesh 255×255×255 at final time
T = 0.1 (see Fig. 7).

4.5.2 Test 2 for nonlinear coupling

In this subsection, we employ the exact solutions u = v = et sin(x) sin(2y) sin(3z)

both in the bulk and on the surface, as the ones we use in the second test of
the models with dynamic boundary conditions. Again, second-order accuracy is
observed in Tables 10 and 11 for the ∞-, L2-, and H 1-norm errors. It is also
interesting to notice that for this pair of exact solutions, 2-term approximation
(69) and 3-term approximation (76) of the vi+1 term give very similar conver-
gence results, which again illustrates the robustness of the proposed DPM-based
algorithms.

In Fig. 10, we observe second-order convergence of L2- and H 1-norm errors both
in the bulk and on the surface. Unlike the numerical results for dynamic bound-
ary condition in Fig. 4, the L2- and H 1-norm errors in the bulk are larger than
the errors on the surface in Fig. 10, which is also observed in the first test of the
nonlinear coupling in Fig. 8, as well as in the test of linear bulk-surface coupling
in Fig. 6.

In Fig. 11, we present the 3D views of the isosurface plots in the bulk and the plot
of surface solutions, obtained on mesh 255 × 255 × 255 at final time T = 0.1.

4.6 Condition numbers

In Table 12, we demonstrate the condition numbers of the normal matrices from the
resulting algebraic systems (77) in case 1, (78) in case 2: (a), and (79)–(80) in case 2:
(b). Note that in case 1 and case 2: (a), the normal matrices are pre-computed outside
of the time loop, while in case 2: (b), the normal matrices need to be assembled at
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each time step due to the nonlinearity. Thus, in Table 12, the condition numbers for
case 2: (b) are computed only at the first and last time steps.

Furthermore, we verified that condition numbers of the normal matrices remain in
similar magnitudes over time for the nonlinear models in case 2: (b). See the last two
columns in Table 12.
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21. Kovȧcs, B., Lubich, C.: Numerical analysis of parabolic problems with dynamic boundary conditions.
IMA J. Numer. Anal. 37(1), 1–39 (2016). https://doi.org/10.1093/imanum/drw015

22. Liu, C., Wu, H.: An energetic variational approach for the cahn-hilliard equation with dynamic
boundary conditions: Derivation and analysis. Arch. Ration. Mech. Anal. (2019)

23. Ludvigsson, G., Steffen, K.R., Sticko, S., Wang, S., Xia, Q., Epshteyn, Y., Kreiss, G.: High-order
numerical methods for 2d parabolic problems in single and composite domains. J. Sci. Comput. 76(2),
812–847 (2018). https://doi.org/10.1007/s10915-017-0637-y

24. Madzvamuse, A., Chung, A.H.: The bulk-surface finite element method for reaction–
diffusion systems on stationary volumes. Finite Elem. Anal. Des. 108, 9–21 (2016).
https://doi.org/10.1016/j.finel.2015.09.002

25. Magura, S., Petropavlovsky, S., Tsynkov, S., Turkel, E.: High-order numerical solution of the
Helmholtz equation for domains with reentrant corners. Appl. Numer. Math. 118, 87–116 (2017).
https://doi.org/10.1016/j.apnum.2017.02.013

26. Massing, A.: A cut discontinuous galerkin method for coupled bulk-surface problems. In: Bordas,
S.P.A., Burman, E., Larson, M.G., Olshanskii, M.A. (eds.) Geometrically Unfitted Finite Element
Methods and Applications, pp. 259-279. Springer International Publishing, Cham (2017)

27. Medvinsky, M., Tsynkov, S., Turkel, E.: Direct implementation of high order BGT artificial boundary
conditions. J. Comput. Phys. 376, 98–128 (2019). https://doi.org/10.1016/j.jcp.2018.09.040

28. Novak, I.L., Gao, F., Choi, Y.S., Resasco, D., Schaff, J.C., Slepchenko, B.M.: Diffusion on a curved
surface coupled to diffusion in the volume: Application to cell biology. J. Comput. Phys. 226(2),
1271–1290 (2007). https://doi.org/10.1016/j.jcp.2007.05.025

29. Olshanskii, M.A., Reusken, A.: A finite element method for surface PDEs: matrix properties. Numer.
Math. 114(3), 491–520 (2010). https://doi.org/10.1007/s00211-009-0260-4

30. Olshanskii, M.A., Reusken, A.: Trace finite element methods for PDEs on surfaces. In: Geometrically
Unfitted Finite Element Methods and Applications, Lect. Notes Comput. Sci. Eng., vol. 121, pp. 211-
258. Springer, Cham (2017)

31. Petropavlovsky, S., Tsynkov, S., Turkel, E.: A method of boundary equations for unsteady hyperbolic
problems in 3D. J. Comput. Phys. 365, 294–323 (2018). https://doi.org/10.1016/j.jcp.2018.03.039

32. Ryaben’kii, V.S.: Method of difference potentials and its applications. In: Springer
Series in Computational Mathematics, vol. 30. Springer-Verlag, Berlin (2002).
https://doi.org/10.1007/978-3-642-56344-7. Translated from the 2001 Russian original by Nikolai K.
Kulman

33. Ryaben’kii, V.S., Turchaninov, V.I., Epshteyn, Y.Y.: Algorithm composition scheme for problems in
composite domains based on the difference potential method. Comput. Math. Math. Phys. 46(10),
1768–1784 (2006). https://doi.org/10.1134/s0965542506100137
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