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Abstract. Many technologically useful materials are polycrystals composed of a myriad of small
monocrystalline grains separated by grain boundaries. Dynamics of grain boundaries play an essential
role in defining the material’s properties across multiple scales. In this work, we study the large-
time asymptotic behavior of the model for the motion of grain boundaries with the dynamic lattice
misorientations and the triple junctions drag.
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1. Introduction
Many technologically useful materials are polycrystals composed of a myriad of

small monocrystalline grains separated by grain boundaries. Dynamics of grain bound-
aries play an essential role in defining the material’s properties across multiple scales.
Experimental and computational studies give useful insight into the geometric features
and the crystallography of the grain boundary network in polycrystalline microstruc-
tures.

The focus of this work is on the large-time evolution of a planar grain boundary
network. A classical model for the motion of grain boundaries in polycrystalline ma-
terials is the growth by curvature, as the local evolution law for the grain boundaries,
due to Mullins and Herring [18, 30, 31], and see also work on mean curvature flow,
e.g., [10, 11, 16, 24]. In addition, to have a well-posed model for the evolution of the
grain boundary network, one has to impose a separate condition at the triple junctions
where three grain boundaries meet [20]. A conventional choice is the Herring condition
which is the natural boundary condition at the triple points for the grain boundary
network at equilibrium, [8,9,19,20], and references therein. There are several analytical
studies about grain boundary motion by mean curvature with the Herring condition at
the triple junctions, see for instance [1–6,17,20,22,23,25–28], as well as computational
work, [2, 5, 12–14,21,33].

A standard assumption in the theory and simulations of the grain growth is the
evolution of the grain boundaries/interfaces themselves and not the dynamics of the
triple junctions. However, recent experimental work indicates that the motion of the
triple junctions together with the anisotropy of the grain interfaces can have a significant
effect on the resulting grain growth [6], see also work on molecular dynamics simulation
[33,34] and a recent work on dynamics of line defects [32,35,36]. The current work is a
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continuation of our previous work [15], where we proposed a new model for the evolution
of planar grain boundaries, which takes into account dynamic lattice misorientations
(evolving anisotropy of grain boundaries) and the mobility of the triple junctions. The
goal here is to analyze the large-time asymptotic behavior of the model proposed in [15].

The paper is organized as follows. In Sections 2-3, we discuss important details
and properties of the model for the grain boundary motion. In Sections 4-5, we present
the main results of this paper, the global existence (Theorem 4.1), and the large-time
asymptotic behavior of the considered model under the assumption of a single triple
junction (Theorem 5.1). In Section 6, we discuss the extension of the theory to the
grain boundary network with multiple junctions, under the assumption of no criti-
cal/disappearance events and around the energy minimizing state. Finally, in Section 7,
we present several numerical experiments to illustrate the effect of the dynamic orien-
tations/misorientations (grains “rotations”) and the effect of the mobility of the triple
junctions on the grain growth.

2. Review of the model
In this article we consider the large-time asymptotic behavior of the model for the

evolution of the planar grain boundary network with the dynamic lattice misorientations
and the triple junctions drag. Thus, in this section for the reader’s convenience, we first
review the model which was originally proposed in [15], and then, briefly preview main
results of the current work.

Let us first recall the system for a single triple junction which was derived in [15].
The total grain boundary energy for such a model is

3∑
j=1

σ(∆(j)α)|Γ(j)
t |. (2.1)

Here, σ :R→R is a given surface tension, α(j) =α(j)(t) : [0,∞)→R are time-dependent
orientations of the grains, θ= ∆(j)α :=α(j−1)−α(j) is a lattice misorientation of the

grain boundary Γ
(j)
t , and |Γ(j)

t | is the length of Γ
(j)
t . As a result of applying the maximal

dissipation principle, in [15], one can obtain the following model,

v(j)
n =µσ(∆(j)α)κ(j), on Γ

(j)
t , t>0, j= 1,2,3,

dα(j)

dt
=−γ

(
σθ(∆

(j+1)α)|Γ(j+1)
t |−σθ(∆(j)α)|Γ(j)

t |
)
, j= 1,2,3,

da

dt
(t) =η

3∑
k=1

σ(∆(k)α)
b(k)(0,t)

|b(k)(0,t)|
, t>0,

Γ
(j)
t :ξ(j)(s,t), 0≤s≤1, t>0, j= 1,2,3,

a(t) =ξ(1)(0,t) =ξ(2)(0,t) =ξ(3)(0,t), and ξ(j)(1,t) =x(j), j= 1,2,3.

(2.2)

In (2.2), v
(j)
n , κ(j), and b(j) =ξ

(j)
s denote a normal velocity, a curvature and a tan-

gent vector of the grain boundary Γ
(j)
t , respectively. Note that s is not an arc length

parameter of Γ
(j)
t , namely, b(j) is not necessarily a unit tangent vector. The vector

a=a(t) : [0,∞)→R2 denotes a position of the triple junction, x(j) is a position of the
end point of the grain boundary. The three independent relaxation time scales µ,γ,η>0
(length, misorientation and position of the triple junction) are considered as positive
constants. Further, we assume in (2.2), α(0) =α(3), α(4) =α(1) and b(4) =b(1), for sim-
plicity. We also use notation | · | for a standard Euclidean vector norm. The complete
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Fig. 2.1. The left figure illustrates the model (2.3), where we isolate the effect of the misorien-
tations and mobility of the triple junction on the motion of the grain boundaries. The right figure
illustrates the model of the equilibrium state (2.9) with no misorientation effect.

details about model (2.2) can be found in the earlier work [15, Section 2]. Next, in [15],
we relaxed the curvature effect, by taking the limit µ→∞, and obtained the reduced
model (see Figure 2.1),

dα(j)

dt
=−γ

(
σθ(∆

(j+1)α)|b(j+1)|−σθ(∆(j)α)|b(j)|
)
, j= 1,2,3,

da

dt
(t) =η

3∑
j=1

σ(∆(j)α)
b(j)

|b(j)|
, t>0,

a(t)+b(j)(t) =x(j), j= 1,2,3.

(2.3)

In (2.3), we consider b(j)(t) as a grain boundary. Note that, the system of equations
(2.3) can also be derived from the energetic variational principle for the total grain

boundary energy (2.1) (with |Γ(j)
t | replaced by |b(j)|).

Hereafter, we assume the following three conditions for the surface tension σ. First,
we assume σ is C3, positive and is minimized at 0, namely,

σ(θ)≥σ(0)>0, (2.4)

for θ∈R. Second, we assume convexity, for all θ∈R,

σθ(θ)θ≥0, and σθθ(0)>0. (2.5)

Furthermore, we assume,

σθ(θ) = 0 if and only if θ= 0. (2.6)

Remark 2.1. Note, it is enough to assume σθθ(0)>0 instead of (2.5) if ∆(j)α are
sufficiently small. Indeed, if C2 function σ satisfies σθθ(0)>0 and σ(θ)≥σ(0) for θ∈R,
then σθ(θ)θ≥0 is satisfied for sufficiently small |θ|. Note that, the convexity assumption
(2.5) was not used for the local existence result, see [15] (or see Proposition 3.1 below).
Further, we can also show the maximum principle (Proposition 3.3) without global

convexity assumption σθ(θ)θ≥0 in (2.5), if the initial orientations α
(j)
0 are sufficiently

small.
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Next, to preview the ideas of main results of this work, consider the equilibrium
state of the grain boundary energy (2.1), namely,

0 =−
(
σθ(∆

(j+1)α∞)|b(j+1)
∞ |−σθ(∆(j)α∞)|b(j)

∞ |
)
,

0=

3∑
j=1

σ(∆(j)α∞)
b

(j)
∞

|b(j)
∞ |

,

a∞=x(1)−b(1)
∞ =x(2)−b(2)

∞ =x(3)−b(3)
∞ .

(2.7)

Assume, for each i= 1,2,3, ∣∣∣∣∣∣
3∑

j=1,j 6=i

x(j)−x(i)

|x(j)−x(i)|

∣∣∣∣∣∣>1. (2.8)

The assumption (2.8) implies that fixed points x(1),x(2) and x(3) can not belong to the
single line. Furthermore, (2.8) is equivalent to the condition that in the triangle with
vertices x(1)x(2)x(3), all three angles are less than 2π

3 . Next, from the assumption (2.8),
(2.5)-(2.6), associated equilibrium system (2.7) becomes,

3∑
j=1

b
(j)
∞

|b(j)
∞ |

=0,

a∞+b(j)
∞ =x(j), j= 1,2,3.

(2.9)

In fact, assumptions (2.5)-(2.6) imply α
(1)
∞ =α

(3)
∞ =α

(3)
∞ , hence ∆(j)α∞= 0 for j= 1,2,3.

We later discuss the property of the equilibrium solution of (2.7) in Proposition 5.1.

The main result of this work is the local exponential stability for the solution of
the equilibrium state (2.9), Theorem 5.1. That is, if the initial misorientations are
sufficiently small and the position of the initial triple junction is sufficiently close to the
equilibrium state of the position of the triple junction, then, the solution of (2.3) exists
globally in time and it exponentially converges to the equilibrium solution of (2.9). Our
strategy of the proof here is to show a priori estimate for the position of the triple
junction, and then study the linearized problem of (2.3) around the equilibrium state.
With the aid of the assumption (2.8), the equilibrium state system (2.9) is uniquely
solvable. Moreover, the equilibrium state is also the energy minimizing state. Thus, we
can obtain a priori estimate for the position of the triple junction and a full convergence
result for large-time asymptotics of the solution. Again thanks to (2.8), the linearized
operator of (2.3) is degenerate if and only if, there are no misorientation effects, that
is, all α(j) are the same. This allows us to deduce the exponential stability for the
equilibrium state.

Moreover, we consider large-time asymptotic behavior of the grain boundary net-
work. In general, the uniqueness for the equilibrium state is not known, and there
might be critical events (disappearance of the grains, grain boundaries, etc. [2–5]). We
study the large-time asymptotics of the grain boundary network in Section 6 under the
assumption of no critical events and around the energy minimizing state. We discuss
global existence and large-time asymptotic behavior of the grain boundary network in
Section 6.
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3. Properties of the local solution
In this section, for the reader’s convenience, we review some known results, as well

as established additional properties for the system, defined in (2.3). In particular, we
review local existence and a priori estimates results for the model (2.3). More details
can be found in [15].

First, using the same argument as in [15], one can show the local-in-time existence
of the triple junction and the estimates of the maximal existence time, under assumption
of more general relaxation time constants, γ, η>0.

Proposition 3.1 (Local existence [15, Theorem 4.1]). Let x(1), x(2), x(3)∈R2,
a0∈R2, and α0∈R3 be given initial data. Assume the conditions (2.4) and (2.8) for
i= 1,2,3, and let a∞ be a solution of (2.9). Further, assume that for all j= 1,2,3,

|a0−a∞|<
1

2
|b(j)
∞ |. (3.1)

Then, there exists a local-in-time solution (α,a) of (2.3) on [0,Tmax), such that

|a(t)−a∞|< |b(j)
∞ | for all j= 1,2,3, and 0≤ t<Tmax. (3.2)

Furthermore, the maximal existence time Tmax of the solution is estimated by

Tmax≥min

{
|α0|

4γ(M1 +8M2|α0|)
∑3
j=1 |b

(j)
∞ |

,
|a0−a∞|

3ηM0
,

1

12γM1
,

1

8ηM0

∑3
j=1

1

|b(j)
∞ |−2|a0−a∞|

}
(3.3)

where

M0 := sup
|θ|≤4|α0|

|σ(θ)|, M1 := sup
|θ|≤4|α0|

|σθ(θ)|, M2 := sup
|θ1|,|θ2|≤4|α0|

|σθ(θ1)−σθ(θ2)|
|θ1−θ2|

.

To show Proposition 3.1, the contraction mapping principle is employed [15]. Note
that, the assumption (3.2) guarantees that the point vector a does not coincide with
the Dirichlet point x(j), and stays as the triple junction. Note also, if one can obtain
a priori bounds for |α| and |a−a∞|, then from (3.3) the solution given by Proposition
3.1 can be extended globally in time.

Next we review some a priori estimates for (2.3). Since our problem (2.3) ensures
the energy dissipation principle, one can obtain,

Proposition 3.2 (Energy dissipation [15, Proposition 5.1]). Let (α,a) be a solution
of (2.3) on 0≤ t≤T , and let E(t), given by (2.1), be the total grain boundary energy of
the system. Then, for all 0<t≤T ,

E(t)+
1

γ

∫ t

0

∣∣∣∣dαdt (τ)

∣∣∣∣2 dτ+
1

η

∫ t

0

∣∣∣∣dadt (τ)

∣∣∣∣2 dτ =E(0). (3.4)

The estimate (3.4) is obtained by taking the derivative of the energy E(t) and using
the system (2.3).

We also have a maximum principle for the orientation α(j),
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Proposition 3.3 (Maximum principle [15, Proposition 5.1]). Let (α,a) be a solution
of (2.3) on 0≤ t≤T . Then, for all 0<t≤T ,

|α(t)|2≤|α0|2. (3.5)

The estimate (3.5) can be obtained by multiplying the equation of α(j) in (2.3) by
α(j) and integrating in time. Since, the right-hand side of the first equation in (2.3) is
non-positive definite for all t>0, the maximum principle for the orientations α holds.

In addition, since d
dt (α

(1) +α(2) +α(3)) = 0, we obtain that the sum of the orienta-
tions is preserved, namely,

Lemma 3.1 (Preserving total orientations). Let (α,a) be a solution of (2.3) on
0≤ t≤T . Then, for all 0<t≤T ,

α(1)(t)+α(2)(t)+α(3)(t) =α
(1)
0 +α

(2)
0 +α

(3)
0 . (3.6)

Above, we discussed some known results about the system (2.3) (cf. [15]). In the
current work, we employ these results to show the existence of the global solution, and
obtain the large-time asymptotic behavior of the solution to (2.3).

4. Global existence
In this section, existence theory for a global-in-time solution of (2.3) is presented.

As mentioned after the Proposition 3.1 in Section 3, in order to show the global existence
in time of (2.3), we need to derive a priori estimates for |α| and |a−a∞|. We already
have a priori estimates for |α|, see Proposition 3.3 (the maximum principle). Therefore,
the main objectives of this section are to obtain a priori estimates for |a−a∞|, Lemma
4.1, and then show the global existence result, Theorem 4.1.

Define,

C1 := inf


3∑
j=1

|x(j)−a| : There exists j= 1,2,3 such that |a−a∞|≥
1

2
|b(j)
∞ |

. (4.1)

Since a∞ is the unique minimizer of

f(a) =

3∑
j=1

|x(j)−a|, a∈R2 (4.2)

and f :R2→R is continuous, we have,

0<

3∑
j=1

|b(j)
∞ |=f(a∞)<C1. (4.3)

Next lemma gives a priori estimate for the triple junction a.

Lemma 4.1 (Boundedness of the triple junction). Assume that an initial data (α0,a0)
satisfies,

E(0) =

3∑
j=1

σ(∆(j)α0)|a0−x(j)|<σ(0)C1. (4.4)
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Let (α,a) be a solution of (2.3) on 0≤ t≤T . Then, we have that,

|a(t)−a∞|<
1

2
|b(j)
∞ |=

1

2
|a∞−x(j)| (4.5)

for j= 1,2,3, and for any 0≤ t≤T .

Proof. Assume, there is 0≤ t1≤T and j= 1,2,3, such that, |a(t1)−a∞|≥ 1
2 |b

(j)
∞ |.

Then (2.4), (4.1) and Proposition 3.2 (energy dissipation) lead,

C1≤
3∑
j=1

|a(t1)−x(j)|=
3∑
j=1

|b(j)(t1)|≤ 1

σ(0)

3∑
j=1

σ(∆(j)α0)|a0−x(j)|= 1

σ(0)
E(0),

which contradicts (4.4).

Remark 4.1. Note, if we assume (4.4), then we have,

3∑
j=1

|a0−x(j)|≤ 1

σ(0)

3∑
j=1

σ(∆(j)α0)|a0−x(j)|<C1,

thus, |a0−a∞|< |b(j)
∞ |/2 for all j= 1,2,3. Hence, the assumption (3.1) in Proposition

3.1 (existence of the local-in-time solution) will be automatically deduced.

Remark 4.2. Assumption (4.4) is related to the smallness assumption for the initial
data (α0,a0). Namely, if the initial misorientations are sufficiently small and the posi-
tion of the initial triple junction is sufficiently close to the position of the equilibrium
triple junction a∞, then we obtain (4.4).

Now we are in position to show the global existence of the solution of (2.3).

Theorem 4.1 (Global existence). Let x(1), x(2), x(3)∈R2, a0∈R2, and α0∈R3 be
the initial data for the system (2.3). Assume (2.8), and let a∞ be a unique solution
of the equilibrium system (2.9). Further, assume condition (4.4). Then there exists a
unique global-in-time solution (α,a) of (2.3).

Proof. We need to show that the solution given by Proposition 3.1 extends globally
in time. Let (α,a) be a solution of (2.3) on 0≤ t≤T . By Lemma 4.1, we obtain

|a(T )−a∞|< 1
2 |b

(j)
∞ |. Due to Proposition 3.2 (energy dissipation), we also have,

E(T ) =

3∑
j=1

σ(∆(j)α(T ))|a(T )−x(j)|≤E(0)<σ(0)C1.

In addition, from Proposition 3.3 (maximum principle), we have that |α(T )|≤ |α0|,
hence we can extend the solution globally in time.

In the above proof, a key argument is how to obtain the a priori estimate for the
position of the triple junction a, Lemma 4.1. An energy smallness condition (4.4) plays
an important role to obtain the a priori estimate for the solution of (2.3).

5. Large-time asymptotic behavior
In this section, large-time behavior of the global solution given by Theorem 4.1 is

presented. We first discuss in Proposition 5.1 below large-time asymptotic profile of the
solution of (2.3). After that, we show in Theorem 5.1 that the asymptotic profile is
asymptotically exponentially stable.
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Proposition 5.1. Let x(1), x(2), x(3)∈R2, a0∈R2, and α0∈R3 be the initial data
for the system (2.3). We assume that the initial data satisfy (4.4), and we also impose
the same assumptions as in Theorem 4.1. Define α∞ as,

α∞ :=
α

(1)
0 +α

(2)
0 +α

(3)
0

3
. (5.1)

Let a∞ be a solution of the equilibrium system (2.9) and (α,a) be a time-global solution
of (2.3). Then,

α(t)→α∞(1,1,1), a(t)→a∞, (5.2)

as t→∞.

Proof. Consider arbitrary time sequence tk→∞. From Proposition 3.3 (maximum
principle), Lemma 4.1 (boundedness of the triple junction), and Proposition 3.2 (energy
dissipation), we have a convergent subsequence (denoted by the same tk→∞) such that,

α(tk)→α∞,∗, a(tk)→a∞,∗,∣∣∣∣dαdt (tk)

∣∣∣∣→0,

∣∣∣∣dadt (tk)

∣∣∣∣→0,
(5.3)

and,

|a∞,∗−a∞|≤
1

2
|a∞−x(j)|, (5.4)

for some α∞,∗∈R3 and a∞,∗∈R2. We have to show α∞,∗=α∞(1,1,1) and a∞,∗=a∞.
Taking the same limit with respect to tk in the equation (2.3), from (5.3) we obtain,

0 =−
(
σθ(∆

(j+1)α∞,∗)|b(j+1)
∞,∗ |−σθ(∆(j)α∞,∗)|b(j)

∞,∗|
)
,

0=

3∑
j=1

σ(∆(j)α∞,∗)
b

(j)
∞,∗

|b(j)
∞,∗|

,

a∞,∗=x(1)−b(1)
∞,∗=x(2)−b(2)

∞,∗=x(3)−b(3)
∞,∗.

(5.5)

We will show that ∆(j)α∞,∗= 0 for j= 1,2,3. First, by (5.4), we have that,

|b(j)
∞,∗|= |x(j)−a∞,∗|≥ |x(j)−a∞|−|a∞−a∞,∗|≥

1

2
|x(j)−a∞|>0.

Next, from the first equation of (5.5), we obtain

σθ(∆
(1)α∞,∗)|b(1)

∞,∗|=σθ(∆
(2)α∞,∗)|b(2)

∞,∗|=σθ(∆
(3)α∞,∗)|b(3)

∞,∗|. (5.6)

Multiplying (5.6) by ∆(2)α∞,∗ and ∆(3)α∞,∗, and using the convexity assumption (2.5),
we have

σθ(∆
(1)α∞,∗)(∆

(2)α∞,∗)|b(1)
∞,∗|≥0, σθ(∆

(1)α∞,∗)(∆
(3)α∞,∗)|b(1)

∞,∗|≥0.

Thus ∆(1)α∞,∗= 0 follows from −σθ(∆(1)α∞,∗)(∆
(1)α∞,∗)|b(1)

∞,∗|≥0 (obtained from the
above), the assumptions (2.5) and (2.6). We can obtain ∆(2)α∞,∗= ∆(3)α∞,∗= 0 in a
similar way.



Y. EPSHTEYN, C. LIU, AND M. MIZUNO 1411

From Lemma 3.1, (5.1), and ∆(j)α∞,∗= 0 for j= 1,2,3, we find, α
(j)
∞,∗=α∞ for all

j= 1,2,3. Again using (5.5), we obtain that,

0=

3∑
j=1

b
(j)
∞,∗

|b(j)
∞,∗|

.

Therefore, by uniqueness of the Fermat-Torricelli problem, we obtain a∞,∗=a∞(cf. the
Fermat-Torricelli Problem [7, Theorem 18.3]).

Hereafter we denote α∞ :=α∞(1,1,1). To prove the exponential stability for
(α∞,a∞) of the system (2.3), we study the linearized problem of (2.3) and show the
decay properties of the solution to the linearized problem, Propositions 5.2 and 5.3. We
first derive the linearized problem in Lemma 5.1.

Lemma 5.1 (Linearized problem). The linearized problem of (2.3) around (α∞,a∞)
is given as,

dαL
dt

=−γσθθ(0)B∞αL, B∞=

|b
(1)
∞ |+ |b(2)

∞ | −|b(2)
∞ | −|b(1)

∞ |
−|b(2)
∞ | |b(2)

∞ |+ |b(3)
∞ | −|b(3)

∞ |
−|b(1)
∞ | −|b(3)

∞ | |b(3)
∞ |+ |b(1)

∞ |

 ,
daL
dt

=−ησ(0)

3∑
j=1

(
1

|b(j)
∞ |

(
I− b

(j)
∞

|b(j)
∞ |
⊗ b

(j)
∞

|b(j)
∞ |

))
aL=:−ησ(0)LaaL,

3∑
j=1

b
(j)
∞

|b(j)
∞ |

=0,

(5.7)

where ⊗ denotes the outer product of two vectors.

Proof. In order to obtain the linearized problem (5.7), we consider,

α(t) =α∞+εαL(t), a(t) =a∞+εaL(t), (5.8)

in (2.3), and take a derivative with respect to ε. Note, the third equation in (5.7) came
from the equilibrium system (2.9), so we will only derive the equations for αL and aL.
First, we derive the equation for αL (the first equation in (5.7)). Since ∆(j)α=ε∆(j)αL
and σθ(0) = 0, we compute,

d

dε

∣∣∣∣
ε=0

(
−
(
σθ(∆

(j+1)α)|b(j+1)|−σθ(∆(j)α)|b(j)|
))

=
d

dε

∣∣∣∣
ε=0

(
−
(
σθ(ε∆

(j+1)αL)|x(j+1)−a∞−εaL|−σθ(ε∆(j)αL)|x(j)−a∞−εaL|
))

=−σθθ(ε∆(j+1)αL)∆(j+1)αL|x(j+1)−a∞−εaL|

+σθ(ε∆
(j+1)αL)

(x(j+1)−a∞−εaL) ·aL
|x(j+1)−a∞−εaL|

+σθθ(ε∆
(j)αL)∆(j)αL|x(j)−a∞−εaL|−σθ(ε∆(j)αL)

(x(j)−a∞−εaL) ·aL
|x(j)−a∞−εaL|

∣∣∣∣
ε=0

=−σθθ(0)∆(j+1)αL|b(j+1)
∞ |+σθθ(0)∆(j)αL|b(j)

∞ |

=−σθθ(0)
(

(|b(j+1)
∞ |+ |b(j)

∞ |)α
(j)
L −|b

(j+1)
∞ |α(j+1)

L −|b(j)
∞ |α

(j−1)
L

)
.
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Next, we will elaborate on some details of the right-hand side of the equation for aL
(the second equation in (5.7)). Since σθ(0) = 0, we compute,

d

dε

∣∣∣∣
ε=0

(
σ(∆(j)α)

b(j)

|b(j)|

)

=
d

dε

∣∣∣∣
ε=0

 3∑
j=1

σ(ε∆(j)αL)
x(j)−a∞−εaL
|x(j)−a∞−εaL|


=

( 3∑
j=1

σθ(ε∆
(j)αL)∆(j)αL

x(j)−a∞−εaL
|x(j)−a∞−εaL|

+σ(ε∆(j)αL)

(
−aL

|x(j)−a∞−εaL|
+

(x(j)−a∞−εaL) ·aL
|x(j)−a∞−εaL|3

(x(j)−a∞−εaL)

))∣∣∣∣
ε=0

=σ(0)

3∑
j=1

(
−aL
|b(j)
∞ |

+
(b

(j)
∞ ·aL)

|b(j)
∞ |3

b(j)
∞

)
=−σ(0)

3∑
j=1

1

|b(j)
∞ |

(
aL−

(b
(j)
∞ ·aL)

|b(j)
∞ |2

b(j)
∞

)
.

Note, that the term,

(b
(j)
∞ ·aL)

|b(j)
∞ |2

b(j)
∞ =

(
b

(j)
∞

|b(j)
∞ |
·aL

)
b

(j)
∞

|b(j)
∞ |

=

(
b

(j)
∞

|b(j)
∞ |
⊗ b

(j)
∞

|b(j)
∞ |

)
aL,

where ⊗ denotes the outer product of two vectors.

It is important to note that, in the linearized problem (5.7), we consider a matrix
of the form, for c1, c2, c3∈R,

C :=

c1 +c2 −c2 −c1
−c2 c2 +c3 −c3
−c1 −c3 c3 +c1

. (5.9)

By direct calculation, it can be shown that the eigenvalues of such matrix C (5.9) are

0 and c1 +c2 +c3±
√

1

2

(
(c1−c2)2 +(c2−c3)2 +(c3−c1)2

)
.

If c1, c2, c3≥0, then the matrix C is non-negative definite. Furthermore, if c1, c2, c3>0,
then the zero eigenvalue of C is simple, and (1,1,1) is an eigenvector associated with
the zero eigenvalue.

Next proposition gives the decay properties for solutions αL of (5.7).

Proposition 5.2. Let αL be a solution of (5.7). Assume that, αL(0) ·(1,1,1) = 0.

Then, there exists a positive constant λ1>0 which depends only on |b(j)
∞ |, such that,

|αL(t)|≤e−γσθθ(0)λ1t|αL(0)|. (5.10)

Proof. Using (5.7) and B∞(1,1,1) =0, we have that,

d

dt
(αL ·(1,1,1)) =−γσθθ(0)B∞αL ·(1,1,1) =−γσθθ(0)αL ·B∞(1,1,1) = 0,

hence, αL ·(1,1,1) =αL(0) ·(1,1,1) = 0. Define,

λ1 := |b(1)∞ |+ |b(2)∞ |+ |b(3)∞ |−
√

1

2

(
(|b(1)∞ |−|b(2)∞ |)2+(|b(2)∞ |−|b(3)∞ |)2+(|b(3)∞ |−|b(1)∞ |)2

)
, (5.11)
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which is the smallest positive eigenvalue of B∞. Since |b(j)
∞ |>0 for all j= 1,2,3, and

αL ·(1,1,1) = 0, we find that αL is a linear combination of the eigenvectors associated
with the positive eigenvalues of B∞. Thus, we obtain,

d

dt
|αL(t)|2 =−2γσθθ(0)B∞αL(t) ·αL(t)≤−2γσθθ(0)λ1|αL(t)|2.

By the Gronwall’s inequality, we obtain (5.10).

In order to derive decay properties for the solution aL of (5.7) in Proposition 5.2,
we first show below that La is positive definite.

Lemma 5.2. There exists a positive constant λ2>0, which depends only on b
(j)
∞ , such

that,

La :=

3∑
j=1

1

|b(j)
∞ |

(
I− b

(j)
∞

|b(j)
∞ |
⊗ b

(j)
∞

|b(j)
∞ |

)
≥λ2I. (5.12)

Proof. For ξ∈R2, we have that, 3∑
j=1

1

|b(j)
∞ |

(
I− b

(j)
∞

|b(j)
∞ |
⊗ b

(j)
∞

|b(j)
∞ |

)
ξ ·ξ

=

3∑
j=1

1

|b(j)
∞ |

|ξ|2−( b
(j)
∞

|b(j)
∞ |
·ξ

)2
≥0,

hence, we obtain (5.12) with some non-negative constant λ2≥0.
Assume now that λ2 = 0, then there is ξ0∈S1 such that,

3∑
j=1

1

|b(j)
∞ |

1−

(
b

(j)
∞

|b(j)
∞ |
·ξ0

)2
= 0.

Thus, ξ0 has to be parallel to all b
(j)
∞ for j= 1,2,3. This is a contradiction to the

dimension of R2.

The convergence rate of the global solution to the equilibrium state depends on
the decay rate of the linearized solution, hence it is important to give estimates for the
constant λ2. We will give an explicit form of λ2 in the Appendix. As a matter of fact

from detailed calculations in the Appendix, the constant λ2 depends only on |b(j)
∞ |, see

(7.5).
Similar to the result of Proposition 5.2, we have,

Proposition 5.3. Let aL(t) be a solution of (5.7). Then,

|aL(t)|≤e−ησ(0)λ2t|aL(0)|, (5.13)

for all t>0, and the constant λ2>0 is given by Lemma 5.2.

Denote,

λ := min{γσθθ(0)λ1,ησ(0)λ2}, (5.14)

where λ1, λ2 are given in Propositions 5.2, and 5.3, respectively.

Remark 5.1. Note that λ1, λ2 are derived from eigenvalues of the linearized problem
(5.7). The constant λ1 is the smallest positive eigenvalue of the linearized operator for
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the equation of the orientations α, see Proposition 5.2 and (5.11). The constant λ2 is
the smallest eigenvalue of the linearized operator for the equation of the triple junction
a, see Lemma 5.2, Proposition 5.3, and (7.5).

For a solution (α,a) of (2.3), define αp and ap as,

α=α∞+αp, a=a∞+ap. (5.15)

Then αp and ap satisfy,
(αp)t=−γσθθ(0)B∞αp+γ (σθθ(0)B∞αp−Φ(α,a)),

(ap)t=−ησ(0)Laap+η

3∑
j=1

(
σ(0)

|b(j)
∞ |

(
I− b

(j)
∞

|b(j)
∞ |
⊗ b

(j)
∞

|b(j)
∞ |

)
ap+σ(∆(j)α)

b(j)

|b(j)|

)
,

αp(0) =α0−α∞, ap(0) =a0−a∞,
(5.16)

where La is defined as in (5.12) and Φ(α,a) is given by

Φ(α,a) =
(

Φ(j)(α,a)
)
j
, Φ(j)(α,a) =σθ(∆

(j+1)α)|b(j+1)|−σθ(∆(j)α)|b(j)|.

Note that the first equation of the original problem (2.3) can be written as αt=
−γΦ(α,a).

In the next two Lemmas 5.3 and 5.4, we will show the decay estimates for the
perturbation terms αp, ap.

Lemma 5.3. Let (α,a) be a global solution of (2.3), and let αp and ap be defined as
in (5.15). Then, there are positive constants C2>0 and ε1>0, such that, if |αp(t)|+
|ap(t)|<ε1 for all t>0, then

eλt|αp(t)|≤ |αp(0)|+C2

∫ t

0

eλs(|αp(s)|2 + |ap(s)|2)ds. (5.17)

Proof. By the Duhamel principle,

αp(t) =e−tγσθθ(0)B∞αp(0)+γ

∫ t

0

e−(t−s)γσθθ(0)B∞ (σθθ(0)B∞αp(s)−Φ(α(s),a(s))) ds.

(5.18)
Since α0 ·(1,1,1) =α∞ ·(1,1,1), αp(0) is perpendicular to the vector (1,1,1). Also the
function σθθ(0)B∞αp(s)−Φ(α(s),a(s)) is also perpendicular to the vector (1,1,1) for
all s>0, since B∞αp ·(1,1,1) =Φ ·(1,1,1) = 0. By Proposition 5.2 we obtain that,

|e−tγσθθ(0)B∞αp(0)|≤e−λt|αp(0)|, (5.19)

and ∣∣∣e−(t−s)γσθθ(0)B∞ (σθθ(0)B∞αp(s)−Φ(α(s),a(s)))
∣∣∣

≤e−λ(t−s) |σθθ(0)B∞αp(s)−Φ(α(s),a(s))|. (5.20)

By the Taylor expansion Φ(α,a) around (α∞,a∞), we obtain

Φ(α,a) =σθθ(0)B∞αp+O
(
|αp|2 + |ap|2

)
, as |αp|+ |ap|→0.
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Hence, there are C2>0 and ε1>0 such that, if |αp|+ |ap|<ε1,

|σθθ(0)B∞αp(s)−Φ(α(s),a(s))|≤C2(|αp|2 + |ap|2). (5.21)

Using the estimates (5.19), (5.20) and (5.21) in (5.18), we obtain the result (5.17).

Lemma 5.4. Let (α,a) be a global solution of (2.3), and let αp and ap be defined as
in (5.15). Then, there are positive constants C3>0 and ε2>0, such that, if |αp(t)|+
|ap(t)|<ε2 for all t>0, then,

eλt|ap(t)|≤ |ap(0)|+C3

∫ t

0

eλs
(
|αp(s)|2 + |ap(s)|2

)
ds, (5.22)

for all t>0.

Proof. By the Duhamel principle for (5.16), we have,

ap(t) =e−tησ(0)Laap(0)+η

∫ t

0

e−(t−s)ησ(0)LaF (s)ds, (5.23)

where

F (s) :=

3∑
j=1

(
σ(0)

|b(j)
∞ |

(
I− b

(j)
∞

|b(j)
∞ |
⊗ b

(j)
∞

|b(j)
∞ |

)
ap+σ(∆(j)α)

b(j)

|b(j)|

)
. (5.24)

By Lemma 5.2 and Proposition 5.3, we obtain,

|ap(t)|≤e−λt|αp(0)|+η

∫ t

0

e−λ(t−s)|F (s)|ds. (5.25)

Next, by the Taylor expansion of σ(∆(j)α)b(j)/|b(j)| around (α∞,a∞), we obtain,

3∑
j=1

σ(∆(j)α)
b(j)

|b(j)|
=−

3∑
j=1

σ(0)

|b(j)
∞ |

(
I− b

(j)
∞

|b(j)
∞ |
⊗ b

(j)
∞

|b(j)
∞ |

)
ap+O(|αp|2 + |ap|2),

as |αp|+ |ap|→0. (5.26)

Using, (5.26) in (5.24), we obtain,

F (s) =O(|αp|2 + |ap|2), as |αp|+ |ap|→0. (5.27)

Hence, there are C3>0 and ε2>0 such that, if |αp|+ |ap|<ε2,

|F (s)|≤C3

(
|αp|2 + |ap|2

)
. (5.28)

Using estimate (5.28) in (5.25), we conclude with the desired estimate (5.22) on ap(t).

Now we are in position to show exponential stability of the asymptotic profile of
the solution of the system (2.3).

Theorem 5.1. There is a small constant ε3>0 such that, if |α0−α∞|+ |a0−a∞|<
ε3, then the associated global solution (α,a) of the system (2.3) satisfies,

|α(t)−α∞|+ |a(t)−a∞|≤C4e
−λ?t, (5.29)
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for some positive constants C4,λ
?>0. The decay order λ? is explicitly estimated as,

λ?≥λ, (5.30)

where λ is defined in (5.14).

Proof. Let αp and ap be defined as in (5.15), and define V (t) :=eλt|αp(t)| and
W (t) :=eλt|ap(t)|. Next, take sufficiently small 0<ε3<min{ε1,ε2}/2 such that (4.4) is
fulfilled if an initial data (α0,a0) satisfy |α0−α∞|+ |a0−a∞|<ε3. Here, the constants
ε1 and ε2 are given in Lemmas 5.3 and 5.4, and assume that |α0−α∞|+ |a0−a∞|<
ε3, namely |αp(0)|+ |ap(0)|<ε3. In order to show (5.29), it is enough to show the
boundedness for V (t)+W (t). Now, assume V (t)+W (t)<2ε3 for 0≤ t<t0 and V (t0)+
W (t0) = 2ε3. Note that, V (t)+W (t)<ε1, ε2 for 0<t<t0, thus we can apply Lemmas
5.3 and 5.4. Therefore, from (5.17), (5.22) and that V (t), W (t)≤2ε3 for 0<t≤ t0, we
obtain,

V (t)+W (t)≤V (0)+W (0)+
C5

2

∫ t

0

e−λs(V 2(s)+W 2(s))ds

≤ε3 +C5ε3

∫ t

0

e−λs(V (s)+W (s))ds, (5.31)

where C5 = 2(C2 +C3)>0. Applying the Gronwall’s inequality to (5.31), we have that,

V (t)+W (t)≤ε3 +C5ε
2
3

∫ t

0

e−λs exp

(
C5ε3

∫ t

s

e−λudu

)
ds, 0≤ t≤ t0. (5.32)

Hence, we can easily obtain that,

C5ε
2
3

∫ t

0

e−λs exp

(
C5ε3

∫ t

s

e−λudu

)
ds≤ C5ε

2
3

λ
exp

(
C5ε3

λ

)
.

Thus, if we take ε3>0 sufficiently small as,

C5ε3

λ
exp

(
C5ε3

λ

)
<1, (5.33)

then we deduce that V (t0)+W (t0)<2ε3, which contradicts the definition of t0 above.
Therefore, V (t)+W (t) is bounded for 0<t<∞, and we obtain (5.29).

Remark 5.2. Note that our argument is based on the uniqueness of the equilibrium
state for the system (2.9). Otherwise, we can not recover full convergence in time as
in Proposition 5.1. However, thanks to the uniqueness of the equilibrium state (2.9),
we can consider the linearized problem (5.7) around the equilibrium state, and we can
obtain the exponential uniform estimate (5.29) for the solution of the system (2.3).

Note also, that by Theorem 5.1, we obtain exponential decay of the total grain
boundary energy to the equilibrium energy, that is

Corollary 5.1. Under the same assumption as in Theorem 5.1, the associated grain
boundary energy E(t) satisfies,

E(t)−E∞≤C6e
−λ?t, (5.34)
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for some positive constant C6>0, where

E∞ :=σ(0)

3∑
j=1

|b(j)
∞ |.

Proof. Since α
(1)
∞ =α

(2)
∞ =α

(3)
∞ , we obtain

E(t)−E∞=

3∑
j=1

(
σ(∆(j)α(t))|b(j)(t)|−σ(0)|b(j)

∞ |
)

≤
3∑
j=1

(
σ(0)|b(j)(t)−b(j)

∞ |+
(
σ(∆(j)α(t))−σ(0)

)
|b(j)(t)|

)

≤
3∑
j=1

(
σ(0)|a(j)(t)−a∞|+

(
C7|∆(j)α(t)|

)
|b(j)(t)|

)

≤
3∑
j=1

(
σ(0)|a(j)(t)−a∞|+2C7|b(j)(t)||α(t)−α∞|

)
, (5.35)

where C7 = sup|θ|<2ε3 |σθ(θ)|. Using the dissipation estimate (3.4) and the exponential
decay estimate (5.29), we obtain (5.34).

Remark 5.3. Note, that the obtained exponential decay to equilibrium, see estimates
(5.29) and (5.34), is obtained by considering linearized problem, Lemma 5.1. Consider-
ation of the nonlinear problem instead could lead to potential power laws estimates for
the decay rates. See also discussion and numerical experiments in Section 7.

6. Extension to grain boundary network

In this section, we extend our results to a grain boundary network {Γ(j)
t }j . As in,

for example, [15], we define the total grain boundary energy of the network, like,

E(t) =
∑
j

σ(∆(j)α)|Γ(j)
t |, (6.1)

where ∆(j)α is a misorientation, a difference between the lattice orientation of
the two neighboring grains which form the grain boundary Γ(j). Then, the energetic
variational principle implies

v(j)
n =µσ(∆(j)α)κ(j), on Γ

(j)
t , t>0,

dα(k)

dt
=−γ δE

δα(k)
,

da(l)

dt
=η

∑
a(l)∈Γ

(j)
t

(
σ(∆(j)α)

b(j)

|b(j)|

)
, t>0.

(6.2)

As in [15], we consider the relaxation parameters, µ→∞, and we further assume
that the energy density σ(θ) is an even function with respect to the misorientation
θ= ∆(j)α, that is, the misorientation effects are symmetric with respect to the difference
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between the lattice orientations. Then, the problem (6.2) becomes,

Γ
(j)
t is a line segment between some a(lj,1) and a(lj,2),

dα(k)

dt
=−γ

∑
grain with α(k′) is the neighbor of the grain with α(k)

Γ
(j)
t is formed by the two grains with α(k) and α(k′)

|Γ(j)
t |σθ(α(k)−α(k′)),

da(l)

dt
=η

∑
a(l)∈Γ

(j)
t

(
σ(∆(j)α)

b(j)

|b(j)|

)
.

(6.3)
To obtain the global solution of the system (6.3), we assume that there are no critical
events in the system (for example, the critical events are disappearance of the grains
and/or grain boundaries during coarsening of the system), and we consider an associated

energy minimizing state, (α
(k)
∞ ,a

(l)
∞ ) of (6.3). Then, (α

(k)
∞ ,a

(l)
∞ ) satisfies,

Γ(j)
∞ is a line segment between some a(lj,1)

∞ and a(lj,2)
∞ ,

0 =−γ
∑

grain with α(k′) is the neighbor of the grain with α(k)

Γ
(j)
t is formed by the two grains with α(k) and α(k′)

|Γ(j)
∞ |σθ(α(k)

∞ −α(k′)
∞ ),

0=η
∑

a
(l)
∞∈Γ

(j)
∞

(
σ(∆(j)α∞)

b
(j)
∞

|b(j)
∞ |

)
.

(6.4)

Hence, the total energy E∞ of the grain boundary network (6.4) is

E∞=
∑
j

σ(∆(j)α∞)|b(j)
∞ |= inf

{∑
j

σ(∆(j)α∞)|b(j)|
}
. (6.5)

Remark 6.1. Note, we assume in (6.3)-(6.4) that the total number of grains, grain
boundaries and triple junctions are the same as in the initial configuration (assumption
of no critical events in the network).

If there is a neighborhood U (l)⊂R2 of a
(l)
∞ such that

E∞<
∑
j

|b(j)| (6.6)

for all a(l)∈U (l), one can obtain a priori estimate for the triple junctions, and, hence,
obtain the time-global solution of (6.3). Note that, the assumption (6.6) is related to

the boundary condition of the line segments Γ
(j)
t . Further, if the energy minimizing

state is unique, then we can proceed with the same argument as in Lemma 4.1, and
obtain the global solution (6.3) near the energy minimizing state.

Example 6.1. Note that, the solution of (6.4) may not be unique even though the grain
orientations are constant (misorientation is zero). The total grain boundary energy in
the left plot is different from the one in the right plot, see Figure 6.1.

The asymptotics of the grain boundary networks are rather nontrivial. Our argu-
ments rely on the uniqueness of the equilibrium state (2.9), but we do not know the
uniqueness of solutions of the equilibrium state for the grain boundary network (6.4).
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Fig. 6.1. Even though, there is no misorientation effect, there are at least two equilibrium states
for (6.4).

Thus, in general we cannot take a full limit for the large-time asymptotic behavior.
Concluding the above arguments, we have

Corollary 6.1. In a grain boundary network (6.3), assume that the initial configu-
ration is sufficiently close to an associated energy minimizing state (6.4). Then, there is
a global solution (α(k),a(l)) of (6.3). Furthermore, there exists a time sequence tn→∞
such that (α(k)(tn),a(l)(tn)) converges to an associated equilibrium configuration (6.4).

7. Numerical experiments

Fig. 7.1. Time instance from the 2D grain growth simulation with time-dependent orientation
(zoom view).

Here, we present several numerical experiments to illustrate the effects of the dy-
namic orientations/misorientations (grains “rotations”) and of the mobility of the triple
junctions, as described in Sections 5-6. In particular, the main goal of our numerical
experiments is to illustrate the time scales effect of the mobility of the triple junctions
η and the misorientations γ on how the grain boundary system (see Figure 7.1) decays
energy and coarsens with time. For that we will study numerically evolution of the total
grain boundary energy E(t) (6.1),

E(t) =
∑
j

σ(∆(j)α)|Γ(j)
t |, (7.1)

where as before, ∆(j)α is a misorientation of the grain boundary Γ(j), and |Γ(j)| is the
length of the grain boundary. We will also consider the growth of the average area,
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defined as,

A(t) =
4

N(t)
, (7.2)

here 4 is the total area of the sample, and N(t) is the total number of grains at time
t. The growth of the average area is closely related to the coarsening rate of the grain
system that undergoes critical/disappearance events. However, it is important to note
that critical events not only include grain disappearance, but also include facet/grain
boundary disappearance, facet interchange, splitting of unstable junctions. Further, we
will investigate the distribution of the grain boundary character distribution (GBCD)
ρ(∆(j)α) at T∞ (T∞ is defined below). The GBCD (in our context) is an empirical
statistical measure of the relative length (in 2D) of the grain boundary interface with a
given lattice misorientation,

ρ(∆(j)α,t) = relative length of interface of lattice misorientation ∆(j)α at time t,

normalized so that

∫
Ω

∆(j)α

ρd∆(j)α= 1, (7.3)

where we consider Ω∆(j)α= [−π4 ,
π
4 ] in the numerical experiments below (for planar grain

boundary network, it is reasonable to consider such range for the misorientations). For
more details, see for example [4]. In all our tests below, we compare GBCD at T∞ to
the stationary solution of the Fokker-Planck equation, the Boltzmann distribution for
the grain boundary energy density σ(∆(j)α),

ρD(∆(j)α) =
1

ZD
e−

σ(∆(j)α)
D ,

with partition function, i.e.,normalization factor

ZD =

∫
Ω

∆(j)α

e−
σ(∆(j)α)

D d∆(j)α,

(7.4)

[2–5]. We employ Kullback-Leibler relative entropy test to obtain a unique
“temperature-like” parameter D and to construct the corresponding Boltzmann dis-
tribution for the GBCD at T∞ as it was originally done in [2–5]. Note, that the GBCD
is a primary candidate to characterize texture of the grain boundary network, and is
inversely related to the grain boundary energy density as discovered in experiments and
simulations. The reader can consult, for example, [2–5] for more details about GBCD
and the theory of the GBCD. In the numerical experiments in this paper, we consider
the grain boundary energy density as plotted in Figure 7.2 and given below,

σ(∆(j)α) = 1+0.25sin2(2∆(j)α).

We consider simulation of 2D grain boundary network using further extension of
the algorithm based on sharp interface approach [2, 5] (note, that in [2, 5], only Her-
ring conditions at triple junctions were considered, i.e., η→∞, and dynamic orienta-
tions/misorientations (“rotation of grains”) was absent, i.e., γ= 0). We recall that in
the numerical scheme we work with a variational principle. The cornerstone of the al-
gorithm, which assures its stability, is the discrete dissipation inequality for the total
grain boundary energy that holds when either the discrete Herring boundary condition
(η→∞) or discrete “dynamic boundary condition” (finite mobility η of the triple junc-
tions, third equation of (6.2)) is satisfied at the triple junctions. We also recall that
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in the numerical algorithm we impose Mullins theory (first equation of (6.2)) as the
local evolution law for the grain boundaries (and the time scale µ is kept finite). For
more details about computational model based on Mullins equations (curvature driven
growth), the reader can consult, for example [2, 5].
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Fig. 7.2. Grain boundary energy density function σ(∆α).
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Fig. 7.3. One run of 2D trial with 10000 initial grains: (a) Left plot, Total grain boundary energy
plot (solid black) versus fitted exponential decaying function y(t) =421exp(−22.16t) (dashed blue); (b)
Right plot, Total grain boundary energy plot (solid black) versus fitted power law decaying function
y1(t) =−201.4+626.67(1.0+16.53t)−1 (dashed magenta). Mobility of the triple junctions is η= 10
and the misorientation parameter γ= 1.
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Fig. 7.4. (a) Left plot, One run of 2D trial with 10000 initial grains: Growth of the average
area of the grains (solid black) versus fitted quadratic polynomial function y(t) =0.6704t2 +0.004265t+
0.0003764 (dashed magenta). (b) Right plot, GBCD at T∞ (blue curve) averaged over 3 runs of 2D
trials with 10000 initial grains versus Boltzmann distribution with “temperature”- D≈0.0650 (red
curve). Mobility of triple junctions is η= 10 and the misorientation parameter γ= 1.

In all the numerical tests below we initialized our system with 104 cells/grains with
normally distributed misorientation angles at initial time t= 0. We also assume that
the final time of the simulations T∞ is the time when approximately 80% of grains dis-
appeared from the system, namely the time when only about 2000 cells/grains remain.
The final time is selected based on the system with no dynamic misorientations (γ= 0)
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Fig. 7.5. One run of 2D trial with 10000 initial grains: (a) Left plot, Total grain boundary energy
plot (solid black) versus fitted exponential decaying function y(t) =415exp(−151t) (dashed blue); (b)
Right plot, Total grain boundary energy plot (solid black) versus fitted power law decaying function
y1(t) =429.8286(1.0+231.5887t)−1 (dashed magenta). Mobility of the triple junctions is η= 100 and
the misorientation parameter γ= 1.
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Fig. 7.6. (a) Left plot, One run of 2D trial with 10000 initial grains: Growth of the average area
of the grains (solid black) versus fitted quadratic polynomial function y(t) =24.34t2 +0.083t+0.00036
(dashed magenta). (b) Right plot, GBCD at T∞ (blue curve) averaged over 3 runs of 2D trials
with 10000 initial grains versus Boltzmann distribution with “temperature”- D≈0.0618 (red curve).
Mobility of triple junctions is η= 100 and the misorientation parameter γ= 1.
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Fig. 7.7. One run of 2D trial with 10000 initial grains: (a) Left plot, Total grain boundary en-
ergy plot (solid black) versus fitted sum of exponential decaying functions y(t) =262.6exp(−194.6t)+
151.9exp(−1868t) (dashed blue); (b) Right plot, Total grain boundary energy plot (solid black) ver-
sus fitted power law decaying function y1(t) =439.3001(1.0+2369.2t)−0.5 (dashed magenta). Herring
Condition is imposed at the triple junctions η→∞ and no “dynamic” misorientation.

and with Herring condition at the triple junctions (η→∞) and, it is selected to ensure
that statistically significant number of grains still remain in the system and the system
reached its statistical stead-state. Therefore, all the numerical results which are pre-
sented below are for the grain boundary system that undergoes critical/disappearance
events.

In the first series of tests, we study the effect of the triple junctions dynamics on
the dissipation and coarsening of the system, see Figures 7.3-7.6 (finite mobility η) and
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Fig. 7.8. (a) Left plot, One run of 2D trial with 10000 initial grains: Growth of the average area
of the grains (solid black) versus fitted linear function y(t) =0.6811t+0.0003198 (dashed magenta). (b)
Right plot, GBCD at T∞ (blue curve) averaged over 3 runs of 2D trials with 10000 initial grains versus
Boltzmann distribution with “temperature”- D≈0.0704 (red curve). Herring Condition is imposed at
the triple junctions η→∞ and no “dynamic” misorientation.
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Fig. 7.9. One run of 2D trial with 10000 initial grains: (a) Left plot, Total grain boundary en-
ergy plot (solid black) versus fitted sum of exponential decaying functions y(t) =263.5exp(−202.3t)+
150.3exp(−1859t) (dashed blue); (b) Right plot, Total grain boundary energy plot (solid black) ver-
sus fitted power law decaying function y1(t) =435.3778(1.0+2369.2t)−0.5 (dashed magenta). Herring
Condition is imposed at the triple junctions η→∞ and the misorientation parameter γ= 1.
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Fig. 7.10. (a) Left plot, One run of 2D trial with 10000 initial grains: Growth of the average area
of the grains (solid black) versus fitted linear function y(t) =0.6884t+0.0003154 (dashed magenta). (b)
Right plot, GBCD at T∞ (blue curve) averaged over 3 runs of 2D trials with 10000 initial grains versus
Boltzmann distribution with “temperature”- D≈0.0594 (red curve). Herring Condition is imposed at
the triple junctions η→∞ and the misorientation parameter γ= 1.

Figures 7.9-7.10 (Herring condition, η→∞) and misorientation time scale parameter γ
is set to 1. We observe that for smaller values of the mobility of the triple junctions
η, the energy decay E(t) is well-approximated by an exponential decay, see Figure 7.3
(left plot) which is consistent with the results of our theory, see Section 5 and energy
decay (5.34), even though, the theoretical results are obtained under assumption of no
critical events and µ→∞. In comparison, we also present fit to a power law decaying
function, see Figure 7.3 (right plot). The power law function does not seem to give
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Fig. 7.11. One run of 2D trial with 10000 initial grains: (a) Left plot, Total grain boundary
energy plot (solid black) versus fitted sum of exponential decaying functions y(t) =248exp(−182.8t)+
166.8exp(−1708t) (dashed blue); (b) Right plot, Total grain boundary energy plot (solid black) ver-
sus fitted power law decaying function y1(t) =434.6254(1.0+2388.1t)−0.5 (dashed magenta). Herring
Condition is imposed at the triple junctions η→∞ and the misorientation parameter γ= 1000.
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Fig. 7.12. (a) Left plot, One run of 2D trial with 10000 initial grains: Growth of the average area
of the grains (solid black) versus fitted linear function y(t) =0.6834t+0.0003155 (dashed magenta). (b)
Right plot, GBCD at T∞ (blue curve) averaged over 3 runs of 2D trials with 10000 initial grains versus
Boltzmann distribution with “temperature”- D≈0.0283 (red curve). Herring Condition is imposed at
the triple junctions η→∞ and the misorientation parameter γ= 1000.

as good approximation in this case, due to the appearance of the negative term in
the fitted power function. However, for larger values of η, Figure 7.5 (left plot) and
for Herring condition (η→∞), Figure 7.9 (see also Figures 7.7 and 7.11 with different
values of γ) (left plots), we obtain that the total grain boundary energy does not follow
exponential decay, and the sum of exponential functions or power law functions give
better description of the energy decay, see Figure 7.9 (see also Figures 7.7 and 7.11
with different values of γ). Note also, that the numerically observed energy decay rates
increase with the mobility η of the triple junctions which is also consistent with the
developed theory, see Sections 5-6. In addition, we observe that the average area grows
as quadratic function in time for the finite mobility η of the triple junctions, Figures
7.4 and 7.6 (left plots) but it exhibits a linear growth with η→∞, Herring condition at
the triple junctions, Figure 7.10 (see also Figures 7.8 and 7.12 with different values of
γ) (left plots). We also observe that the coarsening rate of grain systems slows down
with the smaller η, see Figures 7.4, 7.6, 7.10 for the growth of the average area (see
also Figures 7.8 and 7.12 with different values of γ) (left plots). The observations about
the growth of the average area and the coarsening rate can be explained by noting
that with Herring condition at the triple junctions (η→∞), the grain growth is driven
mainly by the kinetics of grain boundaries, but not the triple junctions. And, the von
Neumann-Mullins n−6 rule for the area of n-sided grain is satisfied approximately (due
to anisotropy) in that case. With the finite mobility η of the triple junctions, triple
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junctions dynamics play an important role in the grain growth. Hence, finite mobility
of the triple junctions can result in the growth of “smaller” grains (with sides less than
6) and, at the same time, it can result in the disappearance of the “larger” grains (with
sides greater than 6), namely, the von Neumann-Mullins n−6 rule will not be valid in
the same way anymore. We also note that the energy decay in our numerical tests is
consistent with the growth of the average area. Moreover, we observe that dynamics of
the triple junctions show some effect on the GBCD at T∞, in particular, slight decrease
in the diffusion coefficient/ in the “temperature” like parameter D with increase of η, but
not a significant change, Figures 7.4, 7.6 and 7.10 (right plots), (note, the “temperature”
like parameter D accounts for various critical events–grains disappearance, facet/grain
boundary disappearance, facet interchange, splitting of unstable junctions).

For the other series of tests, we impose Herring condition at the triple junctions
(η→∞), but we vary the misorientation parameter γ, second equation of (6.2). We do
not observe as much effect on the energy decay or average area growth in this case (prob-
ably due to the effect of the Herring condition at the triple junctions), but we observe
the significant effect on the GBCD at T∞ and the diffusion coefficient/“temperature”-
like parameter D, see Figures 7.7-7.12. As concluded from our numerical results, larger
values of γ give smaller diffusion coefficient/“temperature”-like parameter D, and hence
higher GBCD peak near misorientation 0. This is consistent with our theory that ba-
sically, larger misorientation parameter γ produces direct motion of misorientations
towards equilibrium state of zero misorientations, see Section 2 and also [15]. Further-
more, from all numerical experiments with dynamic misorientation and with different
triple junction mobilities, we observe that the GBCD at T∞ is well-approximated by
the Boltzmann distribution for the grain boundary energy density, see Figures 7.4, 7.6,
7.8, 7.10 and 7.12 (right plots), which is similar to the work in [2–5], but more detailed
analysis needs to be done for a system that undergoes critical events to understand the
relation between GBCD, “temperature”-like/diffusion parameter D, and different relax-
ation time scales, as well as the effect of the time scales on the dissipation mechanism
and certain coarsening rates.

Remark 7.1. Note that, we performed 3 runs for each numerical test presented in
this work. We report results of a single run for the energy decay and the growth of the
average area (the results from the other two runs for each test were very similar to the
presented ones), and we illustrate, averaged over the 3 runs, the GBCD statistics at T∞.
The curve-fitting for the energy and the average area plots was done using Matlab [29]
toolbox cftool.

Remark 7.2. Note, that the proposed model of dynamic orientations
(6.2) (and, hence, dynamic misorientations), or Langevin-type equation if critical
events/disappearance events are taken into account is reminiscent of the recently devel-
oped theory for the grain boundary character distribution (GBCD) [2–5], which suggests
that the evolution of the GBCD satisfies a Fokker-Planck equation. More details will
be presented in future studies.
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Appendix. Explicit form of the decay rate of the linearized problem
(5.7). In this appendix, we give an explicit form of the constant λ2, which is a minimum
eigenvalue of

La=

3∑
j=1

1

|b(j)
∞ |

(
I− b

(j)
∞

|b(j)
∞ |
⊗ b

(j)
∞

|b(j)
∞ |
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.

Since La is a two-dimensional matrix, it is enough to manipulate the trace and the
determinant of La. The trace of La is easily calculated as
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j 6=k

1

b
(j)
∞

1

b
(k)
∞

((
1−
(
b
(j)
1

)2
)(

1−
(
b
(k)
2

)2
)
−
(
b
(j)
1 b

(j)
2

)(
b
(k)
1 b

(k)
2

))

=
∑
j<k

1

b
(j)
∞

1

b
(k)
∞

(
1−
(
b
(j)
1

)2

−
(
b
(k)
2

)2

+
(
b
(j)
1

)2(
b
(k)
2

)2

+1−
(
b
(k)
1

)2

−
(
b
(j)
2

)2

+
(
b
(k)
1

)2(
b
(j)
2

)2

−2
(
b
(j)
1 b

(j)
2 b

(k)
1 b

(k)
2

))

=
∑
j<k

1

b
(j)
∞

1

b
(k)
∞

(
b
(j)
1 b

(k)
2 −b

(j)
2 b

(k)
1

)2

=
∑
j<k

1

b
(j)
∞

1

b
(k)
∞

(
b

(j)
∞

|b(j)
∞ |
·R−π2

b
(k)
∞

|b(k)
∞ |

)2

,
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where R−π2 =

(
0 1
−1 0

)
is the −π2 rotating matrix, and note that (b

(j)
1 )2 +(b

(j)
2 )2 = 1. We

also know that,
{
b(k)
∞

|b(k)
∞ |

, R−π2
b(k)
∞

|b(k)
∞ |

}
is orthonormal basis on R2. Thus for 1≤ j,k≤3, by

Parseval’s identity tells us(
b

(j)
∞

|b(j)
∞ |
· b

(k)
∞

|b(k)
∞ |

)2

+

(
b

(j)
∞

|b(j)
∞ |
·R−π2

b
(k)
∞

|b(k)
∞ |

)2

= 1.

Since,

b
(j)
∞

|b(j)
∞ |
· b

(k)
∞

|b(k)
∞ |

=−1

2
+

3

2
δjk,

we finally arrive, for j 6=k (
b

(j)
∞

|b(j)
∞ |
·R−π2

b
(k)
∞

|b(k)
∞ |

)2

=
3

4
.

Then λ2>0 in Lemma 5.2 is explicitly given by,

λ2 =
1

2

(
trLa−

√
(trLa)2−4(detLa)

)

=
1

2

 3∑
j=1

1

|b(j)
∞ |
−

√√√√√ 3∑
j=1

1

|b(j)
∞ |

2

−3

∑
j<k

1

|b(j)
∞ |

1

|b(k)
∞ |




=
1

2

 3∑
j=1

1

|b(j)
∞ |
−

√√√√1

2

∑
j<k

(
1

|b(j)
∞ |
− 1

|b(k)
∞ |

)2
 . (7.5)
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