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Abstract. We consider here a recently developed upwind-difference potentials method for

chemotaxis models [8]. The introduced scheme can be used to approximate problems in com-

plex geometries. The chemotaxis model under consideration is described by a system of two

nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-

diffusion equation for the chemoattractant concentration.

Chemotaxis is an important process in many medical and biological applications, such as

bacteria/cell aggregation and pattern formation mechanisms. Modeling of real biomedical

problems often has to deal with the complex structure of computational domains.

The upwind-difference potentials method proposed in [8] handles complex domains with the

use of only Cartesian meshes, and can be easily employed with fast Poisson solvers. Here,

in several numerical tests applied to the simplified Patlak-Keller-Segel model with ’parabolic-

elliptic’ coupling, we further demonstrate the robustness of the scheme.
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1 INTRODUCTION

We consider here one of the most common formulations of the classical Patlak-Keller-Segel
system [6]:
Simplified model with the “parabolic-elliptic” coupling (obtained in the assumption that con-
centration c changes over much smaller time scales), which can be written in the dimensionless
form as well �

ρt +∇ · (χρ∇c) = ∆ρ,

∆c− c+ ρ = 0,
(x, y) ∈ Ω, t > 0, (1)

subject to the Neumann boundary conditions:

∇ρ · n = ∇c · n = 0, (x, y) ∈ ∂Ω. (2)

Here, ρ(x, y, t) is the cell density, c(x, y, t) is the chemoattractant concentration, χ is a
chemotactic sensitivity constant, Ω is a bounded domain in R2, ∂Ω is its boundary, and n is
a unit normal vector.
Chemotaxis is the process by which cellular motion occurs in response to an external stim-
ulus, usually a chemical one. It is an important mechanism in many medical and biological
applications, including bacteria/cell aggregation and pattern formation mechanisms, as well as
tumor growth. Chemotaxis models are usually highly nonlinear due to the density dependent
cross diffusion term (attracting force) that models chemotactic behavior, and hence any realis-
tic chemotaxis model is too difficult to solve analytically. Therefore, development of accurate
and efficient numerical methods is crucial for the modeling and analysis of chemotaxis sys-
tems. Furthermore, a common property of all existing chemotaxis systems is their ability to
model a concentration phenomenon that mathematically results in rapid growth of solutions in
small neighborhoods of concentration points/curves. The solutions may blow up or may exhibit
a very singular, spiky behavior. This blow-up represents a mathematical description of a cell
concentration phenomenon that occurs in real biological systems, see, e.g., [1, 2, 3, 4, 7, 11].

There exists an extensive literature about chemotaxis models, their mathematical analysis
and numerical approximation. A detailed overview can be found for example in [8].

While modeling real biomedical problems, one often has to deal with the complex structure
of the computational domains. Thus, there is a need for accurate, fast, and computationally effi-
cient numerical methods for different chemotaxis models that can handle arbitrary geometries.
In this work we consider and test further the upwind-difference potentials method [8] which
can handle complex geometry without the use of unstructured meshes (with the consideration
of only Cartesian grids) and that can be employed with fast Poisson solvers. This method
combines the simplicity of the positivity-preserving upwind scheme for chemotaxis models on
Cartesian meshes [5] with the flexibility of the Difference Potentials method [13].

The paper is organized as follows. First, in Section 2 we give a brief overview of the upwind-
difference potentials method and steps of the algorithm. Secondly, we illustrate the performance
of the proposed scheme for simplified Patlak-Keller-Segel model in several numerical experi-
ments in Section 3. Some concluding remarks are given in Section 4.

2 OVERVIEW OF THE SECOND ORDER UPWIND-DIFFERENCE POTENTIALS
METHOD FOR 2D CHEMOTAXIS MODELS

In this section, we will review the main ideas of the second-order upwind-difference poten-
tials method [8]. The scheme is based on:

• Second order positivity preserving upwind method on Cartesian meshes [5, 8]
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• and Difference Potentials Method (DPM) [12, 13]

2.1 Positivity preserving upwind scheme on cartesian mesh - a brief overview

We assume here that we consider the Patlak-Keller-Segel system (1) in a square domain
D ⊂ R2.
Let us introduce a Cartesian mesh for domain D consisting of the uniform cells Dj,k :=
[xj− 1

2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
] of the size ∆x∆y centered at the point (xj := j∆x, yk := k∆y).

Let us also define a five-point stencil Nj,k with center placed at (xj, yk) to be the set of the
following points: Nj,k := {(xj, yk), (xj±1, yk), (xj, yk±1)}.

The fully discrete positivity preserving upwind scheme for the Patlak-Keller-Segel system
(1) is given below:

�
∆j,kρ̄

i+1 −mρ̄
i+1
j,k = g

ρ
j,k, (xj, yk) ∈ M,

∆j,kc
i+1 − c

i+1
j,k = g

c
j,k, (xj, yk) ∈ M,

(3)

where the unknowns for which we will be solving at the time level ti+1 are (ρ̄i+1
, c

i+1).
The computed quantities are the cell averages of the density ρ, ρ̄j,k(t) ≈ 1

∆x∆y

� �
D0

j,k
ρ(x, y, t)∆x∆y

and the point values cj,k(t) ≈ c(xj, yk, t). Here, we denote ρ̄
i
j,k is the computed ρ̄j,k(ti) at the

discrete time level ti := i∆t with time step ∆t and c
i
j,k is the computed cj,k(ti).

∆j,k denotes the discrete Laplacian obtained using second order central difference formulas
for the x and y variables and m := 1

∆t .
The right-hand side for the density equation is evaluated at the previous time level ti and will
be denoted by g

ρ
j,k for the brevity of the exposition:

g
ρ
j,k := −mρ̄

i
j,k +

H
x
j+ 1

2 ,k
−H

x
j− 1

2 ,k

∆x
+

H
y
j,k+ 1

2

−H
y
j,k− 1

2

∆y
. (4)

Here,

H
x
j+ 1

2 ,k
= χρ

i
j+ 1

2 ,k

�cij+1,k − c
i
j,k

∆x

�
, H

y
j,k+ 1

2

= χρ
i
j,k+ 1

2

�cij,k+1 − c
i
j,k

∆y

�
(5)

are the upwind numerical fluxes with

ρ
i
j+ 1

2 ,k
=

�
�ρi(xj+ 1

2
− 0, yk) if

�
cij+1,k−cij,k

∆x

�
> 0,

�ρi(xj+ 1
2
+ 0, yk), otherwise

Similarly,

ρ
i
j,k+ 1

2
=

�
�ρi(xj, yk+ 1

2
− 0) if

�
cij,k+1−cij,k

∆y

�
> 0,

�ρi(xj, yk+ 1
2
+ 0), otherwise

Here,
�ρi(x, y) = ρ̄

i
j,k + (ρix)j,k(x− xj) + (ρiy)j,k(y − yk), (x, y) ∈ D

0
j,k (6)

is the piecewise linear reconstruction with the slopes (ρix)j,k and (ρiy)j,k calculated using the
minmod limiter,

(ρix)j,k = minmod

�
2
ρ̄
i
j+1,k − ρ̄

i
j,k

∆x
,
ρ̄
i
j+1,k − ρ̄

i
j−1,k

2∆x
, 2

ρ̄
i
j,k − ρ̄

i
j−1,k

∆x

�
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and

(ρiy)j,k = minmod

�
2
ρ̄
i
j,k+1 − ρ̄

i
j,k

∆y
,
ρ̄
i
j,k+1 − ρ̄

i
j,k−1

2∆y
, 2

ρ̄
i
j,k − ρ̄

i
j,k−1

∆y

�
.

The minmod function is defined by

minmod(z1, z2, ..., zp) :=






min(z1, z2, ..., zp), if zi > 0 ∀i = 1, ..., p,
max(z1, z2, ..., zp), if zi < 0 ∀i = 1, ..., p,
0, otherwise

The right-hand side for the concentration equation g
c
j,k is

g
c
j,k := −ρ̄

i
j,k (7)

The scheme (3) is positivity preserving. The more detailed discussion about this scheme can
be found for example in [8].

2.2 Difference potentials - a brief overview

Let us now briefly review the Difference Potentials idea ([8]). We are concerned here with
the Patlak-Keller-Segel system (1) in some domain Ω - an arbitrary bounded domain in R2 with
the boundary ∂Ω.

We introduce the auxiliary difference problem. Let us place the original domain Ω in the aux-
iliary domain D

0 ⊂ R2. The choice of the domain D
0 should be convenient for computations

so we will choose it to be a square, and we will introduce a Cartesian mesh for D0 consisting
of the uniform cells D0

j,k := [xj− 1
2
, xj+ 1

2
]× [yk− 1

2
, yk+ 1

2
] of the size ∆x∆y centered at the point

(xj := j∆x, yk := k∆y). Let us define a five-point stencil Nj,k with its center placed at (xj, yk)
to be the set of the following points: Nj,k := {(xj, yk), (xj±1, yk), (xj, yk±1)}.
In addition, let us also introduce point sets M := M

ρ = M
c := (xj, yk) ∈ Ω - the sets

of all the points (xj, yk) that belong to the interior of the original domain Ω. We now define
N := N

ρ = N
c = {

�
j,k Nj,k|(xj, yk) ∈ M}- the set of all points covered by five-point stencils

when center point (xj, yk) of the stencil goes through all the points of the set M .
Let us remark, that points in the set N will be both inside and outside of the original domain
Ω. Also, let us mention that index ρ and c were used to emphasize that in general we can have
different grids for the numerical approximation of the density and concentration but in this work
we consider the same grid.
Now, let us introduce the grid boundaries γex := γ

ρ
ex = γ

c
ex := N\M - exterior grid boundary

layer for domain Ω, γin := γ
ρ
in = γ

c
in := {(xj, yk)|(xj, yk) ∈ M : Nj,k �⊂ M} - interior grid

boundary layer for domain Ω and define γ := γex ∪ γin - a narrow set of nodes which surrounds
the continuous boundary ∂Ω, Fig. (2.2) .
Let us also construct the auxiliary set M1 := M

1,ρ = M
1,c by completing the set N to a rect-

angle and adding one extra layer of grid points to each side of the rectangle, hence N ⊂ M
1.

Also, as before, define N
1 := N

1,ρ = N
1,c = {∪j,kNj,k|(xj, yk) ∈ M

1} and finally, let us
introduce γ

1 := γ
1,ρ = γ

1,c = N
1\M1

.

Based on a scheme (3), we will formulate now a General Auxiliary Problem:

For the given grid functions g1 and g
2, find the solution of the scheme (f 1

, f
2) such that:

∆j,kf
1 −mf

1
j,k = g

1
j,k, (xj, yk) ∈ M1, (8)

f
1
j,k = 0, (xj, yk) ∈ γ

1 (9)
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D0

! M

"

Figure 1: Example (a sketch) of the auxiliary domain D0, original domain Ω; the example of some points (xj , yk)(-
centers of the grid cells) in the set γ: the points which are outside Ω are from γex, the points which are inside Ω
are from γin ∈ M

∆j,kf
2 − f

2
j,k = g

2
j,k, (xj, yk) ∈ M1, (10)

f
2
j,k = 0, (xj, yk) ∈ γ

1 (11)

We note that the General Auxiliary Problem (8)-(11) is well defined for any right hand side
g
1
j,k, g

2
j,k - it has a unique solution (f 1

, f
2) defined on the set N1.

Also, it can be noted that the solution of (8)-(11) can be efficiently computed using the Fast
Fourier Transform (FFT) with the appropriate choice of the auxiliary set M1.
Next, we denote by

f := (f ρ̄
, f

c) (12)

the solution (f 1
, f

2) of the auxiliary problem (8)-(11) when the right hand-sides are defined as

g
1
j,k :=

�
g
ρ
j,k, (xj, yk) ∈ M,

0, (xj, yk) ∈ M
1\M (13)

and
g
2
j,k :=

�
g
c
j,k, (xj, yk) ∈ M,

0, (xj, yk) ∈ M
1\M (14)

where g
ρ
j,k and g

c
j,k are given in (4) and (7).

We now introduce a linear space Vγ of all grid functions denoted by vγ := (ρ̄γ, cγ) defined
on γ, similar to [12, 13]. We will extend by zero the value of vγ to other points of the grid D

0.
Let us recall that, Difference Potential [12, 13] with the given density vγ is the grid function

u = (uρ̄, uc) := Pvγ which coincides with the solution of (8)-(11) with the right hand-side
defined as follows:

g
1
j,k :=

�
0, (xj, yk) ∈ M,

∆j,kρ̄
γ −mρ̄

γ
j,k, (xj, yk) ∈ M

1\M (15)

and
g
2
j,k :=

�
0, (xj, yk) ∈ M,

∆j,kc
γ − c

γ
j,k, (xj, yk) ∈ M

1\M (16)
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Here, P denotes the operator which constructs difference potential u = Pvγ from the given
density vγ ∈ Vγ . The operator P is the linear operator of the density vγ which can be easily
constructed [8, 13].

Next, let us recall [8, 12, 13] and define another operator Pγ : Vγ → Vγ which is defined
as the trace (or restriction) of the Difference Potential Pvγ on the grid boundary γ: Pγ :=
TrγPvγ = Pvγ|γ.
Let us now state the main theorem for our scheme [8].

Theorem 2.1 At each time level density vγ = (ρ̄γ, cγ) ∈ Vγ is the trace of some solution

uρ̄c := (ρ̄, c) to the upwind scheme (3): vγ = Trγuρ̄c
, if and only if we have

vγ = Pγvγ + fγ, (17)

where fγ = Trγf and f is defined in (12).

Hence, this theorem implies that the unique solution upks := (ρ̄, c) to problem (3), subject to
the boundary conditions on ∂Ω, is the unique solution of the following problem (18) (and vice
versa: the unique solution of the problem (18) is the unique solution to the problem (3) subject
to the corresponding boundary conditions):
Algorithm

1. At time level ti+1 find the solution f = (f ρ̄
, f

c) of the auxiliary problem (8)-(11), (13)-
(14)

2. Solve system of boundary equations for the unknown vγ with the imposed boundary
conditions:

vγ = Pγvγ + fγ, l(Pvγ + f) = ψ (18)

3. Construct difference potential Pvγ with the obtained density vγ

4. At each time level ti+1: upks = Pvγ + f ,

where l(Pvγ + f) = ψ is the proper approximation at the points of set γ of the zero Neumann
boundary conditions for (ρ̄, c). This approximation can be obtained, for example, using either
an interpolation idea to approximate ∂ρ̄

∂n and ∂c
∂n at some points in set γ, or by using a spectral

approximation approach to approximate the boundary conditions [8].

3 NUMERICAL EXAMPLES: VALIDATION OF THE UPWIND-DIFFERENCE PO-
TENTIALS METHOD ON A SIMPLIFIED CHEMOTAXIS MODEL WITH RADI-
ALLY SYMMETRIC INITIAL DATA IN A CIRCLE

In this section, similar to the tests in [8], we demonstrate the performance of the upwind-
difference potentials scheme for the simplified Patlak-Keller-Segel chemotaxis model (1). In
the numerical experiments we used the upwind scheme (3) with the minmod limiter with θ = 2.

We consider the Patlak-Keller-Segel chemotaxis problem (1) -(2) in a circular domain x
2 +

y
2 = 0.25 with the radially symmetric initial data:

ρ(x, y, 0) = ρ0e
−100(x2+y2)

, c(x, y, 0) = 0.5ρ0e
−50(x2+y2)

, (19)

where ρ0 is the constant which will be specified later.
It has been proven (see, for example overview [9, 10]) that the solution to Patlak-Keller-Segel

chemotaxis model with ‘parabolic-elliptic’ coupling in Ω ∈ R2:
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Figure 2: Plots of ρmax(t) - the evolution of the maximum value of the density ρ with time: left plot is for the case
1 with ρ0 = 400 and the right plot is for the case 2 with ρ0 = 850. Red solid line is ρmax(t) computed on mesh
507× 507; dotted blue is for 251× 251; green dashed is for 123× 123, and dark blue dash dotted is for 59× 59

1. exists globally in time if the initial mass is
�
Ω ρ(x, y, 0)dxdy < 8π

2. is expected to blow up if the initial mass is 8π <
�
Ω ρ(x, y, 0)dxdy

We validate our scheme below by checking numerically properties (1) and (2).
For case (1) we set ρ0 = 400 (plot of the initial data, Fig. 4) and we illustrate numerically

(left plot on Fig. 2) similar to the test for Patlak-Keller-Segel chemotaxis model with ’parabolic-
parabolic’ coupling [8] that solution exists globally in time. However, compared to the full
model [8], the simplified model produces different type of evolution of the maximum value of
the density ρ with time.
For the case (2) we consider ρ0 = 850 (plot of the initial data, Fig. 5) and we again show that
similar to the test with full Patlak-Keller-Segel system with ’parabolic-parabolic’ coupling [8],
the proposed scheme will break the symmetry and the solution will approach the blow up (right
plot on Fig. 2) and will blow up at the center of the circular domain as expected by the theory
(Fig. 3 - density ρ at time around the blow-up time). However, compared to the similar test in
[8] for the full chemotaxis model, it takes much longer time for the density ρ to approach the
blow up.

In Fig. 2 we plot the evolution of the maximum value of the density ρ with time

ρmax(t) := max
(x,y)

ρ(x, y, t)
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Figure 3: Plot of the density ρ for the case 2 with ρ0 = 850 at time around the blow up time t ≈ 0.035. The
solution is computed on mesh 507× 507
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Figure 4: Plot of the initial data ρ(x, y, 0) with initial mass below 4π
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Figure 5: Plot of the initial data ρ(x, y, 0) with initial mass above 8π
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on four different meshes - mesh 59× 59, 123× 123, 251× 251 and 507× 507.

4 CONCLUSIONS

We consider here a recently developed upwind-difference potentials scheme for chemotaxis
models and closely related problems in physics and biology [8]. The scheme can handle
complex computational domains with the use of only Cartesian grids, and can be easily em-
ployed with fast Poisson solvers. The proposed method combines the simplicity of a positivity-
preserving upwind scheme on Cartesian meshes with the flexibility of the Difference Potentials
method. Further numerical experiments for a simplified Patlak-Keller-Segel chemotaxis model
are presented to illustrate robustness of the upwind-difference potentials scheme.
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