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Abstract. Inspired by themodeling of grain growth in polycrystallinematerials, we consider a nonlinear
Fokker-Plank model, with inhomogeneous diffusion and with variable mobility parameters. We develop
large time asymptotic analysis of such nonstandard models by reformulating and extending the classical
entropymethod, under the assumption of periodic boundary condition. In addition, illustrative numerical
tests are presented to highlight the essential points of the current analytical results and to motivate future
analysis.

1. Introduction

Fokker-Planck type models are widely used as a robust tool to describe the macroscopic behavior
of the systems that involve various fluctuations [50, 29, 20, 17, 15, 19, 33], among many others.
In our previous work we derived Fokker-Planck type systems as a part of grain growth models
in polycrystalline materials, e.g. [5, 9, 4, 22]. In this paper, we focus on those inhomogeneous
fluctuations which play essential roles in the modeling of the observations of the physical experiments
of these complex processes.

Most technologically useful materials are polycrystalline microstructures composed of a myriad
of small monocrystalline grains separated by grain boundaries. The energetics and dynamics of the
grain boundaries provide the multiscale properties of such materials. Classical models of Mullins and
Herring for the evolution of the grain boundaries in polycrystalline materials are based on the motion
by mean curvature as the local evolution law [32, 45, 46]. Over the years, this idea has motivated
extensive relevant mathematical analysis of the motion by mean curvature, e.g. [18, 21, 27, 10], and
the study of the curvature flow on networks [36, 41, 42, 40, 35, 13]. Furthermore, almost all previous
work required the assumption of the specific equilibrium force balance condition at the triple junctions
points (triple junctions are where three grain boundaries meet), e.g. [14, 36].

Grain growth can be viewed as a complexmultiscale process involving dynamics of grain boundaries,
triple junctions and the dynamics of lattice misorientations (difference in the orientation between two
neighboring grains that share the grain boundary). Recently, there are some studies that consider
interactions among grain boundaries and triple junctions, e.g., [54, 53, 7, 55, 56, 12]. In [25, 24], by
employing the energetic-variational approach, we have developed a new model for the evolution of
the 2D grain-boundary network with finite mobility of the triple junctions and with dynamic lattice
misorientations. Under the assumption of no curvature effect, we established a local well-posedness
result, as well as large time asymptotic behavior for the model. Our results included obtaining explicit
energy decay rate for the system in terms of mobility of the triple junction and the misorientation
parameter. Further, we conducted extensive numerical experiments for the 2D grain boundary network
in order to further understand/illustrate the effect of relaxation time scales, e.g. of the curvature of
grain boundaries, mobility of triple junctions, and dynamics of misorientations on how the grain
boundary system decays energy and coarsens with time [24, 8]. Some relevant experimental results
of the grain growth in thin films have also been presented and discussed in [47, 8].
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Note, the mathematical analysis in [25, 24] was done under assumption of no critical events/no dis-
appearance events, e.g., grain disappearance, facet/grain boundary disappearance, facet interchange,
splitting of unstable junctions (however, numerical simulations were performed with critical events).
Therefore, we began to extend our models to incorporate the effect of critical events and we pro-
posed a Fokker-Plank type approach [22] (which is also a further extension of the earlier work on a
simplified 1D critical event model in [6, 5, 9, 4]). Moreover, in [22] we have established the long
time asymptotics of the corresponding Fokker-Planck solutions, namely the joint probability density
function of misorientations and triple junctions, and closely related the marginal probability density of
misorientations. Moreover, for an equilibrium configuration of a boundary network, we have derived
explicit local algebraic relations, a generalized Herring Condition formula, as well as novel relation
that connects grain boundary energy density with the geometry of the grain boundaries that share a
triple junction.

Here we will consider a class of nonlinear Fokker-Planck equations. As discussed above, such mod-
els appear as a part of our studies of non-isothermal thermodynamics [44, 11, 52] with applications to
macroscopic models for grain boundary dynamics in polycrystalline materials [22, 23]. Fokker-Plank
equations can be viewed as generalized diffusion models in the framework of the energetic-variational
approach [30, 26]. Such systems are determined by the kinematic transport of the probability density
function, the free energy functional and the dissipation (entropy production), [3, 51]. The conventional
mathematical analysis of the Fokker-Planck models is usually developed for the simplified cases only.
In particular, this is especially true for the well-known entropy methods developed for the asymptotic
analysis of such equations, e.g. [2, 34, 43, 16]. The classical entropy methods rely on the specific
algebraic structures of the system, and seem to have limited applications.

We will consider two nonstandard generalized Fokker-Planck models, one with the inhomogeneous
diffusion and constant mobility parameters, and the other one with both inhomogeneous diffusion
and variable mobility parameters. Therefore, to develop large time asymptotic analysis for such
systems, we first reformulate the conventional entropy method in terms of the velocity field of the
probability density function (rather than using entropy method directly in terms of the probability
density function). This key idea allows us to extend the entropy method to Fokker-Planck models
(including nonlinear models) with variable coefficients under assumption of the periodic boundary
conditions.

The paper is organized as follows. In Sections 1.1-1.2, we formulate the nonlinear Fokker-Planck
model with the inhomogeneous diffusion and variable mobility parameters, introduce notations and
review important results for such model. In Section 2, we first illustrate large time asymptotic analysis
for the Fokker-Planck model via the idea of the entropy method in terms of the velocity field of the
solution under the assumption of the constant diffusion and mobility parameters (hence, the Fokker-
Planck system becomes a linear model). In Sections 3-4, we extend the analysis to the Fokker-Planck
model with the inhomogeneous diffusion and constant mobility parameters, and to the Fokker-Planck
model with the inhomogeneous diffusion and variable mobility parameters, respectively. Some
conclusions and numerical tests to illustrate essential points of the analytical results are given in
Section 5.

1.1. Model formulation and notations. In this paper, we consider the following Fokker-Planck
model subject to the periodic boundary condition on a domain Ω = [0, 1)n ⊂ Rn

(1.1)

∂ f
∂t
− div

(
f

π(x, t)
∇ (D(x) log f + φ(x))

)
= 0, x ∈ Ω, t > 0,

f (x, 0) = f0(x), x ∈ Ω.

Here D = D(x) : Ω→ R, π = π(x, t) : Ω× [0,∞) → R are given positive periodic functions onΩ and
φ = φ(x) : Ω→ R is a given periodic function on Ω. The periodic boundary condition for f means,

(1.2) ∇l f (xb,1, t) = ∇l f (xb,2, t),
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for xb,1 = (x1, x2, . . . , xk−1, 1, xk+1, . . . , xn), xb,2 = (x1, x2, . . . , xk−1, 0, xk+1, . . . , xn) ∈ ∂Ω, t > 0 and
l = 0, 1, 2, . . .. In other words, f can be smoothly extended to a function on the entire spaceRn with the
condition f (x, t) = f (x + e j, t) for x ∈ Rn, t > 0 and j = 1, 2, . . . , n, where e j = (0, . . . , 1, . . . , 0), with
the 1 in the jth place. Note that, the periodic boundary condition for the function f (x, t) is equivalent
to the condition that f (x, t) is the function on the n-dimensional torus for t > 0. The periodic function
is defined in the same way. The meaning of the periodic boundary condition for the Fokker-Planck
equation can be seen in [48, §4.1].

Let us introduce u, a velocity vector, namely,

(1.3) u = −
1

π(x, t)
∇ (D(x) log f + φ(x)) .

Then, the system (1.1) becomes,

(1.4)

∂ f
∂t
+ div( f u) = 0, x ∈ Ω, t > 0,

f (x, 0) = f0(x), x ∈ Ω.

The form of the first equation in (1.4) will make it possible to extend entropy methods to nonlinear
Fokker-Planck model with inhomogeneous temperature parameter D(x). Next, using (1.4) together
with integration by parts and with the periodic boundary condition, it is easy to obtain that,

(1.5)
d
dt

∫
Ω

f dx =
∫
Ω

∂ f
∂t

dx =
∫
Ω

div( f u) dx = 0.

Therefore, if f0 is a probability density function on Ω, we have,

(1.6)
∫
Ω

f dx =
∫
Ω

f0 dx = 1.

Let F be a free energy defined by,

(1.7) F[ f ] :=
∫
Ω

(D(x) f (log f − 1) + f φ(x)) dx.

Hence, we can establish the energy law for (1.4).

Proposition 1.1. Let f be a solution of the periodic boundary value problem (1.4), u be the velocity
vector defined in (1.3), and let F be a free energy defined in (1.7). Then, for t > 0,

(1.8)
dF
dt
[ f ](t) = −

∫
Ω

π(x, t)|u |2 f dx.

Proof. Take a time-derivative on the left-hand side of (1.7), then apply integration by parts and use
the form (1.4) together with the periodic boundary condition, one derives,

dF
dt
[ f ] =

∫
Ω

(D(x) log f + φ(x)) ft dx

= −

∫
Ω

(D(x) log f + φ(x)) div( f u) dx

=

∫
Ω

∇ (D(x) log f + φ(x)) · u f dx.

(1.9)

Recalling relation, −π(x, t)u = ∇ (D(x) log f + φ(x)), we have,∫
Ω

∇ (D(x) log f + φ(x)) · u f dx = −
∫
Ω

π(x, t)|u |2 f dx,

thus, we obtain (1.8). �
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Hereafter, we define the right-hand side of (1.8) as −Ddis[ f ](t). One can observe from the energy
law (1.8), that an equilibrium state f eq for the model (1.4) satisfies u = 0. Here, we derive the explicit
representation of the equilibrium solution for the Fokker-Planck model (1.4).

Proposition 1.2. The equilibrium state f eq for the system (1.4) is given by,

(1.10) f eq(x) = exp
(
−
φ(x) − C1

D(x)

)
,

where C1 is a constant, which satisfies,

(1.11)
∫
Ω

exp
(
−
φ(x) − C1

D(x)

)
dx = 1.

Proof. We have from the energy law (1.8) that,

0 =
dF
dt
[ f eq] = −

1
π(x, t)

∫
Ω

|∇(D(x) log f eq + φ(x))|2 f dx,

hence, ∇(D(x) log f eq + φ(x)) = 0. Thus, there is a constant C1 such that,
(1.12) D(x) log f eq + φ(x) = C1,

and, hence, we obtain (1.10). �

Now, let us define the scaled function ρ by taking the ratio of f and f eq (1.10),

(1.13) ρ =
f

f eq , or f (x, t) = ρ(x, t) f eq(x, t) = ρ(x, t) exp
(
−
φ(x) − C1

D(x)

)
.

Using the relation (1.12), we have,
D(x) log f + φ(x) = D(x) log ρ + D(x) log f eq + φ(x) = D(x) log ρ + C1,

hence, the velocity u becomes,

(1.14) u = −
1

π(x, t)
∇ (D(x) log ρ) .

In this paper, we show exponential convergence to the equilibrium state via energy law,
• in case of the homogeneous D and the constant mobility π in Section 2;
• in case of the inhomogeneous D = D(x) and the constant mobility π in Section 3;
• in case of the inhomogeneous D = D(x) and the variable mobility π = π(x, t) in Section 4.

For the homogeneous D and the constant mobility π, we can reformulate classical entropy dissipation
methods and show the exponential decay of the global solution of (1.1) in the L1 space, provided the
logarithmic Sobolev inequality. In Appendix A, we reformulate the entropy dissipation method in
terms of the velocity u.

Remark 1.3. Finally we note that, when the coefficients and the solution f are sufficiently smooth
functions, the classical approach to study model (1.1) is to rewrite it in the non-divergence form,

(1.15)
∂ f
∂t
− L f + N( f ) = 0,

where,
(1.16)

L f =
D(x)
π(x, t)

∆ f +
(
∇

(
D(x)
π(x, t)

)
+

1
π(x, t)

∇D(x) +
1

π(x, t)
∇φ(x)

)
· ∇ f +

(
∆φ(x)
π(x, t)

−
∇π(x, t) · ∇φ(x)

π2(x, t)

)
f

is a linear part and,

(1.17) N( f ) = −
1

π(x, t)
log f∇D(x) · ∇ f +

∇π(x, t) · ∇D(x)
π2(x, t)

f log f −
1

π(x, t)
∆D(x) f log f
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is a nonlinear part of (1.1). However, due to specific form of the nonlinearity in (1.17), the existing
entropy methods will fail if one applies them to the non-divergence form (1.15)-(1.17) instead.

In this paper, we are studying the asymptotic behavior for the classical solutions for these nonlinear
Fokker-Planck systems. The solutionswe define belowwill be smooth enough so that all the derivatives
and integrations evolved in the equations and the estimates will make sense in the usual sense (see
[23, 37, 39]).

Definition 1.4. A periodic function in space f = f (x, t) is a classical solution of the problem (1.1)
in Ω × [0,T), subject to the periodic boundary condition, if f ∈ C2,1(Ω × (0,T)) ∩ C1,0(Ω × [0,T)),
f (x, t) > 0 for (x, t) ∈ Ω × [0,T), and satisfies equation (1.1) in a classical sense.

In the next subsection, we show local existence of a classical solution and the maximum principle
for (1.1) subject to the periodic boundary condition.

1.2. Local existence and a priori estimates. Here we briefly explain local existence of a solution of
(1.1). To state the result, we give assumptions for the coefficients and the initial data.

First, we assume the strong positivity for the coefficients π(x, t) and D(x), namely, there are constants
C2,C3 > 0 such that for x ∈ Ω and t > 0,
(1.18) π(x, t) ≥ C2, D(x) ≥ C3.

Next, we assume the Hölder regularity for 0 < α < 1: coefficients π(x, t), D(x), φ(x) and initial datum
f0 satisfy,

(1.19) π ∈ C1+α,(1+α)/2
per (Ω × [0,T)), D ∈ C2+α

per (Ω), φ ∈ C2+α
per (Ω), f0 ∈ C2+α

per (Ω),

where
C2+α

per (Ω) := {g ∈ C2+α(Ω) : g is a periodic function on Ω},

C1+α,(1+α)/2
per (Ω × [0,T)) := {g ∈ C1+α,(1+α)/2(Ω × [0,T)) : g(·, t) is a periodic function on Ω for t > 0}.

To state the following existence theorem, we also use a periodic function space,

C2+α,1+α/2
per (Ω × [0,T)) := {g ∈ C2+α,1+α/2(Ω × [0,T)) : g(·, t) is a periodic function on Ω for t > 0}.
The next proposition guarantees the existence of a local classical solution as defined in the Definition

1.4 for (1.1), subject to the periodic boundary condition.

Proposition 1.5. Let the coefficients π(x, t), φ(x), D(x), and a positive probability density function
f0(x) satisfy the strong positivity (1.18) and the Hölder regularity (1.19) for 0 < α < 1. Then, there
exists a time interval T > 0 and a classical solution f = f (x, t) of (1.1) on Ω × [0,T) with the Hölder
regularity f ∈ C2+α,1+α/2

per (Ω × [0,T)).

Here we briefly sketch the proof of Proposition 1.5. First, we introduce the change of variable
ρ(x, t) = f (x, t)/ f eq(x). Note that from (1.12), ∇(D(x) f eq(x) + φ(x)) = 0 hence the equation (1.1),
becomes,

(1.20) f eq(x)ρt = div
(

f eq(x)
π(x, t)

ρ∇ (D(x) log ρ)
)
.

In order to explore the underlying structure of the equation, we introduce new auxiliary variable,
h(x, t) = D(x) log ρ(x, t). By direct calculation, we have,

ρt =
ρ

D(x)
ht, ∇ρ = ρ∇

(
h

D(x)

)
.

Hence, equation (1.20) becomes,

(1.21) ht =
D(x)
π(x, t)

∆h +
D(x)
f eq(x)

∇

(
f eq(x)
π(x, t)

)
· ∇h +

D(x)
π(x, t)

∇

(
h

D(x)

)
· ∇h.
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To proceed, we further introduce another auxiliary variable ξ(x, t) as h(x, t) = h(x, 0) + ξ(x, t). Using
the Schauder estimates for a linearized problem, we can make a contraction mapping on the closed
set of C2+α,1+α/2

per (Ω × [0,T)). Detailed argument for the proof of Proposition 1.5 (under the natural
boundary condition), see [23].

Since we consider the periodic boundary condition, we can furthermore show the following maxi-
mum principle, which gives the boundedness of the classical solutions f for the equation (1.1).

Proposition 1.6. Let the coefficients π(x, t), φ(x), D(x), and a positive probability density function
f0(x) satisfy the strong positivity (1.18) and the Hölder regularity (1.19) for 0 < α < 1. Assume
π(x, t), φ(x), D(x), and f0(x) are bounded functions, and there is a positive constant C4 > 0, such that
f0(x) ≥ C4 for x ∈ Ω. Let f be a classical solution of (1.1). Then,
(1.22)

exp
(

1
D(x)

min
y∈Ω

(
D(y) log

f0(y)
f eq(y)

))
f eq(x) ≤ f (x, t) ≤ exp

(
1

D(x)
max
y∈Ω

(
D(y) log

f0(y)
f eq(y)

))
f eq(x),

for x ∈ Ω, t > 0. In particular, there are positive constants C5,C6 > 0 such that,
(1.23) C5 ≤ f (x.t) ≤ C6

for x ∈ Ω, t > 0.

Proof. First, note that using the auxiliary variable

(1.24) ρ(x, t) =
f (x, t)
f eq(x)

, h(x, t) = D(x) log ρ(x, t),

the function h is a classical solution of (1.21), the right hand side of which only includes the Laplacian
and the gradient terms of h.

We show that for x ∈ Ω and t > 0,
(1.25) min

y∈Ω
h(y, 0) ≤ h(x, t) ≤ max

y∈Ω
h(y, 0).

The idea of the proof follows the argument of the proof of the maximum principle for the linear
parabolic equation (see for instance, [28, Theorem 8 in §7.1], [49, Section 1 in Chapter 3]). Here we
give a complete proof.

Write hε(x, t) = h(x, t) − εt for ε > 0. Then, hεt = ht − ε, ∇hε = ∇h, and ∆hε = ∆h, hence by
(1.21), we have,

(1.26) hεt + ε =
D(x)
π(x, t)

∆hε +
D(x)
f eq(x)

∇

(
f eq(x)
π(x, t)

)
· ∇hε +

D(x)
π(x, t)

∇

(
hε + εt
D(x)

)
· ∇hε .

Let (x0, t0) ∈ Ω × (0,∞) be a point, such that max(x,t)∈Ω×[0,∞) hε(x, t) = hε(x0, t0). Note that t0 > 0,
hence at (x0, t0), hεt ≥ 0, ∇hε = 0, and ∆hε ≤ 0. Thus, using (1.26) and positivity of D(x) and p(x, t),
at (x0, t0),

0 < hεt + ε =
D(x)
π(x, t)

∆hε ≤ 0,

which is a contradiction. Therefore t0 = 0 and max(x,t)∈Ω×[0,∞) hε(x, t) = maxy∈Ω hε(y, 0). By the
definition of hε, we have max(x,t)∈Ω×[0,∞) hε(x, t) = maxy∈Ω h(y, 0). Let ε → 0 to find,

max
(x,t)∈Ω×[0,∞)

h(x, t) = max
y∈Ω

h(y, 0).

Hence, we obtain h(x, t) ≤ maxy∈Ω h(y, 0) for x ∈ Ω and t > 0. Proof of h(x, t) ≥ miny∈Ω h(y, 0)
follows similar idea.

Since,

(1.27) h(x, t) = D(x) log ρ(x, t) = D(x) log
f (x, t)
f eq(x)

, h(y, 0) = D(y) log
f0(y)

f eq(y)
,

we obtain (1.22) from (1.25) and (1.27).
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Since D(x), π(x, t), f0(x) satisfy the strong positivity and D(x), π(x, t), φ(x), f0(x) are bounded,
the right-hand side and the left-hand side of (1.22) are bounded below and above by positive numbers
C5, C6 > 0 respectively, thus, the result (1.23) is deduced. �

Throughout this paper, we assume that coefficients π(x, t), φ(x), D(x) and a positive probability
density function f0(x) satisfy the strong positivity (1.18) and theHölder regularity (1.19) for 0 < α < 1.
Further, we assume that there is a positive constant C4 > 0 such that f0(x) ≥ C4 for x ∈ Ω. Then, by
the following proposition, we obtain the uniform lower bounds of F[ f ](t) for t > 0.

Proposition 1.7. Let f be a solution of (1.1). Then, there is a positive constant C7 > 0, such that,
(1.28) F[ f ](t) ≥ −C7,

for t > 0.

Proof. By the triangle inequality, we have,∫
Ω

D(x) f (log f − 1) dx ≥ −
∫
Ω

D(x) f | log f − 1| dx

≥ −‖D‖L∞(Ω)‖ log f − 1‖L∞(Ω×[0,∞))
∫
Ω

f dx.
(1.29)

Using f φ(x) ≥ − f ‖φ‖L∞(Ω), and (1.6), we obtain,
(1.30) F[ f ](t) ≥ −

(
‖D‖L∞(Ω)‖ log f − 1‖L∞(Ω×[0,∞)) + ‖φ‖L∞(Ω)

)
.

By the maximum principle (1.23), log f − 1 is uniformly bounded on Ω × [0,∞). Therefore, (1.28) is
deduced by choosing C7 = ‖D‖L∞(Ω)‖ log f − 1‖L∞(Ω×[0,∞)) + ‖φ‖L∞(Ω). �

1.3. Notation. Here we define some useful notations in this paper. For a vector field, u = (uk)k , we
write,

∇u = (uk
xl )k,l =

©­­­­­«
∂u1

∂x1
∂u1

∂x2
· · · ∂u1

∂xn
∂u2

∂x1
∂u2

∂x2
· · · ∂u2

∂xn
...

...
. . .

...
∂un
∂x1

∂un
∂x2

· · · ∂un
∂xn

ª®®®®®¬
,

and the transpose of ∇u is denoted by T∇u = (ul
xk )k,l . We denote the Frobenius norm of ∇u by |∇u |,

namely |∇u | = tr(T∇u∇u). For the two vectors u = (uk)k and v = (v l)l , we write,

(1.31) u ⊗ v = (ukv l)k,l =

©­­­­«
u1v1 u1v2 · · · u1vn

u2v1 u2v2 · · · u2vn

...
...

. . .
...

unv1 unv2 · · · unvn

ª®®®®¬
.

2. Homogeneous diffusion case

In this section, we consider the case of homogeneous diffusion and a constant mobility, namely D
is a positive constant and π ≡ 1. We study the following periodic boundary value problem,

(2.1)


∂ f
∂t
+ div ( f u) = 0, x ∈ Ω, t > 0,

u = −∇ (D log f + φ(x)) , x ∈ Ω, t > 0,
f (x, 0) = f0(x), x ∈ Ω.

The equation (2.1) is the linear Fokker-Planck equation. The entropy dissipation method is among
the powerful tool (for instance, see [2, 34, 43, 16]) for the study of long-time asymptotic behavior of
solutions to (2.1). Here, we present a new take on the entropy dissipation method with a help of the
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velocity vector u, (2.1). Such approach makes it possible to extend entropy dissipation method to the
nonlinear problem (1.1).

Under the assumption of the constant coefficients D > 0 and π = 1, the free energy F and the
energy law (1.8) take the form,

(2.2) F[ f ] :=
∫
Ω

(D f (log f − 1) + f φ(x)) dx,

and

(2.3)
dF
dt
[ f ](t) = −

∫
Ω

|u |2 f dx =: −Ddis[ f ](t),

where Ddis[ f ](t) is the dissipation rate of the free energy F[ f ].
Let us first state the main result of this section,

Theorem 2.1. Let φ = φ(x) be a periodic function, and let f0 = f0(x) be a periodic probability
density function which satisfies both the finite conditions that F[ f0] < ∞ and Ddis[ f0] < ∞. Let f be
a solution of (2.1) subject to the periodic boundary condition. Let u be defined as in (2.1). Assume,
that there is a positive constant λ > 0, such that ∇2φ ≥ λI, where I is the identity matrix. Then, we
obtain that,

(2.4)
∫
Ω

|u |2 f dx ≤ e−2λt
∫
Ω

|∇ (D log f0 + φ(x)) |2 f0 dx.

In particular, we have that,

(2.5)
dF
dt
[ f ](t) = −

∫
Ω

|u |2 f dx → 0 as t →∞.

In order to establish statement of Theorem 2.1, first, we need to obtain additional results as
in Lemmas 2.2-2.8. Using (2.3) and the Fubini theorem, we start by showing that we can take
subsequence such that dF

dt [ f ] converges to 0,.

Lemma 2.2. Let f be a solution of (2.1). Then, there is an increasing sequence {t j}
∞
j=1, such that

t j →∞ and,

(2.6)
dF
dt
[ f ](t j) → 0, j →∞.

Proof. Integrate (2.3) with respect to t, we have that,

(2.7) F[ f ](t) +
∫ t

0

(∫
Ω

|u |2 f dx
)

dτ = F[ f0].

Since F[ f ](t) ≥ −C7 by Proposition 1.7, we obtain the uniform bound,∫ t

0

(∫
Ω

|u |2 f dx
)

dτ ≤ F[ f0] + C7,

for t > 0. Hence, there is an increasing sequence {t j}
∞
j=1 such that t j →∞, and

(2.8)
∫
Ω

|u |2 f dx
����
t=tj
→ 0, j →∞.

Next, using (2.3), we obtain that dF
dt [ f ](t j) → 0 as j →∞. �

Henceforth we compute the second derivative of F and represent it in terms of u. To do this, we
first give a relation between ∇ f and u. By direct calculation of the velocity u, we have the following
result.
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Lemma 2.3. Let u be defined by (2.1). Then,
(2.9) f u = −D∇ f − f∇φ(x),

and
(2.10) ρu = −D∇ρ,

where ρ is defined in (1.13).

Next, let us take a second derivative of the free energy F and we have that,

(2.11)
d2F
dt2 [ f ] =

d
dt

(
−

∫
Ω

|u |2 f dx
)
= −2

∫
Ω

u · ut f dx −
∫
Ω

|u |2 ft dx.

Thus, we need to compute the time derivative of u.

Lemma 2.4. Let u be defined as in (2.1). Then,

(2.12) ut = −
D
ρ
∇ρt −

ρt

ρ
u.

Proof. Take a time-derivative of u, then we obtain that,

(2.13) ut = −∇

(
D
ρt

ρ

)
= −

D
ρ
∇ρt +

Dρt

ρ2 ∇ρ.

Using (2.10) in (2.13), we derive (2.12). �

Next, we rewrite the second derivative of F (2.11) in terms of ρt and ft , instead of ut .

Lemma 2.5. Let f be a solution of (2.1) and let u be defined as in (2.1). Then,

(2.14)
d2F
dt2 [ f ](t) = 2

∫
Ω

Du · ∇ρt f eq dx +
∫
Ω

|u |2 ft dx,

where f eq is given by (1.10).

Proof. Using (2.11) together with (2.12), we obtain that,
d2F
dt2 [ f ](t) = −2

∫
Ω

u · ut f dx −
∫
Ω

|u |2 ft dx

= 2
∫
Ω

Du · ∇ρt
f
ρ

dx + 2
∫
Ω

|u |2ρt
f
ρ

dx −
∫
Ω

|u |2 ft dx.

Since f = ρ f eq and ρt f eq = ft , we obtain the desired result (2.14). �

Now, let us reformulate the right-hand side of (2.14) in a form which is convenient for the use of
entropy method.

Lemma 2.6. Let f be a solution of (2.1) and let u be defined by (2.1). Then,

(2.15)
∫
Ω

|u |2 ft dx =
∫
Ω

u · ∇|u |2 f dx.

Proof. Using the system (2.1) and integration by parts together with the periodic boundary condition,
we arrive at, ∫

Ω

|u |2 ft dx = −
∫
Ω

|u |2 div( f u) dx =
∫
Ω

u · ∇|u |2 f dx.

�

Lemma 2.7. Let f be a solution of (2.1), and let u be defined by (2.1). Then,

(2.16) D f eq∇ρt = − ftu + f∇
(
|u |2 + (u · ∇φ(x)) − D div u

)
,

where f eq is given by (1.10).
9



Proof. Since f eq is independent of t, we have due to (2.1) that,
(2.17) D f eqρt = D ft = −D div( f u) = −Du · ∇ f − D f div u.

Using (2.9) in (2.17), we obtain that,

(2.18) D f eqρt = D ft = f
(
|u |2 + u · ∇φ(x) − D div u

)
.

Next, take a gradient of (2.18) and obtain using (2.18), that,

Dρt∇ f eq + D f eq∇ρt =
(
|u |2 + u · ∇φ(x) − D div u

)
∇ f + f∇

(
|u |2 + u · ∇φ(x) − D div u

)
=

D ft
f
∇ f + f∇

(
|u |2 + u · ∇φ(x) − D div u

)
.

(2.19)

Now, taking a gradient of (1.12) with D(x) = D, we have,

(2.20)
D
f eq∇ f eq + ∇φ(x) = 0.

Thus, using (2.20) and (2.9) in (2.19), we have that,

−ρt f eq∇φ(x) + D f eq∇ρt = − ftu − ft∇φ(x) + f∇
(
|u |2 + u · ∇φ(x) − D div u

)
.

Since ρt f eq = ft , we obtain the result (2.16). �

Now we are in a position to compute
∫
Ω

Du · ∇ρt f eq dx, which is the first term of the right hand
side of (2.14).

Lemma 2.8. Let f be a solution of (2.1) and let u be given as in (2.1). Then,

(2.21) 2
∫
Ω

Du · ∇ρt f eq dx = 2
∫
Ω

((∇2φ(x))u · u) f dx −
∫
Ω

u · ∇|u |2 f dx + 2
∫
Ω

D |∇u |2 f dx.

Here, f eq is defined as in (1.10).

Proof. First, we use (2.16) and obtain,

2
∫
Ω

Du · ∇ρt f eq dx

= −2
∫
Ω

|u |2 ft dx + 2
∫
Ω

u · ∇|u |2 f dx + 2
∫
Ω

u · ∇(u · ∇φ(x)) f dx − 2
∫
Ω

Du · ∇ div u f dx.

Using (2.15), the first and the second terms of the right hand side of the above relation are canceled,
hence,

(2.22) 2
∫
Ω

Du · ∇ρt f eq dx = 2
∫
Ω

u · ∇(u · ∇φ(x)) f dx − 2
∫
Ω

Du · ∇ div u f dx.

Next, we compute u · ∇(u · ∇φ(x)). We denote u = (ul)l . Then, by direct calculations, we obtain,

u · ∇(u · ∇φ(x)) =
∑
k,l

ul(ukφxk (x))xl

=
∑
k,l

φxk xl (x)u
luk +

∑
k,l

uk
xlu

lφxk (x)

= ((∇2φ(x))u · u) +
∑
k,l

uk
xlu

lφxk (x).

(2.23)

Since ∇u = −∇2(D log ρ) is symmetric,

(2.24)
∑

l

uk
xlu

l =
∑

l

ul
xkul =

1
2
(|u |2)xk,

10



hence we obtain,

(2.25) u · ∇(u · ∇φ(x)) = ((∇2φ(x))u · u) +
1
2
∇(|u |2) · ∇φ(x).

Next, we compute u · ∇ div u. By direct calculations, we have that,

(2.26) u · ∇ div u =
∑
k,l

ul(uk
xk )xl =

∑
k,l

(uluk
xl )xk −

∑
k,l

ul
xkuk

xl .

Since ∇u is symmetric, we can use (2.24) and,

(2.27)
∑
k,l

ul
xkuk

xl =
∑
k,l

uk
xlu

k
xl = |∇u |

2,

to obtain from (2.26) that,

(2.28) u · ∇ div u =
1
2

div(∇|u |2) − |∇u |2.

Employing (2.25) and (2.28) in (2.22), we derive that,

(2.29) 2
∫
Ω

Du · ∇ρt f eq dx

= 2
∫
Ω

((∇2φ(x))u · u) f dx +
∫
Ω

∇(|u |2) · ∇φ(x) f dx −
∫
Ω

D div(∇|u |2) f dx + 2
∫
Ω

D |∇u |2 f dx.

Next, we calculate the third term of the right-hand side of (2.29). Applying integration by parts
together with the periodic boundary condition, we have,

−

∫
Ω

D div(∇|u |2) f dx =
∫
Ω

D∇|u |2 · ∇ f dx.

Using (2.9) in the above relation, we have,

(2.30) −

∫
Ω

D div(∇|u |2) f dx = −
∫
Ω

u · ∇|u |2 f dx −
∫
Ω

∇|u |2 · ∇φ(x) f dx.

Finally, using (2.30) in (2.29), we obtain the desired result (2.21). �

Now, combining results (2.14), (2.15) and (2.21) from above lemmas, we are in position to obtain
the following energy law, .

Proposition 2.9. Let f be a solution of (2.1) and let u be defined in (2.1). Then,

(2.31)
d2F
dt2 [ f ](t) = 2

∫
Ω

((∇2φ(x))u · u) f dx + 2
∫
Ω

D |∇u |2 f dx.

From (2.3), as in Lemma 2.2, we only know that there is a subsequence {t j}
∞
j=1 such that dF

dt [ f ](t j)

converges to 0. Now, using (2.31), we show full convergence of dF
dt [ f ] to 0.

Proof of Theorem 2.1. First, from (2.31) and (2.3), by the convexity assumption, ∇2φ(x) ≥ λ, we get,

(2.32)
d2F
dt2 [ f ](t) ≥ 2λ

∫
Ω

|u |2 f dx ≥ 0,

hence dF
dt [ f ](t) is monotone increasing with respect to t > 0. Thus, from (2.6), it follows that dF

dt [ f ](t)
converges to 0 as t →∞. Furthermore, from (2.32) and (2.3) we have,

d
dt

(
−

∫
Ω

|u |2 f dx
)
≥ 2λ

∫
Ω

|u |2 f dx,

namely
d
dt

Ddis[ f ](t) ≤ −2λDdis[ f ](t).
11



Hence, we can apply the Gronwall’s inequality. Thus, we have Ddis[ f ](t) ≤ e−2λt Ddis[ f ](0), and
obtain the result (2.4). �

Remark 2.10. Note, in Theorem 2.1, we obtained the exponential decay of Ddis[ f ](t), but we do
not know long-time asymptotic behavior of F[ f ](t) or f (t) itself. On the other hand, using the
logarithmic Sobolev inequality, we may show stronger convergence results, such as F[ f ](t) → F[ f eq]
exponentially, and exponential convergence of f to f eq in the L1 space, as t → ∞. When Ω = Rn,
the logarithmic Sobolev inequality holds, and we may proceed with the entropy dissipation method to
obtain the energy convergence. We will discuss it in Appendix.

In this section, we demonstrated the entropymethod for the linear Fokker-Planck equation in terms of
the velocity u. Using this approach, we will extend the entropy method to the nonlinear Fokker-Planck
equation in the next section.

3. Inhomogeneous diffusion case

In this section, we consider the following evolution equation with inhomogeneous diffusion and a
constant mobility, namely D is a positive bounded function and π ≡ 1 in a bounded domain in the
Euclidean space of n-dimension, subject to the periodic boundary condition,

(3.1)


∂ f
∂t
+ div ( f u) = 0, x ∈ Ω, t > 0,

u = −∇ (D(x) log f + φ(x)) , x ∈ Ω, t > 0,
f (x, 0) = f0(x), x ∈ Ω.

Without loss of generality, we take Ω = [0, 1)n ⊂ Rn. We first consider the strictly positive periodic
function D = D(x) with the lower bound, C3 > 0 such that,

(3.2) D(x) ≥ C3,

for x ∈ Ω.
The free energy F and the basic energy law (1.8) take the following specific forms,

(3.3) F[ f ] :=
∫
Ω

(D(x) f (log f − 1) + f φ(x)) dx,

and

(3.4)
dF
dt
[ f ](t) = −

∫
Ω

|u |2 f dx =: −Ddis[ f ](t).

Here, first, we present the following Sobolev-type inequality and the interpolation estimate, based
on the uniform bounds of the solution of the above system.

Lemma 3.1. Let f be a solution of the equation (3.1). Then, there is a suitable positive constant
C8 > 0, such that for any t > 0, and for any periodic vector field v on Ω,

(3.5)
(∫
Ω

|v |p
∗

f dx
) 1

p∗

≤ C8

(∫
Ω

|∇v |2 f dx
) 1

2

,

where the exponent p∗ satisfies 1
p∗ =

1
2 −

1
n for n = 3, and arbitrary 2 ≤ p∗ < ∞ for n = 1, 2.

In particular, with this Sobolev-type inequality (3.5) and the Hölder inequality, we have for 2 ≤
p ≤ p∗ that,

(3.6)
∫
Ω

|v |p f dx ≤
(∫
Ω

|v |p
∗

f dx
) p

p∗
(∫
Ω

f dx
)1− p

p∗

≤ Cp
8

(∫
Ω

|∇v |2 f dx
) p

2
(∫
Ω

f dx
)1− p

p∗

.
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Proof. Let us justify the above Sobolev inequality. The exponent p∗ is the so-called Sobolev exponent.
The above Sobolev inequality holds when f is strictly positive and bounded uniformly on Ω × [0,∞),
namely, there are positive constants C9,C10 > 0, such that C9 ≤ f (x, t) ≤ C10 for x ∈ Ω and t ≥ 0,
see Section 1.1, Proposition 1.6. To see this, we use the classical Sobolev inequality (see, for instance
[1]), (∫

Ω

|v |p
∗

dx
) 1

p∗

≤ C11

(∫
Ω

|∇v |2 dx
) 1

2

.

Thus, using C9 ≤ f (x, t) ≤ C10, we have,(∫
Ω

|v |p
∗

f dx
) 1

p∗

≤ C10

(∫
Ω

|v |p
∗

dx
) 1

p∗

≤ C10C11

(∫
Ω

|∇v |p
∗

dx
) 1

p∗

≤
C10C11

C9

(∫
Ω

|∇v |2 f dx
) 1

2

,

so we can take C8 =
C10C11

C9
. �

The Theorem 3.2 below is the extension of the results in Section 2, Theorem 2.1, when D is constant
(that is, ‖∇D‖L∞(Ω) = 0), to the case of the inhomogeneous D(x). In particular, when ‖∇D‖L∞(Ω) is
sufficiently small, and under some additional assumptions on the initial condition, one can establish
that the dissipation functional Ddis[ f ](t) in the basic energy law (3.4) will also exponentially converges
to 0 as t →∞.

Theorem 3.2. Assume n = 1, 2, 3. Let φ = φ(x) and D = D(x) be periodic functions, and let f0 = f0(x)
be a periodic probability density function. Let f be a solution of (3.1) subject to the periodic boundary
condition. Let u be defined as in (3.1). Assume, that there is a positive constant λ > 0, such that
∇2φ ≥ λI, where I is the identity matrix. Then, there are constants C12, C13, C14 > 0 such that, if

(3.7) ‖∇D‖L∞(Ω) ≤ C12,

∫
Ω

|∇(D(x) log f0 + φ(x))|2 f0 dx ≤ C13,

then, we obtain for t > 0,

(3.8)
∫
Ω

|u |2 f dx ≤ C14e−λt .

In particular, we have that,

(3.9)
dF
dt
[ f ](t) = −

∫
Ω

|u |2 f dx → 0, as t →∞.

Remark 3.3. Let dµ = f eq dx. Then, the estimate (3.8) can also be written as,∫
Ω

|uρ
1
2 |2 dµ ≤ C14e−λt .

In other words, uρ 1
2 converges exponentially fast to 0 as t →∞ in L2(Ω, dµ).

Due to the fact that ∇(D(x) log f eq(x) + φ(x)) = 0, we can further conclude that,
(3.10)(

f
f0

) 1
2

∇(D(x) log f + φ(x)) →
(

f eq

f0

) 1
2

∇(D(x) log f eq(x) + φ(x)) exponentially fast in L2(Ω, dµ),

as t → ∞, provided f does not become 0. In particular, this is true when f is strictly positive on
Ω × [0,∞).

Remark 3.4. It is clear that in the conditions (3.7) of Theorem 3.2, the first one is for D(x), while the
second one is on the initial data of f0. Such conditions are needed in our analysis to get the asymptotic
convergence of the dissipation Ddis[ f ](t) in the basic energy law (3.4).
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In order to establish statement of Theorem 2.1, first, we need to obtain additional results as in
Lemmas 3.5-3.16. Note that as in the proof of Lemma 2.2, we can take a subsequence {t j}

∞
j=1 such

that dF
dt [ f ](t j) vanishes as j →∞. Namely,

Lemma 3.5. Let f be a solution of (3.1). Then there is an increasing sequence {t j}
∞
j=1 such that

t j →∞ and,

(3.11)
dF
dt
[ f ](t j) → 0, as j →∞.

The proof of Lemma 3.5 follows exactly the same argument as the proof of Lemma 2.2. We next
show that dF

dt [ f ] converges to 0 as t →∞ in time t.
Hereafter we compute the second derivative of F and represent it by u. To do this, we first establish

a relationship between ∇ f and u. By direct calculation of the velocity u, we have the following
relation.

Lemma 3.6. Let u be defined as in (3.1). Then,

(3.12) f u = −D(x)∇ f − f log f∇D(x) − f∇φ(x),

and

(3.13) ρu = −D(x)∇ρ − ρ log ρ∇D(x),

where ρ is defined in (1.13).

Next, we notice again that the nonlinearity in (3.12) is the direct consequence of the inhomogeneity
of D(x). Moreover, the nonlinear part of the system in (1.17) will become, − log f∇D(x) · ∇ f −
∆D(x) f log f .
Next, again, to use the entropy method, we will take a second derivative of the free energy F,

d2F
dt2 [ f ] =

d
dt

(
−

∫
Ω

|u |2 f dx
)
= −2

∫
Ω

u · ut f dx −
∫
Ω

|u |2 ft dx.

Next, similar to Section 2, we proceed by first computing the time derivative of u.

Lemma 3.7. Let u be defined by (3.1). Then,

(3.14) ut = −
D(x)
ρ
∇ρt −

ρt

ρ
(u + (log ρ + 1)∇D(x)) .

Proof. We take a time-derivative of u and we have from (3.1) that,

(3.15) ut = −∇

(
D(x)

ρt

ρ

)
= −

D(x)
ρ
∇ρt +

D(x)ρt

ρ2 ∇ρ −
ρt

ρ
∇D(x).

Using (3.13) in (3.15), we obtain the result (3.14). �

Note, by comparing formula in (3.14) with the formula in (2.12), one can observe that the extra
term ρt

ρ (log ρ + 1)∇D(x) appears in the time derivative of u due to the effect of the inhomogeneity.
Next, similar to Section 2, we will write the second time-derivative of F in terms of ρt and ft ,

instead of ut .

Lemma 3.8. Let f be a solution of (3.1) and let u be given by (3.1). Then,

(3.16)
d2F
dt2 [ f ](t) = 2

∫
Ω

D(x)u · ∇ρt f eq dx +
∫
Ω

|u |2 ft dx + 2
∫
Ω

(log ρ + 1)u · ∇D(x) ft dx,

where f eq is given in (1.10).
14



Proof. Using the time-derivative of (3.4) together with (3.14), we obtain that,
d2F
dt2 [ f ](t) = −2

∫
Ω

u · ut f dx −
∫
Ω

|u |2 ft dx

= 2
∫
Ω

D(x)u · ∇ρt
f
ρ

dx + 2
∫
Ω

|u |2ρt
f
ρ

dx + 2
∫
Ω

(log ρ + 1)u · ∇D(x)ρt
f
ρ

dx

−

∫
Ω

|u |2 ft dx.

Since f = ρ f eq and ρt f eq = ft , we derive (3.16). �

Next, we compute the right-hand side of (3.16). Similar to Lemma 2.6 in Section 2, one can show
the following result using the same argument as in Lemma 2.6.

Lemma 3.9. Let f be a solution of (3.1) and let u be given by (3.1). Then,

(3.17)
∫
Ω

|u |2 ft dx =
∫
Ω

u · ∇|u |2 f dx.

Next, we express ∇ρt in terms of u in order to compute the first term of the right-hand side of
(3.16).

Lemma 3.10. Let f be a solution of (3.1) and let u be given as in (3.1). Then,
D(x) f eq∇ρt

= − ftu − ft (1 + log ρ) ∇D(x) + f∇
(
|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
,

(3.18)

where f eq is given in (1.10).

Proof. Since f eq is independent of t, we have due to (3.1) that,
(3.19) D(x) f eqρt = D(x) ft = −D(x) div( f u) = −D(x)u · ∇ f − D(x) f div u.

Using (3.12) in (3.19), we obtain that,

(3.20) D(x) f eqρt = D(x) ft = f
(
|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
.

Next, take a gradient of (3.20) and we obtain, by using (3.20) again that,
ρt f eq∇D(x) + D(x)ρt∇ f eq + D(x) f eq∇ρt

=
(
|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
∇ f

+ f∇
(
|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
=

D(x) ft
f
∇ f + f∇

(
|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
.

(3.21)

Next, take a gradient of (1.12), we have,

(3.22)
D(x)
f eq ∇ f eq + log f eq∇D(x) + ∇φ(x) = 0.

Thus, using (3.12) and (3.22) in (3.21), we arrive at,
ρt f eq∇D(x) − ρt f eq log f eq∇D(x) − ρt f eq∇φ(x) + D(x) f eq∇ρt

= − ftu − ft log f∇D(x) − ft∇φ(x) + f∇
(
|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
.

Since ρt f eq = ft , we obtain the desired result (3.18). �

Now, we are in a position to compute the first term of the right hand side of (3.16).
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Lemma 3.11. Let f be a solution of (3.1) and let u be given as in (3.1). Then,

2
∫
Ω

D(x)u · ∇ρt f eq dx = 2
∫
Ω

((∇2φ(x))u · u) f dx −
∫
Ω

u · ∇|u |2 f dx + 2
∫
Ω

D(x)|∇u |2 f dx

− 2
∫
Ω

(1 + log ρ)u · ∇D(x) ft dx + 2
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx

−

∫
Ω

(log f − 1)∇|u |2 · ∇D(x) f dx − 2
∫
Ω

u · ∇D(x) div u f dx,

(3.23)

where f eq is given in (1.10).

Proof. First, we use (3.18) and obtain,

2
∫
Ω

D(x)u · ∇ρt f eq dx

= −2
∫
Ω

|u |2 ft dx − 2
∫
Ω

(1 + log ρ)u · ∇D(x) ft dx + 2
∫
Ω

u · ∇|u |2 f dx

+ 2
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx + 2
∫
Ω

u · ∇(u · ∇φ(x)) f dx − 2
∫
Ω

u · ∇(D(x) div u) f dx.

Using (3.17), the first and the third terms of the right-hand side of the above relation are canceled,
hence,

2
∫
Ω

D(x)u · ∇ρt f eq dx

= −2
∫
Ω

(1 + log ρ)u · ∇D(x) ft dx + 2
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx

+ 2
∫
Ω

u · ∇(u · ∇φ(x)) f dx − 2
∫
Ω

u · ∇(D(x) div u) f dx.

(3.24)

Since ∇u = −∇(D(x) log ρ) is symmetric, we can proceed with the same computations as in (2.23),
(2.24) in the proof of Lemma 2.8 in Section 2, hence we obtain that,

(3.25) u · ∇(u · ∇φ(x)) = ((∇2φ(x))u · u) +
1
2
∇|u |2 · ∇φ(x).

Next, we compute u · ∇(D(x) div u). By the direct calculations, we have that,

(3.26) u · ∇(D(x) div u) = u · ∇D(x) div u + D(x)u · ∇(div u).

Since ∇u is symmetric, we can proceed again with the same computations as in (2.26), (2.27) in the
proof of Lemma 2.8 in Section 2, hence, we obtain from (3.26) that,

(3.27) u · ∇(D(x) div u) = u · ∇D(x) div u +
D(x)

2
div(∇|u |2) − D(x)|∇u |2.

Using (3.25) and (3.27) in (3.24), we have,

2
∫
Ω

D(x)u · ∇ρt f eq dx

= −2
∫
Ω

(1 + log ρ)u · ∇D(x) ft dx + 2
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx

+ 2
∫
Ω

((∇2φ(x))u · u) f dx +
∫
Ω

∇|u |2 · ∇φ(x) f dx

−

∫
Ω

D(x) div(∇|u |2) f dx + 2
∫
Ω

D(x)|∇u |2 f dx − 2
∫
Ω

u · ∇D(x) div u f dx.

(3.28)
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Next, we calculate the fifth term of the right-hand side of (3.28). Applying integration by parts
together with the periodic boundary condition, we arrive at,

−

∫
Ω

D(x) div(∇|u |2) f dx =
∫
Ω

D(x)∇|u |2 · ∇ f dx +
∫
Ω

∇|u |2 · ∇D(x) f dx.

Using (3.12) in the first term of the right-hand side of the above relation, we have,

−

∫
Ω

D(x) div(∇|u |2) f dx = −
∫
Ω

u · ∇|u |2 f dx −
∫
Ω

∇|u |2 · ∇φ(x) f dx

−

∫
Ω

(log f − 1)∇|u |2 · ∇D(x) f dx.
(3.29)

Finally employing (3.29) in (3.28), we obtain the result (3.23). �

Lemma 3.12. Let u be given by (3.1). Then,∫
Ω

u · ∇ (log f u · ∇D(x)) f dx

=

∫
Ω

1
D(x)

|u |2 log f (u · ∇D(x)) f dx +
∫
Ω

1
D(x)

(log f )2 (u · ∇D(x))2 f dx

+

∫
Ω

1
D(x)

log f (u · ∇D(x)) (u · ∇φ(x)) f dx −
∫
Ω

log f (u · ∇D(x)) div u f dx.

(3.30)

Proof. Applying integration by parts to the left hand side of (3.30) together with the periodic boundary
condition (3.1), we obtain that,

(3.31)
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx = −
∫
Ω

log f (u · ∇D(x)) div( f u) dx.

Using (3.12), we have that,

div( f u) = u · ∇ f + f div u

= −
1

D(x)
|u |2 f −

1
D(x)

log f (u · ∇D(x)) f −
1

D(x)
(u · ∇φ(x)) f + f div u.

(3.32)

Combining (3.31) and (3.32), we obtain the desired relation (3.30). �

Now combining (3.16), (3.17), (3.23), and (3.30), we obtain the following energy law.

Proposition 3.13. Let f be a solution of (3.1) and let u be given as in (3.1). Then,

d2F
dt2 [ f ](t) = 2

∫
Ω

((∇2φ(x))u · u) f dx + 2
∫
Ω

D(x)|∇u |2 f dx

−

∫
Ω

(log f − 1)∇|u |2 · ∇D(x) f dx − 2
∫
Ω

(1 + log f )u · ∇D(x) div u f dx

+ 2
∫
Ω

1
D(x)

|u |2 log f (u · ∇D(x)) f dx + 2
∫
Ω

1
D(x)

(log f )2 (u · ∇D(x))2 f dx

+ 2
∫
Ω

1
D(x)

log f (u · ∇D(x)) (u · ∇φ(x)) f dx.

(3.33)

Below, we will derive the condition that is sufficient to obtain a differential inequality for dF
dt . Note,

the fifth term of the right-hand side of (3.33) involves |u |3, which is higher order than the term dF
dt .

Thus, we will handle such term using the following Sobolev inequality.
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Lemma 3.14. Assume n = 1, 2, 3, let f0 be a probability density function, and let f be a solution of
(3.1). Then,

(3.34)
∫
Ω

|v |3 f dx ≤
3C

3
2
8

4

∫
Ω

|∇v |2 f dx +
C

3
2
8
4

(∫
Ω

|v |2 f dx
)3
,

for any vector field v .

Proof. Let α, β > 0, such that α+ β = 1, and let the exponent, p > 1. Then, by the Hölder’s inequality,

(3.35)
∫
Ω

|v |3 f dx ≤
(∫
Ω

|v |3αp f dx
) 1

p
(∫
Ω

|v |3βp′ f dx
) 1

p′

,

where p′ is the Hölder’s conjugate, namely, 1
p +

1
p′ = 1. Next, we assume a constraint, 3αp = p∗, in

order to apply the Sobolev inequality (3.5) in (3.35) and,

(3.36)
∫
Ω

|v |3 f dx ≤ C
p∗

p

8

(∫
Ω

|∇v |2 f dx
) p∗

2p
(∫
Ω

|v |3βp′ f dx
) 1

p′

.

Next, we assume another constraint, 3βp′ = 2 and p∗

2p < 1. Then, the Young’s inequality implies,
(3.37)(∫

Ω

|∇v |2 f dx
) p∗

2p
(∫
Ω

|v |3βp′ f dx
) 1

p′

≤
p∗

2p

∫
Ω

|∇v |2 f dx +
(
1 −

p∗

2p

) (∫
Ω

|v |2 f dx
) 1

p′

(
1− p∗

2p

)−1

,

hence, we obtain using (3.36) that,

(3.38)
∫
Ω

|v |3 f dx ≤ C
p∗

p

8
p∗

2p

∫
Ω

|∇v |2 f dx + C
p∗

p

8

(
1 −

p∗

2p

) (∫
Ω

|v |2 f dx
) 1

p′

(
1− p∗

2p

)−1

.

Now, we examine the constraints. First, 3αp = p∗, 3βp′ = 2, α + β = 1, and the properties of p′,
p∗ imply that,

(3.39)
3β
2
=

1
p′
= 1 −

3α
p∗
= 1 −

3α
2
+

3α
n
,

thus, α = n
6 . Next, p∗

2p < 1 and 3αp = p∗ imply α < 2
3 . Therefore, we can choose α, β, p such that

(3.34) is true if n ≤ 3. Note that if n = 1, 2 we can take p∗ = 6, the same as in the case n = 3. Taking
α = β = 1

2 and p = 4 in (3.38), the inequality (3.34) is deduced. �

Using the Sobolev inequality, we obtain the following energy estimate.

Proposition 3.15. Assume n = 1, 2, 3, let f be a solution of (3.1), and let u be given as in (3.1).
Suppose, that there exists a positive constant λ > 0, such that ∇2φ ≥ λI, where I is the identity matrix.
Then, there is a constant C12 > 0 such that, if

(3.40) ‖∇D‖L∞(Ω) ≤ C12,

then, we have,

(3.41)
d2F
dt2 [ f ](t) ≥ λ

∫
Ω

|u |2 f dx −
2C3
3

(∫
Ω

|u |2 f dx
)3
.
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Proof. We estimate the integrands of the 3rd, 4th, 5th, and 7th terms of (3.33). Using the Cauchy-
Schwarz inequality and relation D(x)∇(log D(x)) = ∇D(x), for any positive constants ε1, ε2 > 0, we
have that,

|(log f − 1)∇|u |2 · ∇D(x) f | ≤ 2D(x)(| log f | + 1)|u | |∇u | |∇(log D(x))| f

≤
1

2ε1
D(x)(| log f | + 1)2 |∇u |2 |∇(log D(x))|2 f + 2ε1D(x)|u |2 f ,

(3.42)

|2(1 + log f )u · ∇D(x) div u f | ≤ 2D(x)(| log f | + 1)|u | |∇u | |∇(log D(x))| f

≤
1

2ε2
D(x)(| log f | + 1)2 |∇u |2 |∇(log D(x))|2 f + 2ε2D(x)|u |2 f ,

(3.43)

and

(3.44)
���� 2
D(x)

log f (u · ∇D(x)) (u · ∇φ(x)) f
���� ≤ 2| log f | |∇(log D(x))| |∇φ(x)| |u |2 f .

Thus, using the above inequalities in (3.33), we arrive at the estimate for d2F
dt2 [ f ](t),

d2F
dt2 [ f ](t) ≥ 2

∫
Ω

((∇2φ(x) − (ε1 + ε2)D(x)I − | log f | |∇(log D(x))| |∇φ(x)|I)u · u) f dx

+ 2
∫
Ω

(
1 −

1
4

(
1
ε1
+

1
ε2

)
(| log f | + 1)2 |∇(log D(x))|2

)
D(x)|∇u |2 f dx

+ 2
∫
Ω

1
D(x)

|u |2 log f (u · ∇D(x)) f dx + 2
∫
Ω

1
D(x)

(log f )2 (u · ∇D(x))2 f dx.

(3.45)

Next, using (3.34) and D(x)/C3 ≥ 1, we have that,����2 ∫
Ω

1
D(x)

|u |2 log f (u · ∇D(x)) f dx
����

≤ 2‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

∫
Ω

|u |3 f dx

≤
3C

3
2
8

2
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

∫
Ω

|∇u |2 f dx

+
C

3
2
8
2
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

(∫
Ω

|u |2 f dx
)3

≤
3C

3
2
8

2C3
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

∫
Ω

D(x)|∇u |2 f dx

+
C

3
2
8
2
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

(∫
Ω

|u |2 f dx
)3
.

(3.46)
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Therefore, from (3.46) and (3.45), we obtain that,
d2F
dt2 [ f ](t) ≥ 2

∫
Ω

((∇2φ(x) − (ε1 + ε2)D(x)I − | log f | |∇(log D(x))| |∇φ(x)|I)u · u) f dx

+ 2
∫
Ω

(
1 −

1
4

(
1
ε1
+

1
ε2

)
(| log f | + 1)2 |∇(log D(x))|2

)
D(x)|∇u |2 f dx

−
3C

3
2
8

2C3
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

∫
Ω

D(x)|∇u |2 f dx

−
C

3
2
8
2
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

(∫
Ω

|u |2 f dx
)3
.

(3.47)

By the maximum principle Proposition 1.6, there is a positive constant C15 which depends only
on f0, f eq, and D, such that | log f (x, t)| ≤ C15 for x ∈ Ω and t > 0. If ‖∇D‖L∞(Ω) ≤ C12, then
|∇ log D(x, t)| ≤ C12/C3, hence we have that,

(3.48) (ε1 + ε2)D(x) + | log f | |∇(log D(x))| |∇φ(x)| ≤ (ε1 + ε2)‖D‖L∞(Ω) +
C12C15

C3
‖∇φ‖L∞(Ω),

and

(3.49)
1
4

(
1
ε1
+

1
ε2

)
(| log f | + 1)2 |∇(log D(x))|2 +

3C
3
2
8

4C3
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

≤
1
4

(
1
ε1
+

1
ε2

)
C2

12(C15 + 1)2

C2
3

+
3C

3
2
8 C12C15

4C2
3

.

Thus, first take small ε1, ε2 > 0, and next take C12 > 0 such that,

(3.50) (ε1 + ε2)D(x) + | log f | |∇(log D(x))| |∇φ(x)| ≤
λ

2
,

and

(3.51)
1
4

(
1
ε1
+

1
ε2

)
(| log f | + 1)2 |∇(log D(x))|2 +

3C
3
2
8

4C3
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω) ≤ 1.

Note that, 3C
3
2
8

4C3
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω) ≤ 1, hence we obtain that,

(3.52) −
C

3
2
8
2
‖ log f ‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

(∫
Ω

|u |2 f dx
)3
≥ −

2C3
3

(∫
Ω

|u |2 f dx
)3
.

Employing (3.50), (3.51) and (3.52) in the estimate (3.47), the desired energy bound (3.41) is deduced.
�

The energy estimate (3.41) becomes,

(3.53)
d2F
dt2 [ f ](t) ≥ −λ

dF
dt
[ f ](t) +

2C3
3

(
dF
dt
[ f ](t)

)3
.

Next, to proceed with a proof of the result in Theorem 3.2, below we first provide a helpful version
of the Gronwall’s inequality.

Lemma 3.16. Let c, d, p > 0 be positive constants, such that p > 1. Let g : [0,∞) → R be a
non-negative function which satisfies the following differential inequality,

(3.54)
dg
dt
≤ −cg + dgp.
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If

(3.55) g(0) <
( c

d

) 1
p−1
,

then, we obtain for t > 0,

(3.56) g(t) ≤
(
g(0)−p+1 −

d
c

)− 1
p−1

e−ct .

Proof. First, multiply both sides of (3.54) by ect , then we have that,

(3.57)
d
dt
(ectg) ≤ dectgp = d(ectg)pe−c(p−1)t .

Set G := ectg. Then, G−p dG
dt ≤ de−c(p−1)t , hence for t > 0,

(3.58) −
1

p − 1

(
G(t)−p+1 − G(0)−p+1

)
≤

∫ t

0
de−c(p−1)τ dτ =

d
c(p − 1)

(
1 − e−c(p−1)t

)
≤

d
c(p − 1)

.

Thus, straightforward computation shows that,

(3.59) G(t) ≤
(
G(0)−p+1 −

d
c

)− 1
p−1

.

Since G(0) = g(0), we obtain the estimate (3.56). �

Finally, we are in position to conclude the proof of our main Theorem 3.2 in this Section, similar to
the presented homogeneous case in Theorem 2.1 in Section 2.

Proof of Theorem 3.2. From the differential inequality (3.41), we have that,

(3.60)
d
dt

(∫
Ω

|u |2 f dx
)
≤ −λ

∫
Ω

|u |2 f dx +
2C3
3

(∫
Ω

|u |2 f dx
)3
.

UsingLemma3.16, theGronwall-type inequality, there is a constantC13 > 0, such that, if
∫
Ω
|u |2 f dx |t=0 ≤

C13, that is,
∫
Ω
|∇(D(x) log f0 + φ(x))|2 f0 dx ≤ C13, we obtain the desired result (3.8). �

Remark 3.17. In comparison with the homogeneous case in Section 2, it is not known how to
use the weighted L2 space for the inhomogeneous problem (3.1). The difficulty here arises from
the nonlinearity (1.17). We also do not know the logarithmic Sobolev inequality related to the
inhomogeneous problem (3.1), and it is not known of how to establish the full convergence of the free
energy like was done in (A.7) and (A.9).

Remark 3.18. Here, we want to note about the space dimension n. In this and the following section,
since D is not constant and we use the Sobolev inequality for the general vector valued function u,
(namely, did not use the fact that u is constituted of the solution f ), we can only treat the dimensions
n = 1, 2, 3. While, for the dimensions n ≥ 4, the bound (3.34) does not hold for general vector-valued
function u, since α = n

6 will be greater than 2
3 in the proof of Lemma 3.16 in that case. The case

n = 4 is critical, since α = 2
3 , while the case n ≥ 5 is supercritical, since α > 2

3 . If we can obtain
additional regularity estimates for f , such as uniform bounds for ∇ f , we might be able to treat the
higher dimensional case, n ≥ 4, which is ongoing work.

The next section extends the entropy method to the nonlinear Fokker-Planck model. A key idea is
to demonstrate the entropy method in terms of the velocity field u (the entropy method will not work
if applied directly to the solution f of the model).
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4. Inhomogeneous diffusion case with variable mobility

Finally, in this section, we will consider the following general evolution equation with both inho-
mogeneous diffusion and a variable mobility, that is, D = D(x) and π = π(x, t) being both positive
and bounded in a bounded domain in the Euclidean space of n-dimension, subject to the periodic
boundary condition,

(4.1)


∂ f
∂t
+ div ( f u) = 0, x ∈ Ω, t > 0,

u = −
1

π(x, t)
∇ (D(x) log f + φ(x)) , x ∈ Ω, t > 0,

f (x, 0) = f0(x), x ∈ Ω.

Again, without loss of generality, we take Ω = [0, 1)n ⊂ Rn. The strictly positive periodic functions
π(x, t) and D(x) are bounded from below with the constants, C2,C3 > 0,

(4.2) π(x, t) ≥ C2, D(x) ≥ C3

for any x ∈ Ω and t > 0.
The free energy F and the basic energy law (1.8) still take similar form in this case, namely,

(4.3) F[ f ] :=
∫
Ω

(D(x) f (log f − 1) + f φ(x)) dx.

and

(4.4)
dF
dt
[ f ](t) = −

∫
Ω

π(x, t)|u |2 f dx =: −Ddis[ f ](t).

As in the case of the constant mobility, Section 3, we first notice the following Sobolev inequality,
with weight being the solution of the above general system (4.1).

Lemma 4.1. Let f be a solution of the model (4.1). For a suitable positive constant C16 > 0, such
that for any t > 0 and for any periodic vector field v on Ω,

(4.5)
(∫
Ω

|v |p
∗

f dx
) 1

p∗

≤ C16

(∫
Ω

|∇v |2 f dx
) 1

2

,

where the exponent p∗ satisfies 1
p∗ =

1
2 −

1
n for n = 3, and arbitrary 2 ≤ p∗ < ∞ for n = 1, 2.

In particular, with this Sobolev-type inequality (4.5) and the Hölder inequality, we have for 2 ≤
p ≤ p∗ that,

(4.6)
∫
Ω

|v |p f dx ≤
(∫
Ω

|v |p
∗

f dx
) p

p∗
(∫
Ω

f dx
)1− p

p∗

≤ Cp
16

(∫
Ω

|∇v |2 f dx
) p

2
(∫
Ω

f dx
)1− p

p∗

.

The proof of Lemma 4.1 follows exactly the same argument as the proof of Lemma 3.1 in Section 3.
The main Theorem 4.2 of this section is the extension of the results in Section 3, Theorem 3.2,

when π was constant, (in particular, ‖∇π‖L∞(Ω×[0,∞)) = ‖πt ‖L∞(Ω×[0,∞)) = 0), to the case of the variable
mobility π(x, t). To be more specific, when ‖∇D‖L∞(Ω) and ‖∇π‖L∞(Ω×[0,∞)) are sufficiently small, and
under some additional assumptions on the initial condition, one can establish the exponential decay
of the dissipation functional Ddis[ f ](t) using the basic energy law (4.4).

Theorem 4.2. Consider Ω being the unit box in the Euclidean space of n-dimension with n = 1, 2, 3.
Assume, that there is a positive constant λ > 0, such that ∇2φ ≥ λI, where I is the identity matrix.
Moreover, let φ = φ(x), D = D(x) and π = π(x, t) be periodic functions which satisfy (1.18), and let
f0 = f0(x) be a periodic probability density function. Consider a solution f of (4.1) subject to the
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periodic boundary condition, and vector field u which is defined in (4.1). Then, there are positive
constants C17, C18, C19, C20, C21 > 0, and λ̃ > 0 such that, if for x ∈ Ω and t > 0,

(4.7) ‖∇D‖L∞(Ω) ≤ C17, ‖∇π‖L∞(Ω×[0,∞)) ≤ C18, πt(x, t) ≥ −C19,

and

(4.8)
∫
Ω

π(x, 0)|u(x, 0)|2 f0 dx =
∫
Ω

1
π(x, 0)

|∇(D(x) log f0 + φ(x))|2 f0 dx ≤ C20,

then, the following estimate holds true, that is, for t > 0,

(4.9)
∫
Ω

π(x, t)|u |2 f dx ≤ C21e−λ̃t .

In particular, we have that,

(4.10)
dF
dt
[ f ](t) = −

∫
Ω

π(x, t)|u |2 f dx → 0, as t →∞.

With respect to the result in Theorem 4.2, we first remark that there is a subsequence {t j}
∞
j=1 such

that the following lemma is true.

Lemma 4.3. Let f be a solution of (4.1). Then there is an increasing sequence {t j}
∞
j=1, such that

t j →∞ and

(4.11)
dF
dt
[ f ](t j) → 0, j →∞.

The proof of Lemma 4.3 follows exactly the same argument as the proof of Lemma 2.2 in Section 2.
In order to establish statement of Theorem 4.2, first, we need to obtain additional results as in

Lemmas 4.4-4.16 and Proposition 4.17 below. Hence, we proceed to show that dF
dt [ f ] converges to 0

as t →∞ in time t. Hereafter we compute the second time derivative of F, and in particular, we utilize
the special structure of the velocity field u. To do this, we first establish the following relationships
between ∇ f and u by direct calculation of the velocity u.

Lemma 4.4. Let u be defined by (4.1). Then,

(4.12) π(x, t) f u = −D(x)∇ f − f log f∇D(x) − f∇φ(x),

and

(4.13) π(x, t)ρu = −D(x)∇ρ − ρ log ρ∇D(x),

where ρ is defined in (1.13).

Remark 4.5. Recall, that the nonlinearity in (4.12) is from the inhomogeneity of D(x) and it takes the
following form (1.17) in the model,

N( f ) = −
1

π(x, t)
log f∇D(x) · ∇ f +

∇π(x, t) · ∇D(x)
π2(x, t)

f log f −
1

π(x, t)
∆D(x) f log f .

We proceed again with the entropy method and we take the second in-time derivative of the free
energy F,

d2F
dt2 [ f ] =

d
dt

(
−

∫
Ω

π(x, t)|u |2 f dx
)

= −2
∫
Ω

π(x, t)u · ut f dx −
∫
Ω

π(x, t)|u |2 ft dx −
∫
Ω

πt(x, t)|u |2 f dx.

As in Sections 2 and 3, we first compute the time derivative of the velocity u.
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Lemma 4.6. Let u be defined as in (4.1). Then,

(4.14) π(x, t)ut = −
D(x)
ρ
∇ρt −

ρπt(x, t) + ρtπ(x, t)
ρ

u −
ρt(log ρ + 1)

ρ
∇D(x).

Proof. We take a time-derivative of π(x, t)u = −∇(D(x) log ρ), and we have from (4.1) that,

(4.15) πt(x, t)u + π(x, t)ut = −∇

(
D(x)

ρt

ρ

)
= −

D(x)
ρ
∇ρt +

D(x)ρt

ρ2 ∇ρ −
ρt

ρ
∇D(x).

Using (4.13) in (4.15), we obtain the result (4.14). �

By comparing formula in (4.14) with the formula in (2.12) and (3.14) in Sections 2-3, one can
observe that the extra terms ρt

ρ (log ρ + 1)∇D(x) and −πt(x, t)u appear in the time derivative of u due
to the inhomogeneity of the diffusion and the variable mobility.

Again, we will reformulate ut in terms of ρt and ft in the second time-derivative of F.

Lemma 4.7. Let f be a solution of (4.1), and let u be given by (4.1). Then,
d2F
dt2 [ f ](t) =

∫
Ω

πt(x, t)|u |2 f dx +
∫
Ω

π(x, t)|u |2 ft dx

+ 2
∫
Ω

D(x)u · ∇ρt f eq dx + 2
∫
Ω

(log ρ + 1)u · ∇D(x) ft dx,
(4.16)

where f eq is given in (1.10).

Proof. Using the time-derivative of (3.4) together with (4.14), we obtain that,
d2F
dt2 [ f ](t) = −

∫
Ω

πt(x, t)|u |2 f dx − 2
∫
Ω

π(x, t)u · ut f dx −
∫
Ω

π(x, t)|u |2 ft dx

=

∫
Ω

πt(x, t)|u |2 f dx + 2
∫
Ω

D(x)u · ∇ρt
f
ρ

dx + 2
∫
Ω

π(x, t)|u |2ρt
f
ρ

dx

+ 2
∫
Ω

(log ρ + 1)u · ∇D(x)ρt
f
ρ

dx −
∫
Ω

π(x, t)|u |2 ft dx.

(4.17)

Since f = ρ f eq and ρt f eq = ft , we derive (4.16). �

Next, we compute each term in the right-hand side of (4.16). First, for the second term of the
right-hand side of (4.16), we obtain,

Lemma 4.8. Let f be a solution of (4.1) and let u be given by (4.1). Then,

(4.18)
∫
Ω

π(x, t)|u |2 ft dx =
∫
Ω

u · ∇(π(x, t)|u |2) f dx.

Proof. Using the system (4.1) and integration by parts, we have that,

(4.19)
∫
Ω

π(x, t)|u |2 ft dx = −
∫
Ω

π(x, t)|u |2 div( f u) dx =
∫
Ω

u · ∇(π(x, t)|u |2) f dx.

�

Next, we express ∇ρt in terms of u in order to compute the first term of the right-hand side of
(4.16).

Lemma 4.9. Let f be a solution of (4.1) and let u be given by (4.1). Then,

D(x) f eq∇ρt

= −π(x, t) ftu − ft (1 + log ρ) ∇D(x) + f∇
(
π(x, t)|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
,

(4.20)

where f eq is given in (1.10).
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Proof. Since f eq is independent of t, we have by (4.1) that
(4.21) D(x) f eqρt = D(x) ft = −D(x) div( f u) = −D(x)∇ f · u − D(x) f div u.

Using (4.12) and (4.21), we obtain,

(4.22) D(x) f eqρt = D(x) ft = f
(
π(x, t)|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
.

Next, take a gradient of (4.22), and we obtain using (4.22) that,
ρt f eq∇D(x) + D(x)ρt∇ f eq + D(x) f eq∇ρt

=
(
π(x, t)|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
∇ f

+ f∇
(
π(x, t)|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
=

D(x) ft
f
∇ f + f∇

(
π(x, t)|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
.

(4.23)

Now, taking a gradient of (1.12), we have,

(4.24)
D(x)
f eq ∇ f eq + log f eq∇D(x) + ∇φ(x) = 0.

Thus, using (4.12) and (4.24) in (4.23), we have,
ρt f eq∇D(x) − ρt f eq log f eq∇D(x) − ρt f eq∇φ(x) + D(x) f eq∇ρt

= −π(x, t) ftu − ft log f∇D(x) − ft∇φ(x)

+ f∇
(
π(x, t)|u |2 + log f u · ∇D(x) + u · ∇φ(x) − D(x) div u

)
.

(4.25)

Since ρt f eq = ft , we obtain (4.20). �

Note, using (4.20) in the 3rd term of the right-hand side of (4.16), we have,

2
∫
Ω

D(x)u · ∇ρt f eq dx = −2
∫
Ω

π(x, t) ft |u |2 dx − 2
∫
Ω

ft (1 + log ρ) u · ∇D(x) dx

+ 2
∫
Ω

f u · ∇(π(x, t)|u |2) dx + 2
∫
Ω

f u · ∇(log f u · ∇D(x)) dx

+ 2
∫
Ω

f u · ∇(u · ∇φ(x)) dx − 2
∫
Ω

f u · ∇(D(x) div u) dx.

(4.26)

Unlike Section 2 or 3, the velocity field u do not have a scalar potential in general. This yields that ∇u
is not symmetric any more so the relations (2.24), (2.25), (2.27) and (2.28) do not hold. To overcome
this difficulty, we give the following commutator relation between ∇u and its transpose T∇u.

Lemma 4.10. Let u be defined by (4.1). Then,

(4.27) ∇u − T∇u =
1

π(x, t)
(∇π(x, t) ⊗ u − u ⊗ ∇π(x, t)).

Proof. We denote u = (uk)k . Since π(x, t)uk = −(D(x) log ρ)xk for k = 1, 2, . . . , n, by taking a
derivative with respect to xl , we have,
(4.28) πxl (x, t)u

k + π(x, t)uk
xl = −(D(x) log ρ)xk xl .

Thus,
(4.29) π(x, t)uk

xl − π(x, t)u
l
xk = −πxl (x, t)u

k + πxk (x, t)u
l = (∇π(x, t) ⊗ u − u ⊗ ∇π(x, t))k,l,

hence this yields (4.27). �

Next, we compute u · ∇(u · ∇φ(x)) and u · ∇(D(x) div u) in equations (4.26). Note that, we cannot
use (2.24) and (2.27) anymore, we employ (4.27) instead. We first calculate, u · ∇(u · ∇φ(x)).
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Lemma 4.11. Let u be defined by (4.1). Then, we obtain,

u · ∇(u · ∇φ(x)) = ((∇2φ(x))u · u) +
1
2
∇|u |2 · ∇φ(x)

+
1

π(x, t)
((∇π(x, t) · ∇φ(x))|u |2 − (u · ∇π(x, t))(u · ∇φ(x))).

(4.30)

Proof. We denote u = (uk)k . Then,

u · ∇(u · ∇φ(x)) =
∑
k,l

uk(ulφxl (x))xk

=
∑
k,l

ukulφxk xl (x) +
∑
k,l

ukul
xkφxl (x)

= ((∇2φ(x))u · u) + ((∇u)u · ∇φ(x)).

(4.31)

Using (4.27), we proceed,

((∇u)u · ∇φ(x)) = ((T∇u)u · ∇φ(x)) + ((∇u − T∇u)u · ∇φ(x))

= ((T∇u)u · ∇φ(x)) +
1

π(x, t)
((∇π(x, t) ⊗ u − u ⊗ ∇π(x, t))u · ∇φ(x)).

(4.32)

Since,

(4.33) ((T∇u)u · ∇φ(x)) =
∑
k,l

ul
xkulφxk (x) =

1
2

∑
k

(|u |2)xkφxk (x) =
1
2
∇(|u |2) · ∇φ(x),

and

(4.34) ((∇π(x, t) ⊗ u − u ⊗ ∇π(x, t))u · ∇φ(x)) = (∇π(x, t) · ∇φ(x))|u |2 − (u · ∇π(x, t))(u · ∇φ(x)),

we obtain (4.30) by using (4.31), (4.32), (4.33) and (4.34). �

In order to consider u · ∇(D(x) div u) in (4.26), we next reformulate u · ∇ div u.

Lemma 4.12. Let u be defined by (4.1). Then, we obtain,

u · ∇ div u =
1
2

div(∇|u |2) − |∇u |2

+ div
(

1
π(x, t)

(|u |2∇π(x, t) − (u · ∇π(x, t))u)
)

−
1

2π(x, t)
(∇(|u2 |) · ∇π(x, t)) +

1
π(x, t)

((∇u)u · ∇π(x, t)).

(4.35)

Proof. Again, we denote u = (uk)k . Then,

u · ∇ div u =
∑
k,l

uk(ul
xl )xk

=
∑
k,l

(ukul
xk )xl −

∑
k,l

uk
xlu

l
xk

= div((∇u)u) − tr((∇u)2).

(4.36)

Using (4.27), we proceed,

div((∇u)u) = div((T∇u)u) + div((∇u − T∇u)u)

= div((T∇u)u) + div
(

1
π(x, t)

(∇π(x, t) ⊗ u − u ⊗ ∇π(x, t))u
)
,

(4.37)

26



and

tr((∇u)2) = tr(T∇u∇u) + tr((∇u − T∇u)∇u)

= |∇u |2 + tr
(

1
π(x, t)

(∇π(x, t) ⊗ u − u ⊗ ∇π(x, t))∇u
)
.

(4.38)

Since,
(4.39)
(T∇u)u =

1
2
∇(|u |2), (∇π(x, t) ⊗ u)u = |u |2∇π(x, t), (u ⊗ ∇π(x, t))u = (u · ∇π(x, t))u,

and

(4.40) tr((∇π(x, t) ⊗ u)∇u) =
1
2
(∇(|u |2) · ∇π(x, t)), tr((u ⊗ ∇π(x, t))∇u) = ((∇u)u · ∇π(x, t)),

we obtain (4.35), by using (4.36), (4.37), (4.38), (4.39), and (4.40).
�

Now, we are in a position to compute the first term of the right hand side of (4.16).

Lemma 4.13. Let f be a solution of (4.1) and let u be given by (4.1). Then,

2
∫
Ω

D(x)u · ∇ρt f eq dx = 2
∫
Ω

((∇2φ(x))u · u) f dx −
∫
Ω

π(x, t)u · ∇|u |2 f dx + 2
∫
Ω

D(x)|∇u |2 f dx

− 2
∫
Ω

(1 + log ρ)u · ∇D(x) ft dx + 2
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx

−

∫
Ω

(log f − 1)∇|u |2 · ∇D(x) f dx − 2
∫
Ω

u · ∇D(x) div u f dx

− 2
∫
Ω

(log f − 1)
1

π(x, t)
|u |2∇π(x, t) · ∇D(x) f dx

+ 2
∫
Ω

(log f − 1)
1

π(x, t)
(u · ∇π(x, t))(u · ∇D(x)) f dx

+

∫
Ω

D(x)
π(x, t)

((∇|u |2) · ∇π(x, t)) f dx

− 2
∫
Ω

D(x)
π(x, t)

((∇u)u · ∇π(x, t)) f dx,

(4.41)

where f eq is given by (1.10).

Proof. First, we use (4.20) and obtain,

2
∫
Ω

D(x)u · ∇ρt f eq dx

= −2
∫
Ω

π(x, t)|u |2 ft dx − 2
∫
Ω

(1 + log ρ)u · ∇D(x) ft dx + 2
∫
Ω

u · ∇(π(x, t)|u |2) f dx

+ 2
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx + 2
∫
Ω

u · ∇(u · ∇φ(x)) f dx − 2
∫
Ω

u · ∇(D(x) div u) f dx.
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Using (4.18), the first and the third terms of the right-hand side of the above relation are canceled,
hence,

2
∫
Ω

D(x)u · ∇ρt f eq dx

= −2
∫
Ω

(1 + log ρ)u · ∇D(x) ft dx + 2
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx

+ 2
∫
Ω

u · ∇(u · ∇φ(x)) f dx − 2
∫
Ω

u · ∇(D(x) div u) f dx.

(4.42)

Using (4.30) and (4.35) in (4.42), we have that,

2
∫
Ω

D(x)u · ∇ρt f eq dx

= −2
∫
Ω

(1 + log ρ)u · ∇D(x) ft dx + 2
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx

+ 2
∫
Ω

((∇2φ(x))u · u) f dx +
∫
Ω

∇|u |2 · ∇φ(x) f dx

+ 2
∫
Ω

1
π(x, t)

(∇π(x, t) · ∇φ(x))|u |2 f dx − 2
∫
Ω

1
π(x, t)

(u · ∇π(x, t))(u · ∇φ(x)) f dx

−

∫
Ω

D(x) div(∇|u |2) f dx + 2
∫
Ω

D(x)|∇u |2 f dx

− 2
∫
Ω

D(x) div
(

1
π(x, t)

(|u |2∇π(x, t) − (u · ∇π(x, t))u)
)

f dx

+

∫
Ω

D(x)
π(x, t)

(∇(|u |2) · ∇π(x, t)) f dx − 2
∫
Ω

D(x)
π(x, t)

((∇u)u · ∇π(x, t)) f dx

− 2
∫
Ω

u · ∇D(x) div u f dx.

(4.43)

To calculate the 7th term of the right-hand side of (4.43), we apply integration by parts together
with the periodic boundary condition, and, thus obtain,

−

∫
Ω

D(x) div(∇|u |2) f dx =
∫
Ω

D(x)∇|u |2 · ∇ f dx +
∫
Ω

∇|u |2 · ∇D(x) f dx.

Using (4.12) in the above relation, we have that,

−

∫
Ω

D(x) div(∇|u |2) f dx = −
∫
Ω

π(x, t)u · ∇|u |2 f dx −
∫
Ω

∇|u |2 · ∇φ(x) f dx

−

∫
Ω

(log f − 1)∇|u |2 · ∇D(x) f dx.
(4.44)

Next, we compute the 9th term of the right-hand side of (4.43). Applying integration by parts
together with (4.1) and the periodic boundary condition, we have that,

− 2
∫
Ω

D(x) div
(

1
π(x, t)

(|u |2∇π(x, t) − (u · ∇π(x, t))u)
)

f dx

= 2
∫
Ω

D(x)
(

1
π(x, t)

(|u |2∇π(x, t) − (u · ∇π(x, t))u)
)
· ∇ f dx

+ 2
∫
Ω

(
1

π(x, t)
(|u |2∇π(x, t) − (u · ∇π(x, t))u)

)
· ∇D(x) f dx.
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Using (4.12), we obtain,

D(x)
(

1
π(x, t)

(|u |2∇π(x, t) − (u · ∇π(x, t))u)
)
· ∇ f

= −
1

π(x, t)
|u |2(∇π(x, t) · ∇D(x)) f log f −

1
π(x, t)

|u |2(∇π(x, t) · ∇φ(x)) f

+
1

π(x, t)
(u · ∇π(x, t))(u · ∇D(x)) f log f +

1
π(x, t)

(u · ∇π(x, t))(u · ∇φ(x)) f .

Hence, we have,

− 2
∫
Ω

D(x) div
(

1
π(x, t)

(|u |2∇π(x, t) − (u · ∇π(x, t))u)
)

f dx

= 2
∫
Ω

1
π(x, t)

(u · ∇π(x, t))(u · ∇φ(x)) f dx − 2
∫
Ω

1
π(x, t)

|u |2(∇π(x, t) · ∇φ(x)) f dx

− 2
∫
Ω

(log f − 1)
1

π(x, t)
|u |2∇π(x, t) · ∇D(x) f dx

+ 2
∫
Ω

(log f − 1)
1

π(x, t)
(u · ∇π(x, t))(u · ∇D(x)) f dx.

(4.45)

Using (4.44) and (4.45) in (4.43), we obtain the desired result (4.41). �

Next, we further compute in (4.41),

Lemma 4.14. Let u be given by (4.1). Then,∫
Ω

u · ∇ (log f u · ∇D(x)) f dx

=

∫
Ω

π(x, t)
D(x)

|u |2 log f (u · ∇D(x)) f dx +
∫
Ω

1
D(x)

(log f )2 (u · ∇D(x))2 f dx

+

∫
Ω

1
D(x)

log f (u · ∇D(x)) (u · ∇φ(x)) f dx −
∫
Ω

log f (u · ∇D(x)) div u f dx.

(4.46)

Proof. Applying the integration by parts to the left hand side of (4.46) together with the periodic
boundary condition (4.1), we obtain that,

(4.47)
∫
Ω

u · ∇ (log f u · ∇D(x)) f dx = −
∫
Ω

log f (u · ∇D(x)) div( f u) dx.

Using direct computation together with (4.12), we have,

div( f u) = u · ∇ f + f div u

= −
π(x, t)
D(x)

|u |2 f −
1

D(x)
log f (u · ∇D(x)) f −

1
D(x)

(u · ∇φ(x)) f + f div u.
(4.48)

Combining (4.47) and (4.48), we arrive at (4.46). �

Now, combining (4.16), (4.18), (4.41), and (4.46), we obtain the following energy law.
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Proposition 4.15. Let f be a solution of (4.1), and let u be given as in (4.1). Then,

d2F
dt2 [ f ](t) = 2

∫
Ω

((∇2φ(x))u · u) f dx + 2
∫
Ω

D(x)|∇u |2 f dx

−

∫
Ω

(log f − 1)∇|u |2 · ∇D(x) f dx − 2
∫
Ω

(1 + log f )u · ∇D(x) div u f dx

+ 2
∫
Ω

π(x, t)
D(x)

|u |2 log f (u · ∇D(x)) f dx + 2
∫
Ω

1
D(x)

(log f )2 (u · ∇D(x))2 f dx

+ 2
∫
Ω

1
D(x)

log f (u · ∇D(x)) (u · ∇φ(x)) f dx

+

∫
Ω

πt(x, t)|u |2 f dx +
∫
Ω

|u |2u · ∇π(x, t) f dx

− 2
∫
Ω

(log f − 1)
1

π(x, t)
|u |2∇π(x, t) · ∇D(x) f dx

+ 2
∫
Ω

(log f − 1)
1

π(x, t)
(u · ∇π(x, t))(u · ∇D(x)) f dx

+

∫
Ω

D(x)
π(x, t)

((∇|u |2) · ∇π(x, t)) f dx − 2
∫
Ω

D(x)
π(x, t)

((∇u)u · ∇π(x, t)) f dx.

(4.49)

Proof. Since π(x, t)∇|u |2 = ∇(π(x, t)|u |2) − |u |2∇π(x, t), the second term of the right-hand side of
(4.41) becomes,

−

∫
Ω

π(x, t)u · ∇|u |2 f dx = −
∫
Ω

u · ∇(π(x, t)|u |2) f dx +
∫
Ω

|u |2u · ∇π(x, t) f dx.

Using this relation we obtain (4.49). �

We are searching for a sufficient condition to obtain a differential inequality for dF
dt . The 5th and the

9th terms of the right-hand side of (4.49) involve |u |3, the order which is higher than 2. Thus, we will
handle such terms using the Sobolev inequality below. As in the proof of Lemma 3.14 in Section 3,
we have following Sobolev inequality for any periodic vector field v .

Lemma 4.16. Let n = 1, 2, 3. Let f0 be a probability density function, and let f be a solution of (4.1).
Then,

(4.50)
∫
Ω

|v |3 f dx ≤
3C

3
2
16

4

∫
Ω

|∇v |2 f dx +
C

3
2
16
4

(∫
Ω

|v |2 f dx
)3
,

for any periodic vector field v.

Using the Sobolev inequality, we obtain the following energy estimate.

Proposition 4.17. Assume n = 1, 2, 3, let f be a solution of (4.1), and let u be given as in (4.1).
Suppose, that there exists a positive constant λ > 0, such that ∇2φ ≥ λI, where I is the identity matrix.
Then, there are constants, C17, C18 > 0, such that if,

(4.51) ‖∇D‖L∞(Ω) ≤ C17, ‖∇π‖L∞(Ω×[0,∞)) ≤ C18, πt(x, t) ≥ −C19,

then, we have that,

(4.52)
d2F
dt2 [ f ](t) ≥

λ

‖π‖L∞(Ω×[0,∞))

∫
Ω

π(x, t)|u |2 f dx −
2C3

3C3
2

(∫
Ω

π(x, t)|u |2 f dx
)3
.
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Proof. We proceed with calculations of the integrands of the 3rd, 4th, 5th, 7th, 8th, 9th, 10th, 11st,
12nd, and 13rd terms of (4.49). As in the proof of the Proposition 3.15 in Section 3, for any positive
constants ε3, ε4 > 0, we have that,

(4.53) |(log f − 1)∇|u |2 · ∇D(x) f | ≤
1

2ε3
D(x)(| log f | + 1)2 |∇u |2 |∇(log D(x))|2 f + 2ε3D(x)|u |2 f ,

(4.54) |2(1+log f )u ·∇D(x) div u f | ≤
1

2ε4
D(x)(| log f |+1)2 |∇u |2 |∇(log D(x))|2 f +2ε4D(x)|u |2 f ,

and

(4.55)
���� 2
D(x)

log f (u · ∇D(x)) (u · ∇φ(x)) f
���� ≤ 2| log f | |∇(log D(x))| |∇φ(x)| |u |2 f .

We further estimate the 10th, 11th, 12th and 13th terms of the right-hand side of (4.49) using the
Cauchy-Schwarz inequality,����2(log f − 1)

1
π(x, t)

|u |2∇π(x, t) · ∇D(x) f
����

= 2
��D(x)(log f − 1)|u |2∇(log π(x, t)) · ∇(log D(x)) f

��
≤ 2D(x)(| log f | + 1)|∇(log π(x, t))| |∇(log D(x))| |u |2 f ,

(4.56)

����2(log f − 1)
1

π(x, t)
(u · ∇π(x, t))(u · ∇D(x)) f

����
= 2 |D(x)(log f − 1)(u · ∇(log π(x, t)))(u · ∇(log D(x))) f |

≤ 2D(x)(| log f | + 1)|∇(log π(x, t))| |∇(log D(x))| |u |2 f ,

(4.57)

���� D(x)
π(x, t)

((∇|u |2) · ∇π(x, t)) f
���� ≤ 2D(x)|∇u | |u | |∇(log π(x, t))| f

≤
D(x)
2ε5
|∇u |2 |∇(log π(x, t))|2 f + 2ε5D(x)|u |2 f ,

(4.58)

and ����2 D(x)
π(x, t)

((∇u)u · ∇π(x, t)) f
���� ≤ 2D(x)|∇u | |u | |∇(log π(x, t))| f

≤
D(x)
2ε6
|∇u |2 |∇(log π(x, t))|2 f + 2ε6D(x)|u |2 f ,

(4.59)

where, ε5 and ε6 > 0 are positive constants.
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Thus, using all inequalities above in (4.49), we arrive at the estimate for d2F
dt2 [ f ](t),

d2F
dt2 [ f ](t)

≥ 2
∫
Ω

(
(∇2φ(x)u · u) + πt(x, t)|u |2 −

(
(ε3 + ε4 + ε5 + ε6)D(x)

+ 2D(x)(| log f | + 1)|∇(log π(x, t))| |∇(log D(x))| + | log f | |∇(log D(x))| |∇φ(x)|
)
|u |2

)
f dx

+ 2
∫
Ω

(
1 −

1
4

(
1
ε1
+

1
ε2

)
(| log f | + 1)2 |∇(log D(x))|2

−
1
4

(
1
ε5
+

1
ε6

)
|∇(log π(x, t))|2

)
D(x)|∇u |2 f dx

+ 2
∫
Ω

π(x, t)
D(x)

|u |2 log f (u · ∇D(x)) f dx + 2
∫
Ω

1
D(x)

(log f )2 (u · ∇D(x))2 f dx

+

∫
Ω

|u |2u · ∇π(x, t) f dx.

(4.60)

Next, using (4.50), D(x)/C3 ≥ 1, and π(x, t)/C2 ≥ 1, we compute,����2 ∫
Ω

π(x, t)
D(x)

|u |2 log f (u · ∇D(x)) f dx
����

≤ 2‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

∫
Ω

|u |3 f dx

≤
3C

3
2
16

2
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

∫
Ω

|∇u |2 f dx

+
C

3
2
16
2
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

(∫
Ω

|u |2 f dx
)3

≤
3C

3
2
16

2C3
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

∫
Ω

D(x)|∇u |2 f dx

+
C

3
2
16

2C3
2
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

(∫
Ω

π(x, t)|u |2 f dx
)3
.

(4.61)

Next, again using (4.50) and D(x)/C3 ≥ 1, we estimate,����∫
Ω

|u |2u · ∇π(x, t) f dx
����

≤ ‖∇π‖L∞(Ω×[0,∞))

∫
Ω

|u |3 f dx

≤
3C

3
2
16

4
‖∇π‖L∞(Ω×[0,∞))

∫
Ω

|∇u |2 f dx +
C

3
2
16
4
‖∇π‖L∞(Ω×[0,∞))

(∫
Ω

|u |2 f dx
)3

≤
3C

3
2
16

4C3
‖∇π‖L∞(Ω×[0,∞))

∫
Ω

D(x)|∇u |2 f dx +
C

3
2
16

4C3
2
‖∇π‖L∞(Ω×[0,∞))

(∫
Ω

π(x, t)|u |2 f dx
)3
.

(4.62)
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Therefore, using (4.60), (4.61), and (4.62), we obtain that,

d2F
dt2 [ f ](t)

≥ 2
∫
Ω

(
(∇2φ(x)u · u) + πt(x, t)|u |2 −

(
(ε3 + ε4 + ε5 + ε6)D(x)

− 2D(x)(| log f | + 1)|∇(log π(x, t))| |∇(log D(x))| − | log f | |∇(log D(x))| |∇φ(x)|
)
|u |2

)
f dx

+ 2
∫
Ω

(
1 −

1
4

(
1
ε1
+

1
ε2

)
(| log f | + 1)2 |∇(log D(x))|2

−
1
4

(
1
ε5
+

1
ε6

)
|∇(log π(x, t))|2

)
D(x)|∇u |2 f dx

−
3C

3
2
16

2C3
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

∫
Ω

D(x)|∇u |2 f dx

−
3C

3
2
16

4C3
‖∇π‖L∞(Ω×[0,∞))

∫
Ω

D(x)|∇u |2 f dx

−
C

3
2
16

2C3
2
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

(∫
Ω

π(x, t)|u |2 f dx
)3

−
C

3
2
16

4C3
2
‖∇π‖L∞(Ω×[0,∞))

(∫
Ω

π(x, t)|u |2 f dx
)3
.

(4.63)

Due to the maximum principle, Proposition 1.6, there is a positive constant C22 > 0 which depends
only on f0, f eq, and D, such that, | log f (x, t)| ≤ C22 for x ∈ Ω and t > 0. If we further assume
that, ‖∇D‖L∞(Ω) ≤ C17, ‖∇π‖L∞(Ω×[0,∞)) ≤ C18 and πt(x, t) ≥ −C19, then |∇ log D(x, t)| ≤ C17/C3 and
|∇ log π(x, t)| ≤ C18/C2. Hence, we have the following estimate,

− πt(x, t) + (ε3 + ε4 + ε5 + ε6)D(x)
+ 2D(x)(| log f | + 1)|∇(log π(x, t))| |∇(log D(x))| + | log f | |∇(log D(x))| |∇φ(x)|

≤ C19 + (ε3 + ε4 + ε5 + ε6)‖D‖L∞(Ω) +
2C17C18

C2C3
(C22 + 1)‖D‖L∞(Ω) +

C17C22
C3

‖∇φ‖L∞(Ω),

(4.64)

and

1
4

(
1
ε1
+

1
ε2

)
(| log f | + 1)2 |∇(log D(x))|2 +

1
4

(
1
ε5
+

1
ε6

)
|∇(log π(x, t))|2

+
3C

3
2
16

4C3
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω) +

3C
3
2
16

8C3
‖∇π‖L∞(Ω×[0,∞))

≤
1
4

(
1
ε1
+

1
ε2

)
(C22 + 1)2

C2
17

C2
3
+

1
4

(
1
ε5
+

1
ε6

) C2
18

C2
2
+

3C
3
2
16C17C22

4C2
3

‖π‖L∞(Ω×[0,∞)) +
3C

3
2
16C18

8C3
.

(4.65)
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Therefore, first take small positive constants, ε3, ε4, ε5 and ε6. Next, take sufficiently small positive
constants, C17,C18 and C19, such that,

(4.66) − πt(x, t) + (ε3 + ε4 + ε5 + ε6)D(x)

+ 2D(x)(| log f | + 1)|∇(log π(x, t))| |∇(log D(x))| + | log f | |∇(log D(x))| |∇φ(x)| ≤
λ

2
,

and

(4.67)
1
4

(
1
ε1
+

1
ε2

)
(| log f | + 1)2 |∇(log D(x))|2 +

1
4

(
1
ε5
+

1
ε6

)
|∇(log π(x, t))|2

+
3C

3
2
16

4C3
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω) +

3C
3
2
16

8C3
‖∇π‖L∞(Ω×[0,∞)) ≤ 1.

Note that, 3C
3
2
16

4C3
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω) +

3C
3
2
16

8C3
‖∇π‖L∞(Ω×[0,∞)) ≤ 1, thus we

have the estimate,

(4.68) −
C

3
2
16

2C3
2
‖ log f ‖L∞(Ω×[0,∞))‖π‖L∞(Ω×[0,∞))‖∇ log D‖L∞(Ω)

(∫
Ω

π(x, t)|u |2 f dx
)3

−
C

3
2
16

4C3
2
‖∇π‖L∞(Ω×[0,∞))

(∫
Ω

π(x, t)|u |2 f dx
)3
≥ −

2C3

3C3
2

(∫
Ω

π(x, t)|u |2 f dx
)3
.

Note that, π(x, t)/‖π‖L∞(Ω×[0,∞)) ≤ 1 hence∫
Ω

|u |2 f dx ≥
1

‖π‖L∞(Ω×[0,∞))

∫
Ω

π(x, t)|u |2 f dx.

Combining the estimates (4.66), (4.67), (4.68), and (4.63), we obtain the desired bound (4.52) on
d2F
dt2 [ f ](t). �

Therefore, the energy estimate (4.52) takes the form,

(4.69)
d2F
dt2 [ f ](t) ≥ −

λ

‖π‖L∞(Ω×[0,∞))

dF
dt
[ f ](t) +

2C3

3C3
2

(
dF
dt
[ f ](t)

)3
.

Finally, we are in the position to show the main result of this Section, Theorem 4.2.

Proof of Theorem 4.2. From the differential inequality (4.69) and (4.4), we obtain that,

(4.70)
d
dt

(∫
Ω

π(x, t)|u |2 f dx
)
≤ −

λ

‖π‖L∞(Ω×[0,∞))

∫
Ω

π(x, t)|u |2 f dx +
2C3

3C3
2

(∫
Ω

π(x, t)|u |2 f dx
)3
.

Utilizing the same argument as in the proof of the Theorem 3.2, using similar version of the Gronwall’s
inequality as in the Section 3, we can show that there exists positive constants C20, C21 > 0, such that,
if

∫
Ω
π(x, t)|u |2 f dx |t=0 ≤ C20, namely,

∫
Ω

1
π(x,0) |∇(D(x) log f0 + φ(x))|2 f0 dx ≤ C20, then, we derive

(4.9), that is, for t > 0, ∫
Ω

π(x, t)|u |2 f dx ≤ C21e−λ̃t,

where λ̃ = λ/‖π‖L∞(Ω×[0,∞)). �
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5. Conclusion and Numerical Insights

In this work, we studied several nonlinear Fokker-Planck type equations with inhomogeneous
diffusion and with variable mobility parameters. These systems appear as a part of grain growth
modeling in polycrystalline materials. Such models satisfy energy laws and exhibit special energetic
variational structures as described in the previous sections.

Followed our earlier work on the local existence and uniqueness of the solution of the Fokker-Planck
system in [23], here, we investigated the large time asymptotic analysis, as well as numerical simula-
tions of these nonstandard Fokker-Planck systems. In particular, we reformulated and generalized the
classical entropy method to the nonlinear Fokker-Planck systems with inhomogeneous diffusion and
with variable mobility parameters (note, the classical entropy method has been previously developed
only for the study of the homogeneous linear Fokker-Planck equations). Due to the limitations of the
existing analytical techniques, our theory has been derived under assumption of the convex potential
and the periodic boundary conditions. However, our numerical tests presented below seem to indicate
that the developed theoretical results could be extended to a more general class of models, in particular,
to systems with the non-convex potential and with no-flux boundary conditions. In addition, the global
existence of solutions under various physically relevant boundary conditions was not addressed yet.
These important points will be part of our future research and will require the design of very different
analytical methods. We will also further extend the study of such Fokker-Planck equations to the
systems in higher dimensions than those studied in the current paper. This is especially relevant to the
modeling of the evolution of the grain boundary network that undergoes disappearance/critical events,
e.g. [22, 8].

As we discussed, in this paper, we seek to show exponential decay of the free energy (1.7). However,
because of the nonlinearity, in the inhomogeneous diffusion D case, we have only shown the weaker
result of dF

dt [ f ](t) = −Ddis[ f ](t) converges to 0 exponentially, as opposed to the stronger conclusions
of exponential convergence of free energy F[ f ] (or the solution f itself) such as in Appendix A for the
linear Cauchy problem, (see the discussion in Remark 3.3, for example). We also restrict analysis to
the periodic boundary condition. However, in applications it is also common to consider the natural,
no-flux boundary condition. We would like to show that, numerically, we indeed observe exponential
decay of the free energy, even in the more general case of inhomogeneous diffusion D, as well as
variable mobility π, as in Section 4. Moreover, there is no significant difference in the exponential
decay rates of the free energy, when the periodic boundary condition is changed to the no-flux boundary
condition, numerically. We also note that in the numerical experiments we can impose much more
relaxed conditions in the parameters than those in our main Theorem 4.2, while observing stronger,
more robust conclusions of the exponential decay than shown in the current theorems.

The numerical experiments are set up as follows. Consider the domain Ω = [−1, 1]n in n = 1, 2, 3
space dimensions. We use a uniform grid onΩ of size N in each space dimension, and a uniform time
grid of size Nt (with a total of Ntot = Nn × Nt grid points). We use a first-order accurate finite-volume
scheme in space, with upwind numerical fluxes and discrete gradients; the time discretization is done
using backward Euler method. In the numerical results, the free energy (1.7) is measured discretely
using the cell-average values from the scheme.

To be consistent with the theoretical assumptions, we set the parameters to be smooth, bounded,
and periodic in space. In n = 1 dimension, set the potential to be,

(5.1) φ(x) = 1 +
1
4

sin2 kpπ

2
x.

Note that φ′′(x) = (kpπ)
2

8 cos kpπx, so (5.1) is in general not convex on [−1, 1], and in particular
does not satisfy the strict convexity condition of Theorems 2.1, 3.2 and 4.2. For example, we choose
kp = 2, and the potential (5.1) is plotted in Figure 1, top left. We will present here numerical results
for non-convex potentials, since we do not observe numerically any dependence on the convexity of φ
(we also conducted numerical tests with the convex potential φ, and obtained a very similar results to
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the results presented below). Define a parameter γ as,

(5.2) γ(x, t) = (1 + cos2 πx)(1 +
1
2

sin 10t),

and set the mobility

(5.3) π(x, t) =
1

γ(x, t)
,

as plotted in Figure 1, top right. Note that (5.3) is smooth and bounded, strongly positive, and both πx
and πt are bounded. In particular, the mobility (5.3) satisfies the conditions of Propositions 1.5 and
1.6. In the homogeneous case set the diffusion coefficient D = 1, whereas in the inhomogeneous case
we consider,

(5.4) D(x) = D1(x) ≡ 1 −
1
2

sin2 2πx =
1
4
(3 + cos 4πx),

as plotted in Figure 1, bottom left. The function (5.4) is smooth and bounded, strongly positive, and
D′ is also bounded. In particular, (5.4) satisfies the conditions of Propositions 1.5 and 1.6. Note that
D1 (5.4) only contains a single mode of frequency. Thus, for a more general and interesting results,
we further consider a positive, smooth, even, periodic function,

(5.5) D(x) = DM(x) ≡ 1 +
M∑

m=1
An(cos

mπx
2
+ 1),

where Am ≥ 0 is the coefficient of each mode of frequency. For instance, if we select M = N/2 = 100,
where N = 200 is the size of the grid in space, and the coefficients Am = 0.01 for m = 1, · · · , M,
then the function D is plotted in Figure 1, bottom right. Note that the resulting DM is much more
oscillatory, and its gradient D′ is generally not bounded by some given constant; that is, the initial
condition of Theorem 3.2 or 4.2 is generally not satisfied. Finally, for simplicity, set the Gaussian
initial condition

(5.6) f (x, 0) = f0(x) =
1

√
2πσ2

e−
x2

2σ2 , σ2 = 0.01.

Note that f0 is very close to 0 near the boundaries, and does not satisfy the strong positivity condition
of Proposition 1.6, and in turn that of Lemmas 3.1 and 4.1. Also, since (5.6) is defined independent
of the parameters φ, π and D, Ddis[ f0] is generally not bounded by some given constant; that is, the
condition in (3.7) or (4.7) of Theorem 3.2 or 4.2 is generally not satisfied.

In higher n = 2, 3 dimensions, the parameters φ, γ, f0 are set to be the “tensor-products" in x of
their respective one-dimensional counterparts. In n = 2 dimensions, take the potential,

(5.7) φ(x, y) = (1 +
1
4

sin2 k x
pπ

2
x)(1 +

1
4

sin2 k ypπ
2
y),

and, in particular, we choose k x
p = 1, k yp = 2; and the mobility π(x, y, t) = 1/γ(x, y, t), where,

(5.8) γ(x, y, t) = (1 + cos2 πx)(1 + cos2 2πy)(1 +
1
2

sin 10t).

Similarly, in n = 3 dimensions,

(5.9) φ(x, y, z) = (1 +
1
4

sin2 k x
pπ

2
x)(1 +

1
4

sin2 k ypπ
2
y)(1 +

1
4

sin2 k z
pπ

2
z),

and in particular we choose k x
p = 1, k yp = 2, k z

p = 3; and π(x, y, z, t) = 1/γ(x, y, z, t), where,

(5.10) γ(x, y, z, t) = (1 + cos2 πx)(1 + cos2 2πy)(1 + cos2 3πz)(1 +
1
2

sin 10t).
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We extend the single-mode inhomogeneous diffusion coefficient D1 (5.4) in the same way. In two
dimensions, consider the separable,

(5.11) D1(x, y) ≡ (1 −
1
2

sin2 πx)(1 −
1
2

sin2 3πy),

and similarly in three dimensions,

(5.12) D1(x, y, z) ≡ (1 −
1
2

sin2 πx)(1 −
1
2

sin2 3πy)(1 −
1
2

sin2 4πz).

To extend the multi-mode diffusion coefficient DM (5.5), consider, in two dimensions, the more
interesting non-separable function,

(5.13) DM1M2(x, y) ≡ 1 +
M1∑

m1=1

M2∑
m2=1

Am1m2 (cos
m1πx

2
cos

m2πy

2
+ 1),

where Am1m2 ≥ 0 is the coefficient of each frequency. In particular, we can choose M1 = N/2, M2 =
N/4, and Am1m2 = 0.01 if m1 < m2, and 0 otherwise. The resulting function DM is plotted in Figure 2,
for (M1, M2) = (20, 10) for N = 40 and (M1, M2) = (40, 20) for N = 80, respectively. Similarly, in
three dimensions, consider

(5.14) DM1M2M3(x, y, z) ≡ 1 +
M1∑

m1=1

M1∑
m2=1

M1∑
m3=1

Am1m2m3 (cos
m1πx

2
cos

m2πy

2
cos

m3πz
2
+ 1),

where Am1m2m3 ≥ 0. In particular, for N = 20, we can choose M1 = N/2 = 10, M2 = N/2 − 2 = 8
M3 = 4, and Am1m2m3 = 0.01 if m1 ≥ m2 ≥ m3, and 0 otherwise.
The numerical decays of free energy are presented in Figure 3, Figure 5 and Figure 7, for one, two,

and three dimensions, respectively. We can draw several important observations from the numerical
results:

• For both the homogeneous D = 1 (linear) and the inhomogeneous D(x) (nonlinear) cases, the
free energy decays exponentially with either periodic or no-flux boundary condition, until the
numerical results hit round-off errors.
• We can observe some discrepancy in the exponential decay rates of the free energy between
periodic and no-flux boundary conditions, but this is due to numerical errors, as seen to be
greatly reduced when the mesh is refined (for example, from Figure 4 to Figure 5 in two
dimensions, and from Figure 6 to Figure 7 in three dimensions).
• As with the theoretical results, the exponential decay of the free energy is observed in all tested
space dimensions n = 1, 2, 3.
• The numerical results do not seem to rely on the restricted conditions on the parameters as
given in the main Theorems 2.1, 3.2 and 4.2, such as the convexity of the potential φ, the strong
positivity of the initial condition f0, and the restricted bound on the gradient of the diffusion
coefficient ∇D.
• In particular, we compare the homogeneous diffusion coefficient D = 1, the single-mode D1,
and the multi-mode DM . The numerical free energy decays exponentially fast regardless of
how oscillatory D is. We observe that the free energy decays slower in the D1 case than D = 1,
while much faster in the DM case (as expected due to the magnitude of D in each case).

Appendix A. The Cauchy problem for linear homogeneous Fokker-Planck equation

In this appendix, as noticed in Remark 2.10, we will reformulate the entropy dissipation method
[34] for the Cauchy problem of the linear homogeneous Fokker-Planck equation in the framework of
the general diffusion, in particular, the velocity field u.
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Figure 1. Periodic parameters in one dimension on Ω = [−1, 1]. Top left: potential
φ(x) (5.1) with kp = 2. Top right: mobility π(x, t) (5.3), t ∈ [0, 0.5]. Bottom:
inhomogeneous diffusion coefficient D(x); left: single-mode D1(x) (5.4); right: multi-
mode DM(x) (5.5) with M = 100 modes of oscillation, and Am = 0.01.

Figure 2. Multi-mode inhomogeneous diffusion coefficient DM1, M2(x, y) (5.13), with
(M1, M2) modes of oscillation, and Am1m2 = 10−2 if m1 < m2, and 0 otherwise. Left:
(M1, M2) = (20, 10); right: (M1, M2) = (40, 20).

Here, we consider the following problem,

(A.1)


∂ f
∂t
+ div ( f u) = 0, x ∈ Rn, t > 0,

u = −∇ (D log f + φ(x)) , x ∈ Rn, t > 0,
f (x, 0) = f0(x), x ∈ Rn,38



Figure 3. Exponential decay of free energy (FE), in one dimension, comparing no-
flux (red) against periodic (black) boundary condition. Top: inhomogeneous D(x);
left: single-mode D1 (5.4) (Figure 1, bottom left); right: multi-mode DM (5.5), with
M = N/2 = 100, Am = 0.01 (Figure 1, bottom right). Bottom left: homogeneous
D = 1. Bottom right: direct comparison of the exponential decay rates. (Ntot ≈
200 × 50.)

where D > 0 is a positive constant and φ = φ(x) is a smooth function on Rn. The free energy F and
the energy law (A.1) take the form,

(A.2) F[ f ] :=
∫
Rn
(D f (log f − 1) + f φ(x)) dx,

and

(A.3)
dF
dt
[ f ](t) = −

∫
Rn
|u |2 f dx := −Ddis[ f ](t).

Following the same argument from Section 2, as stated in Proposition 2.9 and Theorem 2.1, we can
obtain the following assertion.

Proposition A.1. Let f be a solution of (A.1) and let u be defined in (A.1). Then,

(A.4)
d2F
dt2 [ f ](t) = 2

∫
Rn
((∇2φ(x))u · u) f dx + 2

∫
Rn

D |∇u |2 f dx.

Proposition A.2. Let φ = φ(x) be a function onRn, and let f0 = f0(x) be a probability density function
on Rn, satisfying F[ f0] < ∞ and Ddis[ f0] < ∞, where F and Ddis[ f0] are defined by (A.2) and (A.3).
Let f be a solution of (A.1). Let u be defined as in (A.1). Assume further that there is a positive
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Figure 4. Exponential decay of free energy (FE), in two dimensions, comparing no-
flux (red) against periodic (black) boundary condition. Top: inhomogeneous D(x);
left: single-mode D1 (5.11); right: multi-mode DM1, M2 (5.13) with (M1, M2) =
(20, 10), Am1m2 = 0.01 if m1 < m2, and 0 otherwise (Figure 2, left). Bottom left:
homogeneous D = 1. Bottom right: direct comparison of the exponential decay rates.
(Ntot ≈ 402 × 10.)

constant λ > 0, such that ∇2φ ≥ λI, where I is the identity matrix. Then, the following is true,

(A.5)
∫
Rn
|u |2 f dx ≤ e−2λt

∫
Rn
|∇ (D log f0 + φ(x)) |2 f0 dx.

In particular, we have that,

(A.6)
dF
dt
[ f ](t) = −

∫
Rn
|u |2 f dx → 0, as t →∞.

Again as we note in Remark 2.10, from this proposition A.2, we can obtain the exponential decay
of dF

dt [ f ](t) =: −Ddis[ f ](t), but not necessarily the long-time asymptotic behavior of the free energy
F[ f ](t) or the solution f (t). The next theorem A.3 gives a stronger convergence result, namely,
exponential convergence of f to f eq in the L1 space as t →∞.

Theorem A.3. Let φ = φ(x) be a function on Rn, and f0 = f0(x) be a probability density function on
Rn. Assume that f is a solution of (A.1), u is defined as in (A.1), and there is a positive constant
λ > 0, such that, ∇2φ ≥ λI, where I is the identity matrix. Further, assume that F[ f0] < ∞ and
Ddis[ f0] < ∞, where F and Ddis[ f0] are defined by (A.2) and (A.3). Then, any smooth solution of
(A.1) converges exponentially fast to the equilibrium state, that is, there is a positive constant C23 > 0
which depends only on D, F[ f eq] and F[ f0] such that,
(A.7) ‖ f − f eq‖L1(Rn) ≤ C23e−λt, t > 0.
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Figure 5. Exponential decay of free energy (FE), in two dimensions, comparing no-
flux (red) against periodic (black) boundary condition. Top: inhomogeneous D(x);
left: single-mode D1 (5.11); right: multi-mode DM1, M2 (5.13) with (M1, M2) =
(40, 20), Am1m2 = 0.01 if m1 < m2, and 0 otherwise (Figure 2, right). Bottom left:
homogeneous D = 1. Bottom right: direct comparison of the exponential decay rates.
(Ntot ≈ 802 × 20.)

Key ideas to show Theorem A.3 are two inequalities. One is the Gross logarithmic Sobolev
inequality [31]. The logarithmic Sobolev inequality and (A.6) deduce the convergence of F[ f ](t)
to F[ f eq] as t → ∞. Using ∇2φ ≥ λI and Proposition A.1, we can show that the relative entropy
convergences exponentially fast, F[ f ](t) converges exponentially to F[ f eq], as t →∞. The other key
inequality is the classical Csiszár-Kullback-Pinsker inequality [34] which connects L1 convergence of
f to f eq and the relative entropy convergence. Thus, we obtain the exponential convergence of f in
L1 spaces.
Now, we show that F[ f ](t) converges to F[ f eq] as t → ∞. The following Gross logarithmic

Sobolev inequality,

(A.8)
∫
Rn
g2 log

(
g2∫

Rn
g2 dµ

)
dµ ≤ 2

∫
Rn
|∇g |2 dµ,

helps to show that the relative entropy F[ f ](t) − F[ f eq] → 0 as t → ∞, where dµ = f eq dx and
g ∈ H1(dµ), (see [31]).

Lemma A.4. Assume, that there is a positive constant λ > 0 such that ∇2φ ≥ λI, where I is the
identity matirx. Let f be a solution of (A.1). Then,

(A.9) F[ f ](t) → F[ f eq], as t →∞.
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Figure 6. Exponential decay of free energy (FE), in three dimensions, comparing
no-flux (red) against periodic (black) boundary condition. Top: inhomogeneous
D(x); left: single-mode (5.12); right: multi-mode (5.14) with (M1, M2, M3) =
(5, 3, 4), Am1m2m3 = 0.04 if m1 ≥ m2 ≥ m3, and 0 otherwise. Bottom left: ho-
mogeneous D = 1. Bottom right: direct comparison of the exponential decay rates.
(Ntot ≈ 103 × 5.)

Proof. From (A.3), F[ f ](t) is monotone decreasing, so we can give the estimate of F[ f ](t) − F[ f eq].
By direct calculation of F[ f ](t) − F[ f eq] together with D log f eq + φ = C1, (1.10), we obtain that,

F[ f ](t) − F[ f eq] =

∫
Rn
(D f log f − D f + f φ + D f eq − C1 f eq) dx.

Using φ = C1 − D log f eq and
∫
Rn

f dx =
∫
Rn

f eq dx = 1, we have that,

(A.10) F[ f ](t) − F[ f eq] =

∫
Rn

D( f log f − f log f eq) dx.

Recall that ρ = f / f eq and,

F[ f ](t) − F[ f eq] = D
∫
Rn
ρ log ρ f eq dx.

Since s log s is a convex function on s > 0, we can apply the Jensen’s inequality [38] and (1.6) to have,∫
Rn
ρ log ρ f eq dx ≥

(∫
Rn
ρ f eq dx

)
log

(∫
Rn
ρ f eq dx

)
≥ 0,

hence f [ f ](t) − F[ f eq] ≥ 0.
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Figure 7. Exponential decay of free energy (FE), in three dimensions, comparing
no-flux (red) against periodic (black) boundary condition. Top: inhomogeneous
D(x); left: single-mode (5.12); right: multi-mode (5.14) with (M1, M2, M3) =
(10, 8, 4), Am1m2m3 = 0.01 if m1 ≥ m2 ≥ m3, and 0 otherwise. Bottom left: ho-
mogeneous D = 1. Bottom right: direct comparison of the exponential decay rates.
(Ntot ≈ 203 × 10.)

Put g = √ρ to (A.8), where ρ = f / f eq. Since
∫
Rn
ρ dµ =

∫
Rn

f dx = 1, we have,

(A.11)
∫
Rn
ρ log ρ f eq dx ≤ 2

∫
Rn
|∇
√
ρ|2 f eq dx.

Using ρ log ρ f eq = f log f − f log f eq, (A.10), and (A.11), we obtain that,

(A.12) F[ f ](t) − F[ f eq] ≤ 2D
∫
Rn
|∇
√
ρ|2 f eq dx.

By direct calculation of |u |2 f and |∇√ρ|2 f eq, we obtain,

|u |2 f = |∇(D log ρ)|2 f = D2 |∇ρ|
2

ρ2 f ,

and

|∇
√
ρ|2 f eq =

����12 ρ− 1
2∇ρ

����2 f eq =
1
4
|∇ρ|2

ρ
f eq =

1
4
|∇ρ|2

ρ2 f =
1

4D2 |u |
2 f .

Hence, we have,

(A.13) 2D
∫
Rn
|∇
√
ρ|2 f eq dx =

1
2D

∫
Rn
|u |2 f dx.

Combining (A.12), (A.13), and (A.6), we have F[ f ](t) → F[ f eq] as t →∞. �
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Note that, in the proof of Lemma A.4, we obtain due to (A.10) that,

(A.14) F[ f ](t) − F[ f eq] =

∫
Rn

D( f log f − f log f eq) dx.

We next derive exponential decay of the relative entropy F[ f ](t) − F[ f eq].

Lemma A.5. Assume, that there is a positive constant λ > 0 such that ∇2φ ≥ λI, where I is the
identity matirx and F[ f0] < 0. Let f be a solution of (A.1). Then, we obtain for t > 0,

(A.15) (F[ f ](t) − F[ f eq]) ≤ e−2λt(F[ f0] − F[ f eq]).

Proof. First, from (A.3) and (A.4), due to the convexity assumption ∇2φ(x) ≥ λ, we have that,

d2F
dt2 [ f ](t) ≥ 2λ

∫
Rn
|u |2 f dx = −2λ

dF
dt
[ f ](t).

Integrating on [t, s], we obtain,
dF
dt
[ f ](s) −

dF
dt
[ f ](t) ≥ 2λ(F[ f ](t) − F[ f ](s)).

Taking s→∞ together with (A.6), (A.9), and d
dt F[ f eq] = 0, we arrive at,

(A.16)
d
dt
(F[ f ](t) − F[ f eq]) ≤ −2λ(F[ f ](t) − F[ f eq]).

Using the Gronwall’s inequality in (A.16) and F[ f0] < ∞, we obtain the result (A.15). �

Next, we state the classical Csiszár-Kullback-Pinsker inequality, in order to combine L1 norm and
the relative entropy F[ f ](t) − F[ f eq].

Proposition A.6 (Classical Csiszár-Kullback-Pinsker inequality [34]). Let Ω ⊂ Rn be a domain, let
f , g ∈ L1(Ω) satisfy f ≥ 0, g > 0, and

∫
Ω

f dx =
∫
Ω
g dx = 1. Then,

(A.17) ‖ f − g‖2L1(Ω)
≤ 2

∫
Ω

( f log f − f log g) dx.

Using the classical Csiszár-Kullback-Pinsker inequality, we show Theorem A.3.

Proof of Theorem A.3. Combining (A.14) and (A.15), we have that,

(A.18)
∫
Rn
( f log f − f log f eq) dx =

1
D
(F[ f ](t) − F[ f eq]) ≤

1
D
(F[ f0] − F[ f eq])e−2λt .

Combining (A.18) and the classical Csiszár-Kullback-Pinsker inequality (A.17), we have,

‖ f − f eq‖2L1(Rn)
≤

2
D
(F[ f0] − F[ f eq])e−2λt,

Hence, we obtain (A.7) by selecting C23 =
√

2
D (F[ f0] − F[ f eq]). �

Remark A.7. The strict convexity for φ is essential for the entropy dissipation method. On the other
hand, if φ is not strictly convex, we can proceed to study the long-time asymptotic behavior in the
weighted L2 space L2(Ω, eφ/D dx) [2, 22]. Using the result of the asymptotics in the weighted L2 space,
we may show Lemma A.4 and Lemma A.5 without using the Gross logarithmic Sobolev inequality.
Furthermore, it is known that the logarithmic Sobolev inequality can be deduced from the differential
inequality (A.16) of the relative entropy [34], Thus, there is a close relationship among the long-time
asymptotics in the weighted L2 space, the logarithmic Sobolev inequality, the differential inequality
(A.16) and the exponential decay for the relative entropy (A.15).
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