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MOTION OF GRAIN BOUNDARIES WITH DYNAMIC LATTICE
MISORIENTATIONS AND WITH TRIPLE JUNCTIONS DRAG∗
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Abstract. Most technologically useful materials are polycrystalline microstructures composed of
myriad small monocrystalline grains separated by grain boundaries. The energetics and connectivities
of grain boundaries play a crucial role in defining the main characteristics of materials across a wide
range of scales. In this work, we propose a model for the evolution of the grain boundary network with
dynamic boundary conditions at the triple junctions, with triple junctions drag, and with dynamic
lattice misorientations. Using the energetic variational approach, we derive system of geometric
differential equations to describe motion of such grain boundaries. Next, we relax the curvature
effect of the grain boundaries to isolate the effect of the dynamics of lattice misorientations and
triple junctions drag, and we establish local well-posedness result for the considered model.
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1. Introduction. Most technologically useful materials are polycrystalline mi-
crostructures composed of myriad small monocrystalline grains separated by grain
boundaries. The energetics and connectivities of grain boundaries play a crucial role
in defining the main characteristics of materials across a wide range of scales. More
recent mesoscale experiments and simulations provide large amounts of information
about both geometric features and crystallography of the grain boundary network in
material microstructures.

For the time being, we will focus on a planar grain boundary network. A classical
model, due to Mullins and Herring [18, 28, 29], for the evolution of grain boundaries
in polycrystalline materials is based on the motion by mean curvature [10, 11, 16] as
the local evolution law. Under the assumption that the total grain boundary energy
depends only on the surface tension of the grain boundaries, the motion by mean
curvature is consistent with the dissipation principle for the total grain boundary
energy. In addition, to have a well-posed model of the evolution of the grain boundary
network, one has to impose a separate condition at the triple junctions where three
grain boundaries meet [20]. Note that at equilibrium state, the energy is minimized,
which implies that a force balance, known as the Herring condition, holds at the triple
junctions. The Herring condition is the natural boundary condition for the system at

∗Received by the editors June 3, 2019; accepted for publication (in revised form) March 1, 2021;
published electronically May 25, 2021.

https://doi.org/10.1137/19M1265855
Funding: The work of the first author was partially supported by National Science Foundation

grant DMS-1905463. The work of the first and third authors was partially supported by Simons
Foundation grant 415673. The work of the second author was partially supported by National
Science Foundation grants DMS-1759535 and DMS-1759536. The work of the third author was
partially supported by JSPS KAKENHI grant 18K13446.
†Department of Mathematics, University of Utah, Salt Lake City, UT 84112 USA

(epshteyn@math.utah.edu).
‡Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616 USA

(cliu124@iit.edu).
§Department of Mathematics, College of Science and Technology, Nihon University, Tokyo 101-

8308, Japan (mizuno@math.cst.nihon-u.ac.jp).

3072

D
ow

nl
oa

de
d 

05
/2

6/
21

 to
 1

28
.1

10
.1

84
.5

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1265855
mailto:epshteyn@math.utah.edu
mailto:cliu124@iit.edu
mailto:mizuno@math.cst.nihon-u.ac.jp


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MOTION OF GRAIN BOUNDARIES 3073

the equilibrium. However, during the evolution of the grain boundaries, the normal
velocity of the boundary is proportional to a driving force. Therefore, unlike the
equilibrium state, there is no natural boundary condition for an evolutionary system,
and one must be stated. A standard choice is the Herring condition ([8, 9, 19, 20],
and reference therein). There are several mathematical studies about the motion by
mean curvature of grain boundaries with the Herring condition at the triple junctions;
see, for example, [1, 2, 3, 4, 5, 6, 17, 20, 22, 23, 24, 25, 26, 27]. There are some
computational studies too [2, 4, 12, 13, 14, 21].

A basic assumption in the theory and simulation of grain growth is the motion of
the grain boundaries themselves and not the motion of the triple junctions. However,
recent experimental studies indicate that the motion of triple junctions together with
anisotropy of the grain boundary network can have an important effect on the grain
growth [6]; see also work on molecular dynamics simulation [33, 34] and a recent work
on dynamics of line defects [32, 35, 36]. In this work, to investigate the evolution of the
anisotropic network of grain boundaries, we propose a new model that assumes that
interfacial/grain boundary energy density is a function of dynamic lattice misorien-
tations. Moreover, we impose a dynamic boundary condition at the triple junctions,
a triple junctions drag. The proposed model can be viewed as a multiscale model
containing the local and long-range interactions of the lattice misorientations and
the interactions of the triple junctions of the grain boundaries. Using the energetic
variational approach, we derive the system of geometric differential equations to de-
scribe the motion of such grain boundaries. Next, we relax the curvature effect of the
grain boundaries to isolate the effect of the dynamics of lattice misorientations and
triple junctions drag, and we establish a local well-posedness result for the considered
model. Note that the current work is motivated and closely related to the work [20]
(where well-posedness of the grain boundary network model with Herring condition
at the triple junctions and with no misorientation effect was established) and to the
work [2, 3, 4] (where a reduced one-dimensional (1D) model based on the dynamical
system was studied for texture evolution and was used to identify texture evolution
as a gradient flow).

The paper is organized as follows. In section 2 we derive a new model for the
grain boundaries. In sections 3–6 we show local well-posedness of the proposed model
under the assumption of a single triple junction. Finally, in section 7, we extend
the obtained results for a system with a single triple junction to the grain boundary
network with multiple junctions.

2. Derivation of the model. In this section, we present the derivation of the
model with dynamic lattice misorientations and with triple junctions drag. This is a
further extension of the model in [20], and it is motivated by the work in [2, 3, 4].

First, we obtain our model for the evolution of the grain boundaries using the
energy dissipation principle for the system. Note that while critical events (such as
disappearance of the grains and/or grain boundaries during coarsening of the system)
pose a great challenge on the modeling, simulation, and analysis (see Figure 1), here
we start with a system of one triple junction to obtain a consistent model (see Figure
2). Thus, we start the derivation by considering the system of three curves only, which
meet at a single point—a triple junction a(t) (see Figure 2):

Γ
(j)
t : ξ(j)(s, t), 0 ≤ s ≤ 1, t > 0, j = 1, 2, 3.

These curves satisfy the following conditions at the triple junction and at the end
points of the curves:

a(t) := ξ(1)(0, t) = ξ(2)(0, t) = ξ(3)(0, t), and ξ(j)(1, t) = x(j), j = 1, 2, 3.
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3074 YEKATERINA EPSHTEYN, CHUN LIU, AND MASASHI MIZUNO

Fig. 1. Time instance from the simulation of the 2D grain boundary network with dynamic/
time-dependent orientation (zoom view).

Fig. 2. The model of grain boundaries/curves Γ
(j)
t with triple junction a(t) and with orienta-

tions angles (scalars) α(j).

Here, we assume that curves Γ
(j)
t , j = 1, 2, 3, are sufficiently smooth functions of

parameter s (not necessarily the arc length) and time t. Also, for now we assume
that end points of the curves x(j) ∈ R2 are fixed points; see Figure 2. We define

a tangent vector b(j) = ξ
(j)
s and a normal vector n(j) = Rb(j) (not necessarily the

unit vectors) to each curve, where R is the rotation matrix through π/2. We denote

Γt := Γ
(1)
t ∪ Γ

(2)
t ∪ Γ

(3)
t . We also consider below a standard euclidean vector norm

denoted | · |.
Now, for j = 1, 2, 3, let α(j) = α(j)(t) be the lattice orientation angle of the

grain which is enclosed between grain boundaries Γ
(j)
t and Γ

(j+1)
t , and we set that

Γ
(4)
t = Γ

(1)
t for the simplicity of the notation. Similar to work [2, 3, 4, 5, 15], we assume

here that the orientation α(j) is a bounded scalar since we consider a planar grain
boundary network. In this work, we make an assumption that lattice orientations
are functions of time t (we assume that during grain growth, grains can change their
lattice orientations due to rotation) but independent of the parameter s. Next, we

define the surface energy density or interfacial grain boundary energy of Γ
(j)
t as
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MOTION OF GRAIN BOUNDARIES 3075

σ = σ
(
n(j), α(j−1) − α(j)

)
= σ

(
n(j),∆α(j)

)
≥ 0,

where we denote ∆α(j) := α(j−1)−α(j) to be the misorientation angle across the grain
boundary (a common boundary for two neighboring grains with orientations α(j−1)

and α(j)), and we set for convenience α(0) := α(3); see Figure 2. See also Remark 5.5
in section 5.

The total grain boundary energy of the system Γt can be obtained as

E(t) =

3∑
j=1

∫
Γ
(j)
t

σ
(
n(j),∆α(j)

)
dH1 =

3∑
j=1

∫ 1

0

σ
(
n(j),∆α(j)

)
|b(j)| ds,(2.1)

where H1 is the 1D Hausdorff measure (see Figure 2). Next, we use the coordinate
(n, θ) ∈ R2 × R for the surface energy density σ(n, θ) and assume that σ is taken to
be positively homogeneous of degree 0 in n. Note, that in general, grain boundaries
are identified by lattice misorientation and the orientation of the normal vector to the
grain boundary. For simplicity of notation, we denote σ(j) := σ(n(j),∆α(j)).

Let us now define grain boundary motion that will result in the dissipation of the
total grain boundary energy (2.1). Denote by ˆ the normalization operator of vectors,

e.g., n̂(j) = n(j)

|n(j)| . Then, we can compute the rate of change in energy at time t due

to grain boundary motion as follows:

d

dt
E(t) =

3∑
j=1

(∫ 1

0

∇nσ(j) · dn
(j)

dt
|b(j)| ds+

∫ 1

0

σ(j) b
(j)

|b(j)|
· db

(j)

dt
ds

+

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds

)
=

3∑
j=1

(∫ 1

0

(
|b(j)|tR∇nσ(j) + σ(j)b̂(j)

)
· db

(j)

dt
ds

+

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds

)
.

(2.2)

Next, consider a polar angle φ(j) and set n̂(j) = (cosφ(j), sinφ(j)). Since σ(j) is
positively homogeneous of degree 0 in n(j), we have

∇nσ · n = 0, tR∇nσ = (tR∇nσ · n̂)n̂, σ
(j)
φ n̂(j) = |b(j)|tR∇nσ(j),

and, thus, we define the vector T (j) known as the line tension or capillary stress
vector,

T (j) := σ
(j)
φ n̂(j) + σ(j)b̂(j) = |b(j)|tR∇nσ(j) + σ(j)b̂(j).

Now, using the change of variable

db(j)

dt
=

d

ds

dξ(j)

dt
,
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3076 YEKATERINA EPSHTEYN, CHUN LIU, AND MASASHI MIZUNO

we can rewrite (2.2) as

d

dt
E(t) =

3∑
j=1

(∫ 1

0

T (j) · d
ds

dξ(j)

dt
ds+

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds

)

= −
3∑
j=1

∫ 1

0

T (j)
s · dξ

(j)

dt
ds+

3∑
j=1

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds

−
3∑
j=1

T (j)(0, t) · da
dt

(t).

(2.3)

For the reader’s convenience, we will recall below the following property for a diver-
gence of the capillary stress vector T (j).

Lemma 2.1. Let κ(j) is the curvature of Γ
(j)
t . Then

T (j)
s = |b(j)|

(
σ

(j)
φφ + σ(j)

)
κ(j)n̂(j).(2.4)

Proof. From the Frenet–Serret formula for the nonarc length parameter,

b̂(j)
s = |b(j)|κ(j)n̂(j), n̂(j)

s = −|b(j)|κ(j)b̂(j).(2.5)

Thus we obtain

T (j)
s =

(
∇nσ(j)

φ · n
(j)
s

)
n̂(j) + σ

(j)
φ n̂(j)

s +
(
∇nσ(j) · n(j)

s

)
b̂(j) + σ(j)b̂(j)

s

=
(
tR∇nσ(j)

φ · b
(j)
s + |b(j)|σ(j)κ(j)

)
n̂(j)

+
(
−|b(j)|σ(j)

φ κ(j) + tR∇nσ(j) · b(j)
s

)
b̂(j).

(2.6)

Since σ(j) and σ
(j)
φ are positively homogeneous of degree 0 in n(j), we have

σ
(j)
φ n̂(j) = |b(j)|tR∇nσ(j), σ

(j)
φφ n̂

(j) = |b(j)|tR∇nσ(j)
φ .(2.7)

Using the orthogonal relation b(j) · n̂(j) = 0 and the Frenet–Serret formula (2.5), we
obtain

b(j)
s · n̂(j) = −b(j) · n̂(j)

s = |b(j)|2κ(j).(2.8)

Plugging (2.7) and (2.8) into (2.6), we derive (2.4).

Next, to ensure that the entire system of grain boundaries is dissipative, i.e.,

d

dt
E(t) ≤ 0,

we impose Mullins’ theory (curvature driven growth) [29, 30] as the local evolution

law stating that the normal velocity v
(j)
n of a grain boundary of Γ

(j)
t (the rate of

growth of area adjacent to the boundary Γ
(j)
t ) is proportional to the line force T

(j)
s

(to the work done through deforming the curve), through the factor of the mobility
µ(j) > 0:

v(j)
n n̂(j) = µ(j) 1

|b(j)|
T (j)
s = µ(j)

(
σ

(j)
φφ + σ(j)

)
κ(j)n̂(j) on Γ

(j)
t , j = 1, 2, 3.(2.9)
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MOTION OF GRAIN BOUNDARIES 3077

Note that using variation of the energy E with respect to the curve ξ(j), namely,

v(j)
n n̂(j) = −µ(j) δE

δξ(j)
,

one can derive the following relation for the line force T
(j)
s [20]:

µ(j) 1

|b(j)|
T (j)
s = µ(j)

(
σ

(j)
φφ + σ(j)

)
κ(j)n̂(j) on Γ

(j)
t , j = 1, 2, 3.(2.10)

Since v
(j)
n = dξ(j)

dt · n̂
(j), we obtain that

T (j)
s · dξ

(j)

dt
=

1

µ(j)
|v(j)
n |2|b(j)| ≥ 0,(2.11)

and, thus, the first term on the right-hand side of (2.3) is nonpositive. Next, we con-
sider the second term on the right-hand side of (2.3) which depends on the derivative
of lattice misorientation; we have that (since α(j) is independent of s),

3∑
j=1

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds =

3∑
j=1

(∫ 1

0

(
σ

(j+1)
θ |b(j+1)| − σ(j)

θ |b
(j)|
)
ds

)
dα(j)

dt
,

where we used that σ(4) = σ(1). To ensure d
dtE(t) ≤ 0 in (2.3), we make an assumption

that for a constant γ > 0, we have the relation for the rate of change of the lattice
orientations

dα(j)

dt
= −γ

(∫ 1

0

(
σ

(j+1)
θ |b(j+1)| − σ(j)

θ |b
(j)|
)
ds

)
, j = 1, 2, 3,(2.12)

since the relation (2.12) results in the condition

3∑
j=1

∫ 1

0

σ
(j)
θ

d(∆α(j))

dt
|b(j)| ds = − 1

γ

3∑
j=1

∣∣∣∣dα(j)

dt

∣∣∣∣2 ≤ 0(2.13)

on the second term in the right-hand side of (2.3). Note that the proposed relation
(2.12) can also be derived using variation of the energy E with respect to lattice
orientation α(j), namely,

dα(j)

dt
= −γ δE

δα(j)
.

Remark 2.2. 1. As we discussed, the misorientations are defined using the orien-
tations α(j) as ∆α(j) = α(j−1)−α(j). Conversely, if the sum of the misorientations is
zero, namely, ∆α(1) + ∆α(2) + ∆α(3) = 0, then the linear relation

α(3) − α(1) = ∆α(1),

α(1) − α(2) = ∆α(2),

α(2) − α(3) = ∆α(3)

can be solved in terms of α(j), and the (inverse) mapping(
∆α(1), ∆α(2), ∆α(3)

)
7→
(
c−∆α(1), c+ ∆α(3), c

)
=
(
α(1), α(2), α(3)
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gives the orientations from the misorientations ∆α(j). Here c is an arbitrary param-
eter. Thus, if we would formulate/derive equations for the misorientation evolution,
instead of the equation for the orientation (2.12), we would have to impose an ad-
ditional constraint, (∆α(1) + ∆α(2) + ∆α(3))(0) = 0. Furthermore, in that case,
the orientation of each grain may not be determined uniquely due to the arbitrary
parameter c. On the other hand, from (2.12) it follows directly that

d

dt

(
α(1) + α(2) + α(3)

)
= 0.

Hence, the sum of the orientations α(1) + α(2) + α(3) has to be a constant. This
constraint for the orientations is easily determined by the initial configuration, and
both the orientations and the misorientations can be determined from (2.12).

2. As discussed above, in our work, we consider the orientation as the primary
variable, and we enforce dissipation in the system by assuming relation (2.12) through
the orientation. Note that we consider the rate of the change on the orientation (rather
than on the misorientation) since we study system before critical events/disappearance
events. Moreover, this choice of the orientation as the primary variable is also consis-
tent with a case of grain boundary energy σ(n(j),∆α(j)). In addition, note that the
traditional texture distribution is the orientation distribution. However, in general,
one can obtain the misorientation distribution by considering the convolution of the
orientation distribution with itself, or see the above remark.

We also note that (2.12) is not a unique way to ensure a dissipative system,
and other relations for the rate of change of the lattice orientations which enforce
dissipation may be possible. In this work, the particular assumption on the rate
of change of the lattice orientation (2.12) is motivated by the approximation to the
gradient flow dynamics near equilibrium [3, 2]. Experimental study of the dynamics
of the lattice orientations/misorientations will be part of future research.

Finally, as a part of the d
dtE(t) ≤ 0 condition in (2.3), we also assume the dynamic

boundary conditions for the triple junctions, namely, for a constant η > 0,

da

dt
(t) = η

3∑
j=1

T (j)(0, t), t > 0.(2.14)

This assumption implies that the last term in (2.3) satisfies

−
3∑
j=1

T (j)(0, t) · da
dt

(t) = −1

η

∣∣∣∣dadt (t)

∣∣∣∣2 ≤ 0.(2.15)

Therefore, we obtain from (2.11), (2.13), and (2.15) that the entire system of

grain boundaries Γ
(j)
t is dissipative, namely,

d

dt
E(t) = −

3∑
j=1

∫
Γ
(j)
t

1

µ(j)
|v(j)
n |2 dH1 − 1

η

∣∣∣∣dadt (t)

∣∣∣∣2 − 1

γ

3∑
j=1

∣∣∣∣dα(j)

dt

∣∣∣∣2 ≤ 0.(2.16)

We combine assumptions (2.9), (2.12), and (2.14) to obtain the following system
of geometric evolution differential equations to describe motion of grain boundaries

Γ
(j)
t , j = 1, 2, 3, together with a motion of the triple junction a(t):
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

v(j)
n = µ(j)

(
σ

(j)
φφ + σ(j)

)
κ(j) on Γ

(j)
t , t > 0, j = 1, 2, 3,

dα(j)

dt
= −γ

(∫ 1

0

(
σ

(j+1)
θ |b(j+1)| − σ(j)

θ |b
(j)|
)
ds

)
, j = 1, 2, 3,

da

dt
(t) = η

3∑
k=1

T (k)(0, t) = η

3∑
k=1

(
σ

(k)
φ n̂(k) + σ(k)b̂(k)

)
(0, t), t > 0,

Γ
(j)
t : ξ(j)(s, t), 0 ≤ s ≤ 1, t > 0, j = 1, 2, 3,

a(t) = ξ(1)(0, t) = ξ(2)(0, t) = ξ(3)(0, t), and ξ(j)(1, t) = x(j), j = 1, 2, 3.

(2.17)

Remark 2.3. The entire system (2.17) satisfies energy dissipation principle (2.16).
However, it is important to note that there are three independent relaxation time
scales in the system (2.17), namely, µ(j), γ, and η (length, misorientation, and position
of the triple junction). The classical approach is to let γ →∞ and η →∞.

In this work, we let µ(j) → ∞ and set γ = η = 1 to study the effect of the
dynamics of lattice orientations α(j)(t), j = 1, 2, 3, together with the effect of the
dynamics of a triple junction a(t) on a grain boundary motion. Then, in this limit,

Γ
(j)
t becomes a line segment from the triple junction a(t) to the boundary point x(j).

Hence, we have{
ξ(j)(s, t) = a(t) + sb(j)(t), 0 ≤ s ≤ 1, t > 0, j = 1, 2, 3,

a(t) + b(j)(t) = x(j), j = 1, 2, 3.

We assume that the surface tension σ is independent of the normal vector n. Here-
after, we further assume the following three conditions for the surface tension σ. First,
we assume positivity, namely, there exists a positive constant C1 > 0 such that

σ(θ) ≥ C1,(2.18)

for θ ∈ R. Second, we assume convexity, for all θ ∈ R,

σθ(θ)θ ≥ 0.(2.19)

Furthermore, we assume

σθ(θ) = 0 if and only if θ = 0.(2.20)

Remark 2.4. 1. In this work we assume a more general surface energy σ(∆α(j))
(2.18), (2.20), since we consider a nonequilibrium state at time scale µ(j) → ∞ and
γ = η = 1. Note that a different example of Read–Shockley type surface energy [31]
is the classical example of the grain boundary energy derived under the assumption
of small misorientation angle ∆α(j), and the assumption of the equilibrium state for
a single fixed grain boundary at time scale µ(j) →∞, η →∞, and γ = 0.

2. In this work, for simplicity we consider cases of surface tensions without
normal dependence. This assumption is not as restrictive since our model is in terms
of the orientation, instead of misorientation, as we had discussed in Remark 2.2. Note
also that the convexity condition (2.19) is not needed for local existence results and
dissipation estimates for the energy (sections 4–5 and section 7). The condition (2.19)
is essentially used to show the misorientation/orientation estimates (see sections 3, 5,
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and 7), and, as a part of future work, we will investigate the possibility of relaxing this
assumption to derive similar estimates. In addition, in this work, to show uniqueness
of the solution to (4.1), we proceed using misorientation/orientation estimates from
section 5. However, one can obtain a uniqueness result without the use of those
estimates, instead using the estimate (4.21), in the proof of Theorem 4.1. Thus,
the system of geometric evolution differential equations (2.17) becomes the following
system of ordinary differential equations (ODE):



dα(j)

dt
= −

(
σθ

(
∆α(j+1)

)
|b(j+1)| − σθ

(
∆α(j)

)
|b(j)|

)
, j = 1, 2, 3,

da

dt
(t) =

3∑
j=1

σ(∆α(j))
b(j)

|b(j)|
, t > 0,

a(t) + b(j)(t) = x(j), j = 1, 2, 3.

(2.21)

Below, we continue with a study of the local well-posedness of the problem (2.21)

with the initial data given by α
(1)
0 , α

(2)
0 , α

(3)
0 ,a0.

Remark 2.5. 1. Note that the reduced model (2.21) is not a standard ODE sys-
tem. This is the ODE system where each variable is locally constrained. Moreover,
a local well-posedness result (e.g., local existence result) for the original model (2.17)
will not imply a local well-posedness result for the reduced system (2.21) (it is un-
known if the reduced model (2.21) is actually a small perturbation of (2.17)).

2. The reduced model (2.21) captures the dynamics of the orientations/misorien-
tations and the triple junctions and at the same time is more accessible for the analysis
than the model (2.17). In addition, the system (2.21) is consistent/motivated by the
model in [3, 4]. The well-posedness analysis of (2.21) is a step toward similar analysis
for the model in [3, 4], as well as for the original system (2.17).

3. Equilibrium. We study an associated equilibrium solution of the system
(2.21), namely,

0 =
(
σθ

(
∆α(j+1)
∞

)
|b(j+1)
∞ | − σθ

(
∆α(j)
∞

)
|b(j)
∞ |
)
,

0 =

3∑
j=1

(
σ
(

∆α(j)
∞

)) b
(j)
∞

|b(j)
∞ |

,

a∞ + b(j)
∞ = x(j), j = 1, 2, 3.

(3.1)

To consider the equilibrium system (3.1), we assume that each Dirichlet point x(j)

does not coincide with the other Dirichlet point.

Lemma 3.1. Let (α
(1)
∞ , α

(2)
∞ , α

(3)
∞ ,a∞) be a solution of equilibrium system (3.1).

Assume (2.19) and (2.20). Then α
(1)
∞ = α

(2)
∞ = α

(3)
∞ .

Proof. We multiply the first equation of (3.1) by α
(j)
∞ and sum to j = 1, 2, 3, to

obtain

0 =

3∑
j=1

(
σθ
(

∆α(j+1)
∞

)
|b(j+1)
∞ | − σθ

(
∆α(j)
∞

)
|b(j)∞ |

)
α(j)
∞ =

3∑
j=1

(
σθ
(

∆α(j)
∞

)
|b(j)∞ |

)
∆α(j)
∞ .

(3.2)D
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Note that at least two of the terms |b(j)
∞ |, j = 1, 2, 3, are nonzero; otherwise it will

contradict the assumption that the Dirichlet points x(j) are distinct. Hence, from

(2.19)–(2.20), we obtain that α
(1)
∞ = α

(2)
∞ = α

(3)
∞ .

From Lemma 3.1, it follows that, in the equilibrium state, there is no lattice
misorientation between neighboring grains that have grain boundaries meeting at
that triple junction. As a consequence, the equilibrium system (3.1) becomes

0 =

3∑
j=1

b
(j)
∞

|b(j)
∞ |

,

a∞ + b(j)
∞ = x(j), j = 1, 2, 3.

(3.3)

Equation (3.3) is related to the Fermat–Torricelli problem. More precisely, if we have
that, for each i = 1, 2, 3, ∣∣∣∣∣∣

3∑
j=1, i 6=j

x(j) − x(i)

|x(j) − x(i)|

∣∣∣∣∣∣ > 1,(3.4)

then a∞ is the unique minimizer of the function,

f(a) =

3∑
j=1

|a− x(j)|, a ∈ R2,(3.5)

and a∞ 6= x(j) for j = 1, 2, 3 (see [7, Theorem 18.28]). Note that the assumption
(3.4) satisfies if and only if all three angles of the triangle, formed by vertices located
at the nodes x(1), x(2), x(3), are less than 120◦.

4. Local existence. Here, we discuss local existence which validates the con-

sistency of the proposed model. We let x(j) ∈ R2, α0 = (α
(1)
0 , α

(2)
0 , α

(3)
0 ) ∈ R3, and

a0 ∈ R2 be given initial data and we consider the local existence of the problem of
(2.21), namely

dα(j)

dt
= −

(
σθ

(
∆α(j+1)

)
|b(j+1)| − σθ

(
∆α(j)

)
|b(j)|

)
, j = 1, 2, 3,

da

dt
(t) =

3∑
j=1

σ(∆α(j))
b(j)

|b(j)|
, t > 0,

α(t) =
(
α(1)(t), α(2)(t), α(3)(t)

)
, t > 0,

a(t) + b(j)(t) = x(j), t > 0, j = 1, 2, 3,

α(0) = α0, a(0) = a0.

(4.1)

Assume for each i = 1, 2, 3, ∣∣∣∣∣∣
3∑

j=1, i 6=j

x(j) − x(i)

|x(j) − x(i)|

∣∣∣∣∣∣ > 1.(4.2)
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We denote by a∞ 6= x(j) for each j = 1, 2, 3 a solution to the system
0 =

3∑
j=1

b
(j)
∞

|b(j)
∞ |

,

a∞ + b(j)
∞ = x(j), j = 1, 2, 3.

(4.3)

The point a∞ is a triple junction point (see section 3).

Theorem 4.1 (local existence). Let x(1), x(2), x(3) ∈ R2, a0 ∈ R2, and α0 ∈ R3

be given initial data. Assume condition (4.2) for i = 1, 2, 3, and let a∞ be a solution
of (4.3). Further, assume that for all j = 1, 2, 3,

|a0 − a∞| <
1

2
|b(j)
∞ |.(4.4)

Then, there exists a local in time solution (α,a) of (4.1) on [0, Tmax) such that

|a(t)− a∞| < |b(j)
∞ | for all j = 1, 2, 3, and 0 ≤ t < Tmax.(4.5)

Furthermore, the maximal existence time Tmax of the solution is estimated by

Tmax ≥ min

 |α0|
4(M1 + 8M2|α0|)

∑3
j=1 |b

(j)
∞ |

,
|a0 − a∞|

3M0
,

1

12M1
,

1

8M0

∑3
j=1

1

|b(j)∞ |−2|a0−a∞|

 ,

(4.6)

where

M0 := sup
|θ|≤4|α0|

|σ(θ)|, M1 := sup
|θ|≤4|α0|

|σθ(θ)|, M2 := sup
|θ1|,|θ2|≤4|α0|

|σθ(θ1)− σθ(θ2)|
|θ1 − θ2|

.

Remark 4.2. The Theorem 4.1 not only provides existence of the local in time
solution for the model (4.1) but it also gives the local existence of the triple junction.
The estimate (4.5) guarantees that a(t) is the position of the triple junction formed
by the grain boundaries x(j) − a(t). Note that if a(t) is sufficiently far from the
position of the triple junction a∞ of the equilibrium state, for instance, if x(j) −x(k)

is a part of a(t)−x(k), then a(t) might not be the triple junction. Further, (4.6) gives
the explicit dependence of the maximal existence time Tmax on |a0 −a∞|. This is an
important result for the analysis of the global in time solution which will be part of
a forthcoming work.

To show Theorem 4.1, we construct a contraction mapping on a complete metric
space. Let C2, C3 > 0, and T > 0 be positive constants that we will define later, and
denote

XT := {(α,a) ∈ C([0, T ] ; R3 × R2), ‖α‖C([0,T ]) ≤ C2, ‖a− a∞‖C([0,T ]) ≤ C3}.

Note that in the definition of the space XT , we use the position of the triple
junction a∞ at the equilibrium state as the point of reference, rather than the position
of the triple junction a0 at the initial time as one would consider in the classical ODE
theory. Such definition of the space XT is employed in order to obtain the estimates
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on the position of the triple junctions from the one of the equilibrium state a∞, (4.5),
as well as to derive the maximal existence time estimate (4.6).

Next, define for (α,a) ∈ XT , i = 1, 2, 3, and t > 0

Φ(i)(α,a)(t) := α
(i)
0 −

∫ t

0

(
σθ

(
∆α(j+1)(τ)

)
|b(j+1)(τ)| − σθ

(
∆α(j)(τ)

)
|b(j)(τ)|

)
dτ,

Ψ (α,a) (t) := a0 +

3∑
j=1

∫ t

0

σ(α(τ))
b(j)(τ)

|b(j)(τ)|
dτ,

(4.7)

where b(j)(τ) = x(j) − a(τ). Our goal now is to show that (Φ = (Φ(1),Φ(2),Φ(3)),Ψ)
is a contraction mapping on XT for the appropriate choice of positive constants C2,
C3, and T > 0. Hereafter we define

M0 := sup
|θ|≤2C2

|σ(θ)|, M1 := sup
|θ|≤2C2

|σθ(θ)|, M2 := sup
|θ1|,|θ2|≤2C2

|σθ(θ1)− σθ(θ2)|
|θ1 − θ2|

.

Later, the constant C2 will be taken to be 2|α0|. Next, Lemmas 4.3 and 4.4 show
that Φ and Ψ is a map on XT .

Lemma 4.3. If the conditions

2|α0| ≤ C2(4.8)

and

(2M1 + 4M2C2)
(
|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3

)
T ≤ 1

2
C2(4.9)

are satisfied, then |Φ(α,a)| ≤ C2 for all (α,a) ∈ XT .

Proof of Lemma 4.3. By the triangle inequality, for 0 ≤ t ≤ T ,

|Φ(α,a)(t)|

≤ |α0|+
3∑
j=1

∣∣∣∣∫ t

0

(
σθ

(
∆α(j+1)(τ)

)
|b(j+1)(τ)| − σθ

(
∆α(j)(τ)

)
|b(j)(τ)|

)
dτ

∣∣∣∣
≤ |α0|+

3∑
j=1

(∫ t

0

∣∣∣σθ (∆α(j+1)(τ)
)
− σθ

(
∆α(j)(τ)

)∣∣∣ |b(j+1)(τ)| dτ

+

∫ t

0

∣∣∣σθ (∆α(j)(τ)
)∣∣∣ ∣∣∣|b(j+1)(τ)| − |b(j)(τ)|

∣∣∣ dτ).
Next, using that |∆α(j)| ≤ 2C2 and that∣∣∣σθ (∆α(j+1)(τ)

)
− σθ

(
∆α(j)(τ)

)∣∣∣ ≤M2

∣∣∣∆α(j+1)(τ)−∆α(j)(τ)
∣∣∣ ≤ 4M2C2,

we have that

|Φ(α,a)(t)| ≤ |α0|+ (2M1 + 4M2C2)T

3∑
j=1

sup
0≤τ≤T

|b(j)(τ)|.
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On the other hand, for j = 1, 2, 3,

|b(j)(t)| = |x(j) − a∞ + a∞ − a(t)| ≤ |b(j)
∞ |+ C3.(4.10)

Therefore, from (4.8) and (4.9),

|Φ(α,a)(t)| ≤ |α0|+ (2M1 + 4M2C2)
(
|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3

)
T ≤ C2.

Lemma 4.4. Assume for j = 1, 2, 3 we have that

C3 < |b(j)
∞ |.(4.11)

Then, 0 < |b(j)
∞ | − C3 ≤ |b(j)(t)| ≤ |b(j)

∞ | + C3 for all j = 1, 2, 3, (α,a) ∈ XT , and
0 ≤ t ≤ T . Further if

2|a0 − a∞| ≤ C3(4.12)

and

3M0T ≤
1

2
C3,(4.13)

then |Ψ(α,a)(t)− a∞| ≤ C3 for all (α,a) ∈ XT and 0 ≤ t ≤ T .

Proof of Lemma 4.4. For (α,a) ∈ XT and 0 ≤ t ≤ T

|b(j)
∞ | = |x(j) − a(t) + a(t)− a∞| ≤ |b(j)(t)|+ |a(t)− a∞| ≤ |b(j)(t)|+ C3,

thus we obtain 0 < |b(j)
∞ | − C3 ≤ |b(j)(t)|. And |b(j)(t)| ≤ |b(j)

∞ | + C3 follows from
(4.10). To show estimate |Ψ(α,a)(t)− a∞| ≤ C3, we use the assumptions (4.12) and
(4.13) to obtain that for any (α,a) ∈ XT ,

|Ψ(α,a)(t)− a∞| ≤ |a0 − a∞|+
3∑
j=1

∣∣∣∣∫ t

0

σ(∆α(j)(τ))
b(j)(τ)

|b(j)(τ)|
dτ

∣∣∣∣
≤ 1

2
C3 +

3∑
j=1

sup
0≤τ≤T

σ(∆α(j)(τ))T

≤ 1

2
C3 + 3M0T ≤ C3

for all 0 ≤ t ≤ T .

The next two lemmas, Lemmas 4.5 and 4.6, give the Lipschitz property of the
map (Φ,Ψ).

Lemma 4.5 (Lipschitz estimates). For (α1,a1), (α2,a2) ∈ XT , we have that

‖Φ(α1,a1)− Φ(α2,a2)‖C([0,T ])

≤ 4M2

(
|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3

)
T‖α1 −α2‖C([0,T ]) + 6M1T‖a1 − a2‖C([0,T ]).

(4.14)D
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Proof of Lemma 4.5. For 0 ≤ t ≤ T , by the Lipschitz continuity of σθ we obtain
that

|Φ(α1,a1)(t)− Φ(α2,a2)(t)|

≤
3∑
j=1

∣∣∣∣ ∫ t

0

(
σθ

(
∆α

(j+1)
1

) ∣∣∣b(j+1)
1

∣∣∣− σθ (∆α
(j)
1

) ∣∣∣b(j)
1

∣∣∣
− σθ

(
∆α

(j+1)
2

) ∣∣∣b(j+1)
2

∣∣∣+ σθ

(
∆α

(j)
2

) ∣∣∣b(j)
2

∣∣∣ ) dτ ∣∣∣∣
≤

3∑
j=1

∫ t

0

( ∣∣∣σθ (∆α
(j+1)
1

)∣∣∣ ∣∣∣∣∣∣b(j+1)
1

∣∣∣− ∣∣∣b(j+1)
2

∣∣∣∣∣∣
+
∣∣∣σθ (∆α

(j+1)
1

)
− σθ

(
∆α

(j+1)
2

)∣∣∣ ∣∣∣b(j+1)
2

∣∣∣ ) dτ
+

3∑
j=1

∫ t

0

(∣∣∣σθ (∆α
(j)
1

)∣∣∣ ∣∣∣∣∣∣b(j)
1

∣∣∣− ∣∣∣b(j)
2

∣∣∣∣∣∣+
∣∣∣σθ (∆α

(j)
1

)
− σθ

(
∆α

(j)
2

)∣∣∣ ∣∣∣b(j)
2

∣∣∣) dτ.
Next, using b

(j)
k = x(j) − ak, ∆α(j) = α(j−1) − α(j), and (4.10), we have

|Φ(α1,a1)(t)− Φ(α2,a2)(t)|

≤ 6M1T‖a1 − a2‖C([0,T ]) + 4M2

(
|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3

)
T‖α1 −α2‖C([0,T ]).

Thus, we obtain the inequality (4.14).

Lemma 4.6 (Lipschitz estimates). Assume condition (4.11) holds true. Then for
(α1,a1), (α2,a2) ∈ XT , we have that

‖Ψ(α1,a1)(t)−Ψ(α2,a2)(t)‖C([0,T ])

≤ 6M1T‖α1 −α2‖C([0,T ])

+ 2M0

(
1

|b(1)
∞ | − C3

+
1

|b(2)
∞ | − C3

+
1

|b(3)
∞ | − C3

)
T‖a1 − a2‖C([0,T ]).

(4.15)

Proof of Lemma 4.6. For k = 1, 2, denote σ
(j)
k (t) := σ(∆α

(j)
k (t)). For 0 ≤ t ≤ T ,

we can obtain the following estimate:

|Ψ(α1,a1)(t)−Ψ(α2,a2)(t)| =

∣∣∣∣∣∣
3∑
j=1

∫ t

0

(
σ

(j)
1 (τ)

b
(j)
1 (τ)

|b(j)
1 (τ)|

− σ(j)
2 (τ)

b
(j)
2 (τ)

|b(j)
2 (τ)|

)
dτ

∣∣∣∣∣∣
≤

3∑
j=1

∫ T

0

∣∣∣∣∣σ(j)
1 (τ)

b
(j)
1 (τ)

|b(j)
1 (τ)|

− σ(j)
2 (τ)

b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ dτ
≤

3∑
j=1

∫ T

0

∣∣∣σ(j)
1 (τ)− σ(j)

2 (τ)
∣∣∣ dτ

+

3∑
j=1

∫ T

0

σ
(j)
2 (τ)

∣∣∣∣∣ b(j)
1 (τ)

|b(j)
1 (τ)|

− b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ dτ.
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Since (αk,ak) ∈ XT , we have∣∣∣σ(j)
1 (τ)− σ(j)

2 (τ)
∣∣∣ =

∣∣∣σ (∆α
(j)
1 (τ)

)
− σ

(
∆α

(j)
2 (τ)

)∣∣∣
≤M1

∣∣∣∆α(j)
1 (τ)−∆α

(j)
2 (τ)

∣∣∣
≤ 2M1‖α1 −α2‖C([0,T ]).

Hence, we derive that

3∑
j=1

∫ T

0

∣∣∣σ(j)
1 (τ)− σ(j)

2 (τ)
∣∣∣ dτ ≤ 6M1T‖α1 −α2‖C([0,T ]).

Next, due to condition (4.11), we can apply Lemma 4.4. Therefore, we have that

|b(j)
k (τ)| 6= 0 for j = 1, 2, 3, k = 1, 2, and 0 ≤ τ ≤ T . By direct calculations, we have

that

∣∣∣∣∣ b(j)
1 (τ)

|b(j)
1 (τ)|

− b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ =
1

|b(j)
1 (τ)|

∣∣∣∣∣b(j)
1 (τ)− |b

(j)
1 (τ)|
|b(j)

2 (τ)|
b

(j)
2 (τ)

∣∣∣∣∣
≤ 1

|b(j)
1 (τ)|

(∣∣∣b(j)
1 (τ)− b(j)

2 (τ)
∣∣∣+

∣∣∣∣∣
(

1− |b
(j)
1 (τ)|
|b(j)

2 (τ)|

)
b

(j)
2 (τ)

∣∣∣∣∣
)

≤ 1

|b(j)
1 (τ)|

(∣∣∣b(j)
1 (τ)− b(j)

2 (τ)
∣∣∣+
∣∣∣∣∣∣b(j)

2 (τ)
∣∣∣− ∣∣∣b(j)

1 (τ)
∣∣∣∣∣∣)

≤ 2

|b(j)
1 (τ)|

∣∣∣b(j)
1 (τ)− b(j)

2 (τ)
∣∣∣ .

(4.16)

Again, using Lemma 4.4, and due to uniqueness of the point a∞ (see section 3), we

have that 0 < |b(j)
∞ | − C3 ≤ |b(j)

1 (τ)| for j = 1, 2, 3, and 0 ≤ τ ≤ T . Thus, we derive
that ∣∣∣∣∣ b(j)

1 (τ)

|b(j)
1 (τ)|

− b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ ≤ 2

|b(j)
∞ | − C3

‖a1 − a2‖C([0,T ])

and

3∑
j=1

∫ T

0

σ
(j)
2 (τ)

∣∣∣∣∣ b(j)
1 (τ)

|b(j)
1 (τ)|

− b
(j)
2 (τ)

|b(j)
2 (τ)|

∣∣∣∣∣ dτ
≤

3∑
j=1

∫ T

0

2M0

|b(j)
∞ | − C3

‖a1 − a2‖C([0,T ]) dτ

≤ 2M0

(
1

|b(1)
∞ | − C3

+
1

|b(2)
∞ | − C3

+
1

|b(3)
∞ | − C3

)
T‖a1 − a2‖C([0,T ]).

Hence, we obtain the desired estimate,

|Ψ(α1,a1)(t)−Ψ(α2,a2)(t)|
≤ 6M1T‖α1 −α2‖C([0,T ])

+ 2M0

(
1

|b(1)
∞ | − C3

+
1

|b(2)
∞ | − C3

+
1

|b(3)
∞ | − C3

)
T‖a1 − a2‖C([0,T ]).
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Proof of Theorem 4.1. We start with given constants C2 and C3 for C2 := 2|α0|
and C3 := 2|a0 −a∞|. Note that due to assumption (4.4), we obtain that C3 < |b(j)

∞ |
for all j = 1, 2, 3, and hence we have that

|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3 ≤ 2(|b(1)

∞ |+ |b(2)
∞ |+ |b(3)

∞ |).

Next, we will find the bound for the existence time T which will guarantee the con-
traction mapping on XT . Take time T > 0 as defined below,

T := min

 C2

8(M1 + 4M2C2)
∑3
j=1 |b

(j)
∞ |

,
C3

6M0
,

1

12M1
,

1

8M0

∑3
j=1

1

|b(j)∞ |−C3

 .

(4.17)

Recall that the space XT (see section 4) is a complete metric space endowed with a
distance

dXT
((α1,a1), (α2,a2)) = ‖α1 −α2‖C([0,T ]) + ‖a1 − a2‖C([0,T ]).

In addition, definition of constants C2 and C3 above implies conditions (4.8), (4.11),
and (4.12) in Lemmas 4.3–4.4. Moreover, since we selected T as

T ≤ C2

8(M1 + 4M2C2)
∑3
j=1 |b

(j)
∞ |

and T ≤ C3

6M0
,

we also have that

(2M1 + 4M2C2)(|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |+ 3C3)T

≤ 4(M1 + 4M2C2)(|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |)T

≤ 1

2
C2,

and

3M0T ≤
1

2
C3.

Thus, the other conditions (4.9) and (4.13) in Lemmas 4.3–4.4 are also satisfied.
Therefore, we can employ Lemmas 4.3 and 4.4 to show that the mapping

XT 3 (α,a) 7→ (Φ(α,a),Ψ(α,a)) ∈ XT

is well-defined. Next, combining estimates (4.14) and (4.15) in Lemmas 4.5–4.6 to-
gether, we obtain that

dX((Φ(α1,a1),Ψ(α1,a1)), (Φ(α2,a2),Ψ(α2,a2)))

≤
(

6M1 + 8M2

(
|b(1)
∞ |+ |b(2)

∞ |+ |b(3)
∞ |
))

T‖α1 −α2‖C([0,T ])

+

(
6M1 + 2M0

(
1

|b(1)
∞ | − C3

+
1

|b(2)
∞ | − C3

+
1

|b(3)
∞ | − C3

))
T‖a1 − a2‖C([0,T ])

(4.18)
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for (α1,a1), (α2,a2) ∈ XT . Next, since we selected time T as in (4.17) we have that

T ≤ C2

8(M1 + 4M2C2)
∑3
j=1 |b

(j)
∞ |
≤ 1

32M2

∑3
j=1 |b

(j)
∞ |

, T ≤ 1

12M1
,(4.19)

and

T ≤

8M0

3∑
j=1

1

|b(j)
∞ | − C3

−1

.(4.20)

Using the above estimates on time T , (4.19)–(4.20) in (4.18), we obtain that

dX((Φ(α1,a1),Ψ(α1,a1)), (Φ(α2,a2),Ψ(α2,a2)) ≤ 3

4
dX((α1,a1), (α2,a2)).

Therefore, by the contraction mapping principle, there is a fixed point (α,a) ∈ XT

such that
α = Φ(α,a), a = Ψ(α,a),

which is a solution of the system of differential equations (4.1).
Moreover, we obtain the following estimates:

‖α‖C([0,T ]) ≤ 2|α0|, ‖a− a∞‖C([0,T ]) ≤ 2|a− a∞|,

Tmax ≥ min

 |α0|
4(M1 + 8M2|α0|)

∑3
j=1 |b

(j)
∞ |

,
|a0 − a∞|

3M0
,

1

12M1
,

1

8M0

∑3
j=1

1

|b(j)∞ |−2|a0−a∞|

 ,

(4.21)

where Tmax is a maximal existence time of the solution (α,a).

Remark 4.7. Note that once some a priori estimates for ‖α‖C([0,T ]) and ‖a −
a∞‖C([0,T ]) are deduced, a global solution of (4.1) can be obtained using the estimate
of a maximal existence time Tmax.

5. A priori estimates. We first derive the energy dissipation principle for the
system (4.1). The system does not depend on parametrization s, hence the energy of
the system (4.1) is given by

E(t) =

3∑
j=1

σ(∆α(j)(t))|b(j)(t)|.(5.1)

Proposition 5.1 (energy dissipation). Let (α,a) be a solution of (4.1) for 0 ≤
t ≤ T . Then, for all 0 < t ≤ T , we have the local dissipation equality,

E(t) +

∫ t

0

∣∣∣∣dαdt (τ)

∣∣∣∣2 dτ +

∫ t

0

∣∣∣∣dadt (τ)

∣∣∣∣2 dτ = E(0).(5.2)

Proof of Proposition 5.1. Let us first compute the rate of the dissipation of the
energy of the system (4.1) at time t,

d

dt
E(t) =

3∑
j=1

σθ(∆α
(j))

(
dα(j−1)

dt
− dα(j)

dt

)
|b(j)|+

3∑
j=1

σ(∆α(j))
b(j)

|b(j)|
· db

(j)

dt
.(5.3)
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Since (α,a) is a solution of the system (4.1), the right-hand side of (5.3) can be
calculated as

3∑
j=1

σθ

(
∆α(j)

)(dα(j−1)

dt
− dα(j)

dt

)
|b(j)|

=

3∑
j=1

(
σθ

(
∆α(j+1)

)
|b(j+1)| − σθ

(
∆α(j)

)
|b(j)|

) dα(j)

dt

= −
3∑
j=1

∣∣∣∣dα(j)

dt

∣∣∣∣2
and

3∑
j=1

σ
(

∆α(j)
) b(j)

|b(j)|
· db

(j)

dt
= −

∣∣∣∣dadt
∣∣∣∣2 .

Thus, we obtain the energy dissipation for the system

d

dt
E(t) = −

∣∣∣∣dαdt
∣∣∣∣2 − ∣∣∣∣dadt

∣∣∣∣2 .(5.4)

Next, integrating (5.4) with respect to t, we have the local dissipation equality
(5.2).

From the energy dissipation and the assumption (2.18), we obtain as follows.

Corollary 5.2. Let (α,a) be a solution of (4.1) for 0 ≤ t ≤ T . Then, for all
0 < t ≤ T ,

|b(j)(t)| ≤ 1

C1
E(0).(5.5)

Proposition 5.3 (maximum principle). Let (α,a) be a solution of the system
(4.1) for 0 ≤ t ≤ T . Then, for all 0 < t ≤ T , we have

|α(t)|2 ≤ |α0|2.(5.6)

Proof of Proposition 5.3. Multiplying the first equation of (2.21) by α(j) and tak-
ing the sum for j = 1, 2, 3, we obtain

1

2

d

dt
|α(t)|2 = −

3∑
j=1

(
σθ

(
∆α(j+1)

) ∣∣∣b(j+1)
∣∣∣− σθ (∆α(j)

) ∣∣∣b(j)
∣∣∣)α(j)

= −
3∑
j=1

(
σθ

(
∆α(j)

) ∣∣∣b(j)
∣∣∣) (α(j−1) − α(j)

)

= −
3∑
j=1

(
σθ

(
∆α(j)

) ∣∣∣b(j)
∣∣∣)∆α(j).

(5.7)

Next, integrating with respect to t, and using the assumption (2.19), we obtain the
result (5.6).
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Proposition 5.4 (misorientation estimates). Let (α,a) be a solution of (4.1)
for 0 ≤ t ≤ T . Then, for all 0 < t ≤ T , we have the following estimate for the
misorientation:

3∑
j=1

(
∆α(j)(t)

)2

≤
3∑
j=1

(
∆α(j)(0)

)2

.(5.8)

Proof of Proposition 5.4. We take a derivative on the misorientation ∆α(j) with
respect to t,

d

dt
∆α(j) = α

(j−1)
t − α(j)

t

= −2σθ

(
∆α(j)

) ∣∣∣b(j)
∣∣∣+ σθ

(
∆α(j−1)

) ∣∣∣b(j−1)
∣∣∣+ σθ

(
∆α(j+1)

) ∣∣∣b(j+1)
∣∣∣ .

(5.9)

Next we multiply (5.9) by ∆α(j) and take the sum for j = 1, 2, 3; we obtain

1

2

d

dt

 3∑
j=1

(
∆α(j)(t)

)2


=

3∑
j=1

(
−2σθ

(
∆α(j)

) ∣∣∣b(j)
∣∣∣+σθ (∆α(j−1)

) ∣∣∣b(j−1)
∣∣∣+σθ (∆α(j+1)

) ∣∣∣b(j+1)
∣∣∣)∆α(j)

=

3∑
j=1

σθ

(
∆α(j)

) ∣∣∣b(j)
∣∣∣ (−2∆α(j) + ∆α(j+1) + ∆α(j−1)

)

= −3

3∑
j=1

σθ

(
∆α(j)

) ∣∣∣b(j)
∣∣∣∆α(j).

(5.10)

Next, integrating (5.10) with respect to t, we obtain

3∑
j=1

(
∆α(j)(t)

)2

+ 6

3∑
j=1

∫ t

0

σθ

(
∆α(j)

) ∣∣∣b(j)
∣∣∣∆α(j) dτ =

3∑
j=1

(
∆α(j)(0)

)2

.(5.11)

Similar to Proposition 5.3, we use the convexity assumption (2.19), hence we obtain
the final result (5.8).

Remark 5.5. 1. Usually, the misorientations are assumed to be bounded by some
constant, hence the orientations are also bounded. In the 2D case, it is reasonable to
consider misorientations in the interval between −π/4 and π/4 (see, for example, [3]).
In this case, one can consider the orientations within −π/8 and π/8.

2. Proposition 5.4 guarantees consistency for misorientations, which is −π/4 ≤
∆α(j)(t) ≤ π/4; see work, for example, [2, 3, 4, 5, 15], for bounds on misorientation
in two dimensions. Indeed, if the l2 sum of three initial misorientations is bounded by
π/4, that is, (

∑3
j=1(∆α(j)(0))2)

1
2 ≤ π/4, then the magnitude of the misorientation

has the same bounds |∆α(j)(t)| < π/4 for t > 0.
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6. Uniqueness and continuous dependence. In this section, we show unique-
ness and continuous dependence on the initial data of the solution of the system (4.1).

Lemma 6.1. For x(1), x(2), x(3) ∈ R2, a01,a02 ∈ R2, and α01,α02 ∈ R3, assume
that (α1(t),a1(t)) and (α2(t),a2(t)) are classical solutions of (4.1) on time interval
0 ≤ t ≤ T , associated with the given initial data (α01,a01) and (α02,a02), respectively.

Next, assume that there exists a constant C4 > 0 such that |b(j)
k (t)| ≥ C4 for 0 ≤ t ≤ T ,

j = 1, 2, 3 and k = 1, 2. Here, b
(j)
k (t) := x(j) − ak(t), j = 1, 2, 3 and k = 1, 2. Then,

d

dt

(
|α1 −α2|2 + |a1 − a2|2

)
≤ C5

(
|α1 −α2|2 + |a1 − a2|2

)
(6.1)

holds, where C5 > 0 is a positive constant that is independent of (α1,a1) and (α2,a2).

Remark 6.2. To be precise, the constant C5 > 0, in Lemma 6.1, depends on C1,

C4, E1(0) =
∑3
j=1 σ(∆α

(j)
1 (0))|b(j)(0)|, and

M := sup

|σ(θ)|+ |σθ(θ)|+
|σθ(θ1)− σθ(θ2)|
|θ1 − θ2|

:

|θ|, |θ1|, |θ2| ≤ max
k=1,2

 3∑
j=1

∣∣∣∆α(j)
k (0)

∣∣∣2
 1

2

 .

(6.2)

Proof of Lemma 6.1. Using (4.1), we have that

d

dt

(
α

(j)
1 − α

(j)
2

)
= −

(
σθ

(
∆α

(j+1)
1

) ∣∣∣b(j+1)
1

∣∣∣− σθ (∆α
(j+1)
2

) ∣∣∣b(j+1)
2

∣∣∣)
+
(
σθ

(
∆α

(j)
1

) ∣∣∣b(j)
1

∣∣∣− σθ (∆α
(j)
2

) ∣∣∣b(j)
2

∣∣∣) ,
and, hence, multiplying by α

(j)
1 − α

(j)
2 and taking the sum for j = 1, 2, 3, we obtain

1

2

d

dt
|α1 −α2|2 = −

3∑
j=1

(
σθ

(
∆α

(j+1)
1

) ∣∣∣b(j+1)
1

∣∣∣−σθ (∆α(j+1)
2

) ∣∣∣b(j+1)
2

∣∣∣) (α(j)
1 − α

(j)
2

)

+

3∑
j=1

(
σθ

(
∆α

(j)
1

) ∣∣∣b(j)
1

∣∣∣− σθ (∆α
(j)
2

) ∣∣∣b(j)
2

∣∣∣) (α(j)
1 − α

(j)
2

)
.

(6.3)

The estimate for the first term on the right-hand side of (6.3) is obtained using
Lipschitz continuity of σθ, (5.5), and (5.6),(
σθ

(
∆α

(j+1)
1

) ∣∣∣b(j+1)
1

∣∣∣− σθ (∆α
(j+1)
2

) ∣∣∣b(j+1)
2

∣∣∣) (α(j)
1 − α

(j)
2

)
≤ |α1 −α2|

×
(∣∣∣σθ (∆α

(j+1)
1

)
− σθ

(
∆α

(j+1)
2

)∣∣∣ ∣∣∣b(j+1)
1

∣∣∣+
∣∣∣σθ (∆α

(j+1)
2

)∣∣∣ ∣∣∣b(j+1)
1 − b(j+1)

2

∣∣∣)
≤ |α1 −α2|

(
M

C1
E1(0)

∣∣∣∆α(j+1)
1 −∆α

(j+1)
2

∣∣∣+M |a1 − a2|
)

≤ 2M

C1
E1(0)|α1 −α2|2 +M |α1 −α2||a1 − a2|,
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where the constant M > 0 is given by (6.2) and E1(0) =
∑3
j=1 σ(∆α

(j)
1 (0))|b(j)(0)|.

The second term on the right-hand side of (6.3) can be handled the same way. Next,
using Young’s inequality for the estimate in the right-hand side of (6.3), we deduce

d

dt
|α1 −α2|2 ≤ 6M

(
4

C1
E(0) + 1

)
|α1 −α2|2 + 6M |a1 − a2|2.(6.4)

Similarly, from (4.1), we have that

d

dt
(a1 − a2) =

3∑
j=1

σ
(

∆α
(j)
1

) b
(j)
1

|b(j)
1 |
− σ

(
∆α

(j)
2

) b
(j)
2

|b(j)
2 |

=

3∑
j=1

(
σ
(

∆α
(j)
1

)
− σ

(
∆α

(j)
2

)) b
(j)
1

|b(j)
1 |

+

3∑
j=1

σ
(

∆α
(j)
2

)( b
(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

)
.

Hence, we obtain

1

2

d

dt
|a1 − a2|2

=

3∑
j=1

(
σ
(

∆α
(j)
1

)
− σ

(
∆α

(j)
2

))( b
(j)
1

|b(j)
1 |
· (a1 − a2)

)

+

3∑
j=1

σ
(

∆α
(j)
2

)( b
(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

)
· (a1 − a2)

≤
3∑
j=1

M |∆α(j)
1 −∆α

(j)
2 | |a1 − a2|+

3∑
j=1

σ
(

∆α
(j)
2

) ∣∣∣∣∣ b(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

∣∣∣∣∣ |a1 − a2|

≤ 6M |α1 −α2| |a1 − a2|+
3∑
j=1

σ
(

∆α
(j)
2

) ∣∣∣∣∣ b(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

∣∣∣∣∣ |a1 − a2| .

(6.5)

Next, let us estimate the second term on the right-hand side of (6.5). Applying

(4.16), and using that |b(j)
k (t)| ≥ C4, b

(j)
k (t) = x(j)−ak(t) for j = 1, 2, 3 and k = 1, 2,

we have that

σ(∆α
(j)
2 )

∣∣∣∣∣ b(j)
1

|b(j)
1 |
− b

(j)
2

|b(j)
2 |

∣∣∣∣∣ |a1 − a2| =
2

|b(j)
1 |

σ
(

∆α
(j)
2

) ∣∣∣b(j)
1 − b

(j)
2

∣∣∣ |a1 − a2|

≤ 2M

C4
|a1 − a2|2 .

Hence, we have that

d

dt
|a1 − a2|2 ≤ 6M |α1 −α2|2 + 6M

(
2

C4
+ 1

)
|a1 − a2|2 .(6.6)

Therefore, by (6.4) and (6.6), we have

d

dt
(|α1 −α2|2 + |a1 − a2|2) ≤ C6|α1 −α2|2 + C7|a1 − a2|2,
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where

C6 := 12M

(
2

C1
E(0) + 1

)
, C7 := 12M

(
1

C4
+ 1

)
.

By the neighboring inequality, we can now show uniqueness of the classical solu-
tion to the system (4.1).

Theorem 6.3 (uniqueness). Consider x(1), x(2), x(3) ∈ R2, and initial data
a0 ∈ R2 and α0 ∈ R3. Assume also that there exists a constant C8 > 0 such that
|b(j)
k (t)| ≥ C8 for 0 ≤ t ≤ T , j = 1, 2, 3 and k = 1, 2. Then, there exists a unique

classical solution (α(t),a(t)) 0 ≤ t ≤ T of the system (4.1).

Note that C5 stays bounded when (α01,a01) → (α02,a02). Thus, we obtain the
following.

Theorem 6.4 (continuous dependence on the initial data). For x(1), x(2), x(3) ∈
R2, a01,a02 ∈ R2, and α01,α02 ∈ R3, let (α1,a1) and (α2,a2) be two classical
solutions of the system (4.1) on 0 ≤ t ≤ T , associated with the given initial data
(α01,a01) and (α02,a02), respectively. Assume that there exists a constant C9 > 0

such that |b(j)
k (t)| ≥ C9 for 0 ≤ t ≤ T , j = 1, 2, 3 and k = 1, 2. Then,

|α1 −α2|2 + |a1 − a2|2 ≤ eC5t(|α01 −α02|2 + |a01 − a02|2)(6.7)

holds, where C5 > 0 is a positive constant given in Lemma 6.1. In particular, contin-
uous dependence on the initial data holds, namely,

‖α1 −α2‖C([0,T ]) + ‖a1 − a2‖C([0,T ]) → 0

as (α01,a01)→ (α02,a02).

7. Evolution of grain boundary network. In this section, we extend the
results obtained above for a system with a single junction to a network of grains

that have lattice orientations {α(k)}NSG

k=1 , grain boundaries {Γ(j)
t }N

GB

j=1 , and the triple

junctions {a(l)}NTJ

l=1 . We identify the lattice α(k) with the single grain k. Hence, the
grain boundary energy of the entire network is defined now as

E(t) =

NGB∑
j=1

∫
Γ
(j)
t

σ
(
n(j),∆α(j)

)
dH1,(7.1)

where ∆α(j) is a difference between the lattice orientions of the two grains that share

the same grain boundary Γ
(j)
t . The difference ∆α(j) is called a misorientation of the

grain boundary Γ
(j)
t . Next, using the same argument as in section 2 for a system with

a single triple junction, we obtain a similar expression for the dissipation rate of the
energy of the grain boundary network,

d

dt
E(t) = −

NGB∑
j=1

∫
Γ
(j)
t

d

ds
T (j) dH1 +

NSG∑
k=1

∂E

∂α(k)

dα(k)

dt
−
NTJ∑
l=1

∑
a(l)∈Γ

(j)
t

T (j) · da
(l)

dt
.

(7.2)

Here,

T (j) = σ
(j)
φ n̂(j) + σ(j)b̂(j),(7.3)

and a(l) denotes the triple junction where three grain boundaries meet (we assume in
our model that only triple junctions are stable). Note that the line tension vector T (j)

points toward an inward direction of the grain boundary at the triple junction a(l).
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Next, similar to section 2, we obtain the following system of differential equations
to ensure that the entire system is dissipative:

v(j) = µ(j) d

ds
T (j) · n̂(j), j = 1, . . . , NGB,

dα(k)

dt
= −γ δE

δα(k)
, k = 1, . . . , NSG,

da(l)

dt
= η

∑
a(l)∈Γ

(j)
t

T (j), l = 1, . . . , NTJ,

(7.4)

where µ(j), γ, η > 0 are positive constants. For simplicity of the calculations below,
we further assume that the energy density σ(n, θ) is an even function with respect to
the misorientation θ = ∆α(j), that is, the misorientation effects are symmetric with
respect to the difference between the lattice orientations. For the two grains k1 and
k2 with orientations α(k1) and α(k2), respectively, we introduce notation that will be

helpful for calculations below, Γ
(j)
t := Γ

(j(k1,k2))
t a grain boundary which is formed

by grains k1 and k2 (see Figure 3). We also assume that if grains k1 and k2 have no

common interface/grain boundary, then we just set Γ
(j(k1,k2))
t = ∅. Then,

δE

δα(k)
=

NSG∑
k′=1,
k′ 6=k

∫
Γ
(j(k,k′))
t

σθ

(
n(j(k,k′)), α(k) − α(k′)

)
dH1.(7.5)

We let µ(j) → ∞, γ = η = 1, and as before, we consider surface tension (2.18)–
(2.20) without normal dependence.

Then, the problem (7.4) is turned into

Γ
(j)
t is a line segment between some a(lj,1) and a(lj,2), j = 1, . . . , NGB,

dα(k)

dt
= −

NSG∑
k′=1,
k′ 6=k

∣∣∣Γ(j(k,k′))
t

∣∣∣σθ (α(k) − α(k′)
)
, k = 1, . . . , NSG,

da(l)

dt
=

∑
a(l)∈Γ

(j)
t

T (j), l = 1, . . . , NTJ,

(7.6)

Fig. 3. Example of Γ
(j(k1,k2))
t .
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Due to the convexity assumption (2.19), we obtain the maximum principle for
α(k). In fact, for a fixed j = 1, . . . , NGB, there are only two grains kj1 , kj2 ∈
{1, . . . , NSG} such that Γ

(j)
t is formed between grains kj1 and kj2 . Using this fact, we

find that

NSG∑
k=1

NSG∑
k′=1,
k′ 6=k

|Γ(j(k,k′))
t |σθ

(
α(k) − α(k′)

)
α(k)

=

NGB∑
j=1

|Γ(j)
t |
(
σθ

(
α(kj,1) − α(kj,2)

)
α(kj,1) + σθ

(
α(kj,2) − α(kj,1)

)
α(kj,2)

)

=

NGB∑
j=1

|Γ(j)
t |σθ

(
α(kj,1) − α(kj,2)

)(
α(kj,1) − α(kj,2)

)
≥ 0.

(7.7)

Thus, we can proceed now using the same arguments as in sections 4–6. To show the
existence of a solution of (7.6), we integrate (7.6) and rewrite in the form of integral
equations. After that, we can make a contraction mapping argument as done in sec-
tion 4 for a single triple junction. The key ingredient in this approach is to show a
priori lower bounds for the distance of two triple junctions, similar to Lemma 4.4.
If an initial grain boundary network is sufficiently close to some equilibrium state,
then any triple junction is close to its associated initial position (moreover, no critical
events happen during a short enough time interval). Thus, we can obtain a priori
lower bounds for the distance between the two triple junctions. The uniqueness and
continuous dependence on the initial data can be obtained in a similar way as dis-
cussed in Theorems 6.3 and 6.4. Indeed, as in Remark 2.4, the convexity assumption
(2.19) is not needed to show the uniqueness and continuous dependence. Nevertheless,
the convexity assumption (2.19) and its consequence, the result (7.7), are important
if one would like to guarantee the maximum principle type result for the orientations,
similar to Proposition 5.3. Therefore, we obtain the following.

Theorem 7.1. In a grain boundary network with lattice orientations, if triple
junctions at the initial state are sufficiently close to triple junctions at the equilibrium
state, then the problem (7.6) has a unique time local solution and the magnitude of
the orientation of each grain is bounded by the l2 sum of the initial orientations of
the grains in the network, that is, (α(k′)(t))2 ≤

∑
k(α(k)(0))2 for t > 0.

Remark 7.2. Note that the proposed model of dynamic orientations (7.4) (and,
hence, dynamic misorientations, (7.6), or Langevin type equation if critical events/
grain boundaries disappearance events are taken into account) is reminiscent of the
recently developed theory for the grain boundary character distribution (GBCD)
[5, 3, 4, 2], which suggests that the evolution of the GBCD satisfies a Fokker–Planck
equation (GBCD is an empirical distribution of the relative length (in two dimen-
sions) or area (in three dimensions) of interface with a given lattice misorientation
and normal). More details will be presented in future studies.

Large time asymptotic analysis of the model proposed in the current work will
be presented in a forthcoming paper.
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