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Abstract. In this work we develop an efficient and flexible Algorithms Composition Approach based on the idea of the
difference potentials method (DPM) for parabolic problems in composite and complex domains. Here, the parabolic equation
serves both as the simplified model, and as the first step towards future development of the proposed framework for more
realistic systems of materials, fluids, or chemicals with different properties in the different domains. Some examples of such
models include the ocean-atmosphere models, chemotaxis models in biology, and blood flow models. Very often, such models
are heterogeneous systems - described by different types of partial differential equations (PDEs) in different domains, and they
have to take into consideration the complex structure of the computational subdomains. The major challenge here is to design
an efficient and flexible numerical method that can capture certain properties of analytical solutions in different domains, while
handling the arbitrary geometries and complex structures of the subdomains. The Algorithms Compositions principle, as well as
the Domain Decomposition idea, is one way to overcome these difficulties while developing very efficient and accurate numerical
schemes for the problems. The Algorithms Composition Approach proposed here can handle the complex geometries of the
domains without the use of unstructured meshes, and can be employed with fast Poisson solvers. Our method combines the
simplicity of the finite difference methods on Cartesian meshes with the flexibility of the Difference Potentials method. The
developed method is very well suited for parallel computations as well, since most of the computations in each domain are
performed independently of the others.
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1. Introduction
In this work we develop an efficient and flexible Algorithms Composition Approach based on the idea of

the Difference Potentials Method (DPM) for parabolic problems in composite and complex domains.
Here, a parabolic equation (2.1) serves both as the simplified model, and as the first step towards future

development of the proposed scheme for more realistic systems of materials, fluids, or chemicals with different
properties in the different domains (or in the different parts of the domains). Some examples of such models
include the ocean-atmosphere models, chemotaxis models in biology, and blood flow models (see for example
[2, 36, 53, 10, 9, 43, 42]).

Numerical approximations and modeling of many physical, biological, and biomedical problems often deal
with heterogeneous models (described by different types of partial differential equations (PDEs) in different
domains), and/or they have to take into consideration the complex structure of the computational subdo-
mains. The major challenge here is to design an efficient and flexible numerical method that can capture
certain properties of analytical solutions in different domains/subdomains (such as positivity, different regu-
larity/smoothness of the solutions in the domains/subdomains, etc), while handling the arbitrary geometries
and complex structures of the domains. The Algorithms Compositions principle, as well as the Domain
Decomposition idea, is one way to overcome these difficulties while developing very efficient and accurate
numerical schemes for the problems. This methodology can be used within any discretization for PDEs (such
as finite differences, finite volumes, finite elements, or spectral methods). It provides great opportunities
to subdivide problems into subproblems, and to design the most suitable numerical approximation for each
of them independently. After that, one can compose the problems and algorithms together by imposing
some interface conditions. Such schemes can be used for parallel computations as well, since most of the
computations in each subdomain are performed independently of the others (see for example, [41, 51]).

There is an extensive literature that addresses problems in domains with complex geometries and interface
problems. We will briefly discuss below some established finite difference methods for such problems. For
more detailed review on the subject the reader can consult for example [25]. The immersed boundary method
(IB) was originally proposed by Peskin to model blood flow in a human heart (see for example [38, 39]).
One of the essential ideas of the IB method is to employ a discrete delta function to place/spread a singular
source to neighboring mesh points. The IB method is simple and efficient but in most cases is a low-order
(first-order) method. The higher-order (second order) version of the IB method has been recently proposed in
[19]. The IB method has been applied to many problems in computational fluid dynamics and mathematical
biology (see for example [37, 40, 12, 54]), and it has been parallelized [33].

∗Department of Mathematics, The University of Utah, Salt Lake City, UT, 84112, epshteyn@math.utah.edu

1



The immersed interface method (IIM) is designed for interface problems and problems defined on irregular
domains [23, 24, 25]. This method is a sharp interface method for PDEs that can have discontinuities in the
coefficients, the solution and its derivatives, and it can handle Dirac singularities in the source terms. The
IIM is based on Cartesian meshes with second order or fourth order (for some problems) accuracy. Standard
finite difference or some standard finite element schemes can be employed as the core discretization in IIM.
The IIM modifies these schemes near or at the interfaces/boundaries through the interface relations so that
second order/or fourth order accuracy can be achieved in the whole domain. However, some of the difficulties
with IIM schemes are the requirement for the explicit knowledge of the jump conditions at the interfaces and
boundaries for the development of IIM (in order to derive the correction terms for the schemes at the mesh
points near the interface), and that the parallelization of IIM is not a trivial task due to global coupling of
the solutions in the subdomains. The IIM is used for many problems such as Stefan problems, incompressible
Stokes and Navier-Stokes flow problems, etc, (see for example [25]). The other sharp interface method is
the ghost fluid method (GFM). This method was originally proposed for the accurate approximation of the
boundary conditions for hyperbolic systems [13], and was later developed in [26] (the convergence was proved
in [27]) for the elliptic interface problems. The GFM is based on a Cartesian grid finite-difference method.
Similar to IIM, the main idea of GFM [26] is to incorporate the jump conditions into the finite difference
scheme. However, the idea of GFM is to decompose the flux jump in dimension by dimension fashion which
may decrease the accuracy of the method in some cases. The main advantages of GFM are its second-order
accuracy, simplicity, and ease of implementation. Some shortcomings of GFM are that fast Poisson solvers
cannot be employed with the method, since the coefficients of the finite difference discretization are modified
at the mesh points near the boundaries; the GFM may produce only a first-order accurate solution for more
general boundary conditions (for example for mixed boundary conditions). The GFM has been applied
to several problems including the simulation of incompressible flame, incompressible multiphase flows, etc,
and it has been applied to complex domain problems with Dirichlet boundary conditions (see for example
[35, 20, 15]). Let us comment that in [15], the ghost values across the interface were defined using dimension
by dimension extrapolation, and the overall second order accuracy was achieved for the complex domain
problems with Dirichlet boundary conditions (instead of explicit information about the jump conditions
across the interface). Also, based on the ideas from [15], a fourth-order scheme has been developed in [14]
for Dirichlet boundary conditions on domains with complex geometry.

Let us now mention the method based on the integral equations approach. In [30], the fast and high-order
methods were developed for solving Laplace’s and biharmonic equations on complex domains with smooth
boundaries in 2D. The idea of the method proposed in [30] is to combine integral equations based on the
single and double layer theory with finite difference method to solve a Laplace’s equation on a complex
domain. In this method the domain is embedded in a computationally simple region (auxiliary domain)
where a fast Poisson solver can be used on a uniform mesh. The right-hand side of the original equation
is modified appropriately in the auxiliary domain using the information about the values of the extended
solution at the mesh points near (inside and outside) the original continuous boundary (at the irregular
mesh points). The approximations to the unknown values of the extended solution at these irregular mesh
points are constructed through Taylor expansion and the solution of the Fredholm integral equation of the
second kind. Finally, the approximation of the solution in the original region is obtained by the use of the
fast Poisson solver in the simple auxiliary domain. Based on these ideas, the method introduced in [30]
avoids the common difficulty with the solution of the integral boundary equations (for example problems
near the original boundary). This approach has been parallelized in [29, 17]. The method can be accelerated
if coupled with a fast multipole method [32]. The possibility of extension to elliptic problems with variable
coefficients is mentioned in [31]. Note that, in general, the methods based on integral equations approaches
are very efficient for homogeneous source terms and for the specific type of boundary conditions (see also
discussion below on Difference Potentials Method and Boundary Element Method).

Similar to the method in [30], the idea of our method here and in [50, 48] is to first introduce a compu-
tationally simple auxiliary domains. After that, the original domains/subdomains are embedded into simple
auxiliary domains (and the auxiliary domains are discretized using Cartesian meshes). However, compared to
the integral approach in [30], we construct discrete Boundary Equations with projections (discrete generalized
Calderon’s boundary equations with projections) to obtain the values of the solutions at the points near the
continuous boundaries of the original domains (at the points of the discrete grid boundaries which approxi-
mate the continuous boundaries from the inside and outside of the domains). Using the obtained values of
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the solutions at the discrete grid boundaries, the approximation to the solutions in each domain/subdomain
is constructed through the discrete generalized Green’s formulas. The main complexity of our approach
reduces to the several solutions of simple auxiliary problems on structured Cartesian grids, and similar to
[30] the solutions of these auxiliary problems can be combined with fast Poisson solvers. Like method in [30],
and IIM and GFM, our method (and in general, methods based on Difference Potentials Method [49, 34])
preserve the underlying accuracy of the schemes being used for the space discretization of the continuous
PDEs in each domain/subdomain (here, and in [50, 48] we considered second-order finite difference scheme
for the space approximation). But compared to [30], and to IIM and GFM, our approach is not restricted
by the type of the boundary or interface conditions (as long as the continuous problems are well-posed). Let
us mention that the accuracy of our approach is confirmed by several numerical experiments in the current
paper (see Section 5) and in papers [50, 48]. The reader can consult [49] for the theoretical convergence
study of the methods based on Difference Potentials.

In this work, we will consider the heat equation (2.5) in a composite domain with curvilinear smooth
boundaries in 2D (even though, the proposed framework is general and can be extended in the future to
the arbitrary 1D, 2D and 3D domains). We will further develop, as well as numerically test the Algorithms
Composition Scheme proposed originally in [50, 48] for linear elliptic problems. The Algorithms Composition
Approach developed in this paper is an accurate, simple, and robust scheme of algorithms composition for the
numerical approximations of the boundary value problems in composite and complex domains. The proposed
method can handle complex geometries without the use of unstructured meshes (with the consideration of
only regular Cartesian grids), and can be employed with fast Poisson solvers. Our method combines the
simplicity of the finite difference methods on Cartesian meshes with the flexibility of the Difference Potentials
method [49].

Difference Potentials Method (DPM) can be understood as the discrete version of the method of gen-
eralized Calderon’s potentials and Calderon’s boundary equations with projections in the theory of PDEs.
The DPM on its own, or in combination with other numerical methods, is an efficient tool for the numer-
ical solution of the interior and exterior boundary value problems in arbitrary domains (see for example,
[49, 46, 28, 47, 52, 34, 50, 48, 10, 9]). Viktor S. Ryaben’kii originally introduced DPM in his Doctor of
Science thesis (Habilitation thesis) in 1969. The DPM allows one to reduce uniquely solvable and well-posed
boundary value problems into pseudo-differential boundary equations. In some respect, the difference po-
tentials method (DPM) is related in spirit to the boundary element method (BEM). The idea of the BEM
(see for example [1, 8]) is to reduce the boundary value problem to Fredholm-type integral equations with
respect to equivalent boundary sources, and these equations are discretized accordingly. One shortcoming
of the BEM is the full structure of the resulting systems/matrices (as opposed to the sparse nature of the
systems/matrices produced by the finite differences (FD), or finite element methods (FEM)). Recent progress
on fast multipole methods considerably accelerated solutions of such full systems [18]. However, the most
serious drawback of BEM methods is the requirement for the explicit knowledge of the fundamental solution
of given differential operators. This can impose several restrictions on the practical applications of BEM
methods. The essence of the DPM is to transform uniquely solvable and well-posed boundary value problems
into so-called pseudo-differential boundary equations that do not employ a fundamental solution. Hence,
on one hand, the DPM enjoys geometric flexibility of the BEM. On the other hand, it can be applied to a
wider class of problems than the BEM, and it can have several advantages over the BEM. We will make a
few comments about this below:
Main features and advantages of the DPM (see also Section 2 in this paper and [49, 34] for more detailed
discussion):
(i) The original PDEs (without imposed boundary conditions) are reduced to an equivalent generalized
Calderon’s boundary equations with projections. These equations are supplemented by the given boundary
conditions. Compared to BEM, DPM does not employ Fredholm equations of the first or second kind;
(ii) The derived Calderon’s problem can be discretized on structured Cartesian grids. Discrete inverse
operators which are introduced in the DPM for the approximation of the Calderon’s potentials and pro-
jections do not contain any singularities or convolutions. These inverse operators can be obtained using
fast numerical calculations as the solution of the simple and computationally efficient auxiliary problems
[49, 34, 50, 48, 10, 9];
(iii) DPM can treat arbitrary smooth boundaries of the domains, and the boundaries do not need to
align/conform with the grid - this does not produce any loss of accuracy. The DPM provides flexibility to
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handle general boundary conditions in an efficient and universal way, and the method always produces a
well-posed discrete version of the problem (if the original continuous boundary value problem is well-posed)
[49, 34, 3]. Note that well posedness for BEM may not be a trivial task for problems with general boundary
conditions;
(iv) DPM gives flexibility to construct high-order schemes on regular Cartesian grids for problems with
complex geometries [49, 34, 3]. Some of the advantages of numerical methods on Cartesian grids are that
the grid generation for these schemes is trivial, the design of the high-order numerical methods that satisfy
certain stability properties are usually much more straightforward on regular structured grids, and the nu-
merical methods on Cartesian meshes are more robust than those of body-fitted grids;
(v) DPM can approximate both variable coefficients and constant coefficients problems: the main steps in
the construction of the Calderon’s potentials and projections for variable coefficients and constant coefficients
stay essentially the same [49, 34, 50, 48, 10, 9].
The developed Algorithms Composition Framework combines the above advantages of the DPM and offers
novel flexibility to the DPM (for a more detailed discussion, see Sections 3 - 6 in this paper, as well as
[50, 48]):
(i) the Algorithms Composition Framework is well-suited for heterogenous problems and complex interface
problems, as well as for the development of the adaptive schemes and domain decomposition approaches;
(ii) our method provides the flexibility to consider a non-difference approximation of the general boundary
and interface (/or matching) conditions, which automatically takes into account the smoothness of the solu-
tion. Such self-tuning is impossible, for example in the difference or finite-element approximations of these
conditions;
(iii) the proposed framework can be further developed for the efficient computation of the solutions in arbi-
trary domains with arbitrary boundaries and interfaces;
(iv) the numerical schemes, as well as meshes can be chosen totally independently for each subdomain/
domain; the boundaries of the subdomains and interfaces do not need to conform/align with the grids;
(v) the main complexity of the developed algorithm reduces to the several solutions of simple auxiliary
problems on structured Cartesian grids;
(vi) the proposed approach is general and can be developed as a high-order method (both in time and space:
higher than first order in time and higher than second order in space). For example, by considering high-
order methods such as high-order finite difference, finite element, or spectral methods for the construction
of the discrete parts of generalized Calderon’s potentials, as well as for the approximations of the particular
solutions to the inhomogeneous equations;
(vii) since the schemes for constructing the solutions in each domain/subdomain are independent of each
other, our approach is very well suited for parallel computations;
(viii) the proposed method is not restricted to 2D and can be applied to variable coefficients problems. The
method can be generalized to the equations not necessarily of the elliptic/parabolic type as well.

The paper is organized as follows. First, in Section 2 we give some preliminaries that will be helpful for
the introduction of the proposed algorithm. Then, we introduce the idea of DPM for the parabolic equation
in the single domain, and we make an overview of the important properties of the DPM for the model under
consideration in Section 2.1. In Section 3, we develop the Algorithms Composition Scheme for the parabolic
model in a composite domain using the flexibility of the DPM. In Section 4, we state the main steps of the
proposed algorithm. Finally, we illustrate the flexibility and performance of the proposed scheme in several
numerical experiments in Section 5. Some concluding remarks are given in Section 6, and some technical
details about the algorithm are provided in Appendix Section 7.

2. Preliminaries

In this section, we will introduce some preliminaries that will be helpful for the discussions in the following
sections. We are concerned in this paper with the parabolic initial and boundary value problem (IVP) in
some bounded domain Ω ⊂ Ω0 ⊂ R2, and its neighborhood Ω0 over the time interval [0, T ].

∂u

∂t
+ Lu = q in Ω× (0, T ), (2.1)

l(u) = ψ on ∂Ω× (0, T ), (2.2)

u|t=0 = u0 in Ω. (2.3)
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Fig. 2.1: Example (a sketch) of the original domain Ω and auxiliary domain Ω0

Here, q(x1, x2, t) is the sufficiently regular source function in the domain Ω0 (function q is originally given
Ω, and extended to the larger domain Ω0), and L is the second order linear symmetric elliptic differential
operator

Lu := −
2∑

k,j=1

∂

∂xk
(akj(x)

∂u

∂xj
) + a0u, (2.4)

where coefficients a0 and akj are assumed to be sufficiently smooth functions in Ω0, akj(x) = ajk(x),
(k, j) = 1, 2 for almost every x := (x1, x2) := (x, y) ∈ Ω0. Moreover, there exists a constant α0 > 0 such

that
∑2
k,j=1 akj(x)ξkξj ≥ α0|ξ|2 for each ξ ∈ R2, and for almost every x ∈ Ω0. The classical example of the

above parabolic problem (2.1) is the heat equation

∂u

∂t
−∆u = q. (2.5)

To simplify the presentation of the ideas, we will be concerned below with the heat equation (2.5) subject
to (2.2) - (2.3). However, let us mention that the same idea can be extended in a straightforward way to a
general parabolic equation (2.1).

Next, at the given time t, we denote by vΓ the Cauchy data of an arbitrary continuous piecewise smooth
function v(x, y, t) defined on Γ and in some of its neighborhoods:

vΓ :=
(
v
∣∣∣
Γ
,
∂v

∂n

∣∣∣
Γ

)
. (2.6)

Here, ∂
∂n is the inward (with respect to Ω) normal derivative to Γ, and Γ := ∂Ω is a piecewise smooth

boundary of Ω.
Now, in order to introduce our ideas, let us consider model problem (2.5) in its time-discrete form.

Towards this end, we subdivide time interval [0, T ] into Nt time steps and denote by ti := i∆t, ∆t > 0.
Setting m := 1

∆t and considering the Backward Euler method, we obtain below the following time discrete
reformulation of the parabolic equation (2.5) in some domain Ω0

Let us introduce

L∆t[u
i+1] := ∆ui+1 −mui+1, (x, y) ∈ Ω0, (2.7)

where L∆t denotes the linear elliptic operator applied to ui+1.
We also denote the right-hand side as:

Gu∆t := −qi+1 −mui, (x, y) ∈ Ω0, (2.8)

where qi+1 := q(x, y, ti+1).
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Then the semi-discrete formulation of the model (2.5) is stated as follows:
Find some ui+1 := ui+1(x, y) ≈ u(x, y, ti+1) such that

L∆t[u
i+1] = Gu∆t, (x, y) ∈ Ω0, (2.9)

Remark: For each i this is a time-independent elliptic problem.

Let us now introduce the auxiliary problem. For the purposes of the discussion below, we will suppress
for now the explicit dependence on the time level i. We place the original domain Ω in the auxiliary domain
Ω0 ⊂ R2: Ω̄ ⊂ Ω0. Next, we will formulate a discrete in time and continuous in space Auxiliary Problem
(AP):

Definition 2.1. For any given sufficiently regular right-hand side G∆t, find F such that,

L∆t[F ] = G∆t, (x, y) ∈ Ω0, (2.10)

F = 0, (x, y) ∈ ∂Ω0, (2.11)

where L∆t is the same linear elliptic operator as in (2.9) and is applied here to F . Since the auxiliary

domain Ω0 can be arbitrary, we can choose it to be a square. The above (AP) Dirichlet problem is uniquely
solvable.
Remark: This is a continuous in space Dirichlet problem for each fixed time level.

Let us now construct a potential with a density vΓ. Define the vector function

vΓ := (φ0(s), φ1(s)), (2.12)

where φ0(s) and φ1(s) are two piecewise smooth continuous functions on |Γ| that are s−periodic with a
period of |Γ|, s is the arc length along |Γ|, and |Γ| is the length of the boundary. Here, the arc length is
chosen as a parameter only for definiteness.

Let v(x, y) = vΩ0 be an arbitrary sufficiently smooth function on Ω0 that satisfies condition (2.11) on
∂Ω0: v|∂Ω0 = 0. Assume that its Cauchy data vΓ is defined as in (2.6) and is equal to the vector function
vΓ in (2.12). Then, we can recall the following definition of the potential PΩΓvΓ below [48, 49].

Definition 2.2. A Potential uΩ := PΩΓvΓ defined on Ω with density vΓ is equal on Ω to the solution of
(AP, Def. 2.1), with the right hand-side G∆t defined as follows:

G∆t :=

{
0, (x, y) ∈ Ω,
L∆t[v], (x, y) ∈ Ω0\Ω (2.13)

It can be shown that at each time level the above potential uΩ := PΩΓvΓ is well-defined: it depends only on

Cauchy data (2.12), but is independent of the choice of a particular function v(x, y) satisfying (2.11) on ∂Ω0

whose Cauchy data coincides with (2.12). For a more detailed discussion on the potentials with projectors,
see [48, 49].

Remark: The potential uΩ := PΩΓvΓ can be viewed as the modification [45] of the Calderon potential
[4]. However, in comparison to the Calderon potential, the potential PΩΓvΓ admits a finite-dimensional
constructive approximation by Difference Potentials [49, 10, 9], as will be illustrated below in Section 2.1.

2.1. Scheme Based on the Difference Potentials
We will develop our Algorithms Composition Approach based on the idea of the Difference Potentials

Method (DPM) [49, 48, 50, 10, 9]. Difference Potentials Method (DPM) can be viewed as the method of
building and computing the discrete parts of the modified Calderon’s potentials (see for example, [49, 28,
47, 52, 50, 48, 10, 9] and Introduction Section 1).

We will present in this Section the necessary preliminaries and some overview of the numerical scheme
based on the difference potentials for the single arbitrary domain Ω ∈ R2. This discussion will be important
for the development of our approach for the composite/complex domain Ω ∈ R2, which we will present in
Sections 3 - 5.

At this point, let us assume that we consider (2.5) in some domain Ω - an arbitrary bounded domain
in R2 with the boundary ∂Ω. First, let us introduce some preliminary notations and definitions that will
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Fig. 2.2: Example (a sketch) of the auxiliary domain Ω0, original domain Ω; the example of some points
(xj , yk) in the set γ: the points which are outside Ω are from γex, the points which are inside Ω are from
γin ∈M

be used in this section. Denote ΠSRvR as the extension operator of function v from set/domain R to the
set/domain S, πS as the restriction operator to the set/domain S, wS := πSw as the restriction of function
w to the set/domain S, and χS as the characteristic function of the set S.

Next, we introduce here the auxiliary fully discrete problem. Let us place the original domain Ω in
the auxiliary domain Ω0 ⊂ R2. The choice of the domain Ω0 should be convenient for the computations,
so we will choose it to be a square, and we will introduce a Cartesian mesh for Ω0, with points xj =
j∆x, yk = k∆y (k, j = 0,±1, ...). Let us assume for simplicity that ∆x = ∆y := h. Let us also define
a five-point stencil Nj,k with its center placed at (xj , yk) to be the set of the following points: Nj,k :=
{(xj , yk), (xj±1, yk), (xj , yk±1)}.
In addition, we also introduce point sets M := M+ := (xj , yk) ∈ Ω - the sets of all the points (xj , yk) that
belong to the interior of the original domain Ω. We now define N := N+ := {⋃j,kNj,k|(xj , yk) ∈ M}- the
set of all points covered by five-point stencils when center point (xj , yk) of the stencil goes through all the
points of the set M . Note that the points in the set N will be both inside and outside of the original domain
Ω.
Now, let us introduce the grid boundaries γex := γex = N\M is the exterior grid boundary layer for domain
Ω. γin := {(xj , yk)|(xj , yk) ∈ M : Nj,k 6⊂ M} is the interior grid boundary layer for domain Ω (in other
words, this is the set of all the nodes (xj , yk) in M for which stencil Nj,k is not the subset of M : Nj,k contains
nodes outside of M , but the center point (xj , yk) of the stencil Nj,k belongs to M). Define γ := γex ∪ γin -
a narrow set of nodes that surrounds the continuous boundary ∂Ω, Figure 2.2.
Next, we construct the auxiliary set M1 by completing the set N to a rectangle, and adding one extra layer
of grid points to each side of the rectangle, hence N ⊂M1. Also, as before, define N1 := {∪j,kNj,k|(xj , yk) ∈
M1}, and finally, let us introduce γ1 := N1\M1.

We can now introduce the space approximation of (2.9) and consider the fully discrete version of equation
(2.5). Therefore, the computed quantity will be the point values uj,k(t) ≈ u(xj , yk, t). We denote by uij,k
the computed uj,k(ti): uij,k :≈ uj,k(ti) at the discrete time level ti := i∆t, with time step ∆t. Additionally,
we denote by ∆j,k the discrete Laplacian obtained using second order central difference formulas for the x
and y variables, and by

L∆t,h[ui+1] := ∆j,ku
i+1 −mui+1

j,k , (xj , yk) ∈ Ω0. (2.14)

Finally, we denote by gu,

gu := guj,k = −qi+1
j,k −muij,k, (2.15)
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where, as before, qi+1
j,k ≡ q(xj , yk, ti+1) is the value of the source function q(xj , yk, t) at ti+1.

Thus, the fully discrete finite-difference based version of the parabolic equation (2.5) is:
Find some ui+1 such that it satisfies

L∆t,h[ui+1] := gu, (xj , yk) ∈ Ω0. (2.16)

Again, as in the “Preliminaries” in Section 2, we will suppress for now the explicit dependence on the
time level i for the clarity of the discussion. Based on a central finite difference approximation (2.16), we will
now formulate the fully discrete analog of the auxiliary problem (AP), Def. 2.1 in Section 2 - the Discrete
Auxiliary Problem (DAP):

Definition 2.3. For the given grid function g, find the solution of the scheme f such that:

L∆t,h[f ] = g, (xj , yk) ∈M1, (2.17)

f = 0, (xj , yk) ∈ γ1, (2.18)

where, as before in (2.14), L∆t,h[f ] ≡ ∆j,kf −mfj,k. We note that the ((DAP), Def. 2.3) is well defined for

any right hand side g - it has a unique solution f defined on the set N1.
Also, it should be noted that the solution of ((DAP), Def. 2.3) can be efficiently computed using the Fast
Fourier Transform (FFT) with the appropriate choice of the auxiliary set M1.

We now introduce a linear space Vγ of all the grid functions vγ defined on γ, similar to [48, 10, 9, 49].
We will extend by zero the value of vγ to other points of the grid N1. Let us now recall that,

Definition 2.4. A Difference Potential [48, 10, 9, 49] with the given density vγ ∈ Vγ is the grid function
u := PNγvγ defined on the set N , which coincides (on the set N) with the solution of ((DAP), Def. 2.3)
when the right hand-side is defined as follows:

g :=

{
0, (xj , yk) ∈M,
L∆t,h[vγ ], (xj , yk) ∈M1\M.

(2.19)

The Difference Potential can be viewed as the discrete analog of the modified potential of Calderon’s type,

or as the discrete analog of the space-continuous potential, Def. 2.2 in Section 2 (similar to Def. 2.4, the
definition of Difference Potential can be extended by considering the set M1\M as the “interior” set, and
set M as the “exterior” one, [49]). Here, PNγ denotes the operator that constructs the difference potential
u = PNγvγ from the given density vγ ∈ Vγ . The operator PNγ is the linear operator of density vγ , and it can
be easily constructed (see for example [10, 9, 49]). Again, for our problem, L∆t,h[vγ ] ≡ ∆j,kvγ −m(vγ)j,k.

As in the space-continuous case, (Def. 2.2, Section 2), the concept of the difference potential is well-defined
at each time level due to the following statement:
Theorem 2.5. The difference potential PNγvγ depends only on vγ ∈ Vγ , but is independent of the choice of
the function v defined on N1 (satisfying condition (2.18) on γ1 : v = 0, (xj , yk) ∈ γ1), and coinciding with
vγ on γ: v|γ ≡ Trγv = vγ .
Let us recall the proof for the reader’s convenience (for the general proof and discussion, see [49, 50, 48]).
Proof: Let us define the sets N+ := N , Ω− := Ω0\Ω, M− := (xj , yk) ∈ Ω−, and N− := {⋃j,kNj,k|(xj , yk) ∈
M−}. Recall that, πN+ denotes the restriction operator to the set N := N+, ΠN1γvγ is the arbitrary
extension vγ to N1, and χM− is the characteristic function of set M−.

Let us notice now that the difference potential, Def. 2.4, can be represented in the following operator
form:

u = PN+γvγ = πN+L−1
∆t,h[χM−L∆t,h[vγ ]],

where vγ is extended by zero outside of set γ to N1\γ. Now, let us represent the arbitrary function z defined
on N1, such that: z = ΠN1γvγ , as the sum of the three terms

z = χN1\N+z + χN1\N−z + vγ .
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Notice that, for the first term χM−L∆t,h[χN1\N+z] = L∆t,h[χN1\N+z], and for the second term
χM−L∆t,h[χN1\N−z] = 0. From this we obtain that

πN+L−1
∆t,h[χM−L∆t,h[χN1\N+z]] = πN+L−1

∆t,h[L∆t,h[χN1\N+z]] = 0.

Hence, the only remaining contribution to the potential u is the contribution from the third term :

u ≡ PN+γvγ = πN+L−1
∆t,h[χM−L∆t,h[vγ ]].

�
Next, let us recall [10, 9, 49] and define another operator Pγ : Vγ → Vγ as the trace (or restriction) of

the Difference Potentials PNγvγ on the grid boundary γ: Pγvγ := TrγPNγvγ = PNγvγ |γ . We now state an
important theorem for the further development of our scheme (see for example [49, 48].) The details of the
general proof can be found in [49]:
Theorem 2.6. At each time level ti+1, density vγ ∈ Vγ is the trace of some solution
u := uN ∈ N : vγ = TrγuN ≡ uγ to the homogeneous equation

L∆t,h[u] = 0, (xj , yk) ∈M (2.20)

if and only if we have

Qγvγ := vγ −Pγvγ = 0, (xj , yk) ∈ γ. (2.21)

Moreover, the solution uN defined on the set N can be reconstructed from its boundary value vγ using the
formula u := PNγvγ .
Remark: It can be shown that Pγ is the projector, hence Vγ = ImPγ ⊕KerPγ .

Thus, Theorem 2.6 implies that the problem of finding a unique solution to (2.20) subject to the appro-
priate approximation of the boundary conditions on ∂Ω denoted by l(u) = ψ, in other words the problem:

L∆t,h[u] = 0, (2.22)

l(u) = ψ, (2.23)

is equivalent to the problem of finding the unique density function vγ ≡ uγ from the system of the Boundary
Equations:

Qγvγ = 0, (2.24)

l(PNγvγ) = ψ. (2.25)

After that, at each time level the solution uN to (2.22)-(2.23) is reconstructed from uN = PNγvγ .
Remark: Let us note that the equation (2.24) can be viewed as the generalized Poincaré-Steklov interface

equation.
From the above discussion and, in particular, from Theorem 2.6 and from (2.24) - (2.25), the next result

follows:
Proposition 2.7. At each time level ti+1, the approximation uN to the solution u of the (IVP) problem
(2.5), (2.2) - (2.3) in domain Ω can be obtained as

uN = PNγvγ + ūN , (2.26)

l(v + ū) = ψ, (2.27)

where ūN is the approximation of any particular solution to the inhomogeneous equation (2.5) in Ω̄, at
the given time level ti+1. vN := PNγvγ is the difference potential in Ω̄ at the same time level ti+1, with
a density vγ that satisfies equation (2.24): Qγvγ = 0. Equation (2.27) denotes the approximation of the
boundary condition l(u) = ψ on ∂Ω, and the representation of the boundary conditions in the form (2.27)
can be viewed as the consequence of the equality (2.26) and (2.24) (projected on the continuous boundary).
Finally, define ūγ := Trγ ūN .
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Remark: Let us mention that in (2.26), we can consider any particular solution: Let ūN be some solution

to L∆t,h[ūN ] = gu, (xj , yk) ∈M . We extend the solution arbitrarily to N1, and we will apply operator L∆t,h

to the extended solution ūN1 . Hence, we will get the right-hand side of the equation L∆t,h[ūN1 ] = g, which
coincides on M with gu. For example, we can construct the particular solution ūN as follows:

Definition 2.8. Define, ū to be the solution f of the auxiliary problem (DAP, Def. 2.3) with the right
hand-side defined as

g :=

{
gu, (xj , yk) ∈M,
g̃u, (xj , yk) ∈M1\M (2.28)

where gu is given in (2.15) and g̃u is some extension of gu to M1\M . Set ūN := πN ū. This point will be

discussed in more details in Section 5.

Remark: Finally, let us comment briefly about the accuracy in space of the approximation uN =
PNγvγ + ūN in (2.26)-(2.27), to the solution u of (2.5), (2.2) - (2.3). One would expect that the solution
uN will converge to the continuous solution u in the discrete Hölder norm of order q + ε (with the arbitrary
0 < ε < 1), with the rate O(hp−ε) as h → 0. Here, p is the order of the accuracy of the approximation
of the continuous differential operator L∆t by the discrete operator L∆t,h (we assume that the boundary
condition (2.2) is approximated by (2.27) with the same or a higher order than p). Hence, for the central
finite difference scheme that is discussed here, we will expect the O(h2) rate in the maximum norm in space.
For a more detailed and general discussion, and the proof of the accuracy of the (DPM) method, the reader
can consult [49, 34].

Remark: Let us emphasize that one could develop any other numerical approximation in space (such as

high-order finite difference, finite-volume, finite element, or spectral methods) for (2.1) within the presented
framework of the potentials and of the difference potentials. But for our goals in this paper, we will consider
the second order finite-difference approximation for the model equation (2.5).

3. Algorithms Composition Approach based on the Difference Potentials Method
We will now develop, as well as numerically test the Algorithms Composition Approach for a parabolic

model under consideration (2.5), (2.2) - (2.3).
We start the introduction of the scheme and the illustration of the ideas by considering the system (2.5),

(2.2) - (2.3) (or formulation (2.9) in its time-discrete form) in some composite domain Ω. Ω is an arbitrary
bounded domain in R2 with the boundary ∂Ω, and such that it consists of two disjoint subdomains Ω1 and
Ω2: Ω = Ω1 ∪ Ω2, Γ = Ω1 ∩ Ω2, with piecewise smooth boundaries Γ1 := ∂Ω1 ∪ Γ and Γ2 := ∂Ω2 ∪ Γ (see
Figure 3.1). We would like to also emphasize that the two subdomains are considered here only for the

Ω

Γ

Ω

Ωδ

1

2

Fig. 3.1: Sketch of domain Ω with boundary ∂Ω, two subdomains Ω1, Ω2, and the interface Γ.

simplicity of the presentation. The discussed idea can be extended in a straightforward way to multiple
subdomains or composite domains.
Our goal at each time level ti+1 is to find an approximations to ui+1 in domain Ω:

ui+1
Ω :=

{
ui+1

Ω1
, (x, y) ∈ Ω1,

ui+1
Ω2

, (x, y) ∈ Ω2,
(3.1)
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where ui+1
Ωp

(here p = 1, 2) are the solutions to (2.9) in each subdomain Ωp:

L∆t[u
i+1
Ωp

] = G
uΩp

∆t , (x, y) ∈ Ωp, and (p = 1, 2). (3.2)

Solution ui+1
Ω is subject to the appropriate boundary conditions on the boundary ∂Ω of the original domain

l(ui+1
Ω ) = ψi+1, (3.3)

and to the interface conditions on the interface boundary Γ, which we will select to be the following:

lΓ(ui+1
Ω1

, ui+1
Ω2

) :=

{
ui+1

Ω1
= ui+1

Ω2
, (x, y) ∈ Γ,

∇ui+1
Ω1
· nΓ = β∇ui+1

Ω2
· nΓ, (x, y) ∈ Γ.

(3.4)

Here, nΓ is a unit outward normal vector to the interface boundary Γ (with respect to Ω1). To develop our
idea, we will consider the difference potentials scheme (2.26) - (2.27) from Section 2.1 (which uses Backward
Euler in time and central finite difference space discretization) as the fully discrete approximation of (2.5),
(2.2) - (2.3) in each subdomain Ωp, and we will build an algorithm for the approximation of ui+1

Ω in (3.1)
based on the algorithms composition idea. As before, we will remove below the explicit dependence on time
for the clarity of the presentation.

First, as we have done in (Section 2.1) for the single domain Ω, we will introduce auxiliary difference
problems for each subdomain Ωp, (p = 1, 2): we will place each of the original subdomains Ωp in the auxiliary
domains Ω0

p ⊂ R2, (p = 1, 2). As before, the choice of each domain Ω0
p should be convenient for computations,

and the choice of these auxiliary domains do not need to depend on each other. Again, for each subdomain,
we will proceed in a similar way as we did in (Section 2.1). For each Ω0

p we will introduce, for example, a
Cartesian mesh (again the choice of the meshes for the auxiliary problems in each subdomain can be totally
independent. The choice for each subdomain is based on the considerations of the efficiency and simplicity
of the resulting discrete problems.) After that, all the definitions, notations, and properties introduced in
(Section 2.1) extends to each subdomain Ωp in a direct and straightforward way: we will use index p, (p = 1, 2)
to distinguish each subdomain.

The cornerstone of our approach is the following proposition, which is a consequence of Proposition 2.7
in Section 2.1 for a single domain.
Proposition 3.1. At each time level ti+1, the fully discrete approximation uNp to the solution uΩp , (p = 1, 2)
in (3.2) - (3.4) is obtained as

uNp = PNpγpvγp + ūNp , (3.5)

l(vΓ1
+ ūΓ1

,vΓ2
+ ūΓ2

) = ψ, (3.6)

lΓ(vΓ1
+ ūΓ1

,vΓ2
+ ūΓ2

) = φ, (3.7)

where ūNp is the approximation of the particular solution to the inhomogeneous equation (2.5) in each

subdomain Ωp at the given time level ti+1. PNpγpvγp is the difference potential with a density vγp in each

domain Ωp at the same time level ti+1. Expressions in (3.6)-(3.7) denote the approximations of the boundary
and interface conditions, respectively, on the continuous boundaries ∂Ω1, ∂Ω2, and interface boundary Γ (in
other words on the boundaries Γ1 and Γ2). Denote ūγp = Trγp ūN . The construction of (3.6)-(3.7) will be
discussed in more detail in Section 3.2. Density/trace vγp in the equation (3.5) ranges over the solution of
the Boundary Equation on each discrete grid boundary set γp:

Qγpvγp ≡ vγp −Pγpvγp = 0, (3.8)

see (2.24) in Section 2.1. However, there are multiple solutions (vγ1
, vγ2

) to (3.8), and as before, the unique
pair of the densities/traces vγ1 ∈ Vγ1 and vγ2 ∈ Vγ2 will satisfy the above Boundary Equation (3.8), as well
as the boundary and interface conditions (3.6) - (3.7).

3.1. System of Boundary Equations: Weak Formulation
At each time level, the unique pair of the densities/traces (vγ1

, vγ2
) ≡ (Trγ1

vN1
, T rγ2

vN2
) ∈ Vγ1

× Vγ2
of

the approximation (3.5)-(3.7) is the unique solution to the Boundary Equation (3.8), subject to the boundary
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and interface conditions (3.6) - (3.7). There are different ways to solve (3.8) subject to (3.6) - (3.7). One
possibility is to directly consider the original formulation (3.8) and employ finite difference approximation
of the boundary and interface conditions (3.6) - (3.7) (see for example [10, 49] for more details on this
approach). However, to avoid the difficulties associated with the finite difference approximations of (3.6)
- (3.7) in arbitrary domains, we will take advantage of the weak formulation of (3.8) and the spectral
approximation of the Cauchy data.

To define a weak formulation, let us first introduce the discrete norm for the space of grid functions
vγp ∈ Vγp . Similar to [48], we will consider the following norm:

||vγp ||2Vγp := h
[∑

|vν |2 + α
∑∣∣∣vν1+1,ν2

− vν
h

∣∣∣
2

+ α
∑∣∣∣vν1,ν2+1 − vν

h

∣∣∣
2]
, (p = 1, 2). (3.9)

Here, the sum is extended over all ν := (ν1, ν2) ∈ γp for the first term in (3.9), over all ν := (ν1, ν2) that,
together with (ν1 + 1, ν2) belong to γp in the second term of (3.9), and over all ν := (ν1, ν2) that, together
with (ν1, ν2 + 1) belong to γp in the third term of (3.9). α is a nonnegative coefficient which will be defined
in the numerical experiments.
Remark: The norm (3.9) is the discrete analog of the continuous norm for the Cauchy data vΓp ∈ VΓp :

||vΓp ||2VΓp
:=

∫

Γp

[
|v0
p(s)|2 + α

(∣∣∣
dv0
p(s)

ds

∣∣∣
2

+ |v1
p(s)|2

)]
ds (3.10)

Let us introduce ṽΓp ∈ ṼΓp as a finite dimensional approximation of the continuous Cauchy data vΓp ∈ VΓp :

ṽΓp :≈ vΓp , and ṼΓp as the finite dimensional subspace of VΓp . The details on the construction of the
approximation ṽΓp will be presented in Section 3.2. Finally, let us also introduce

Definition 3.2. Let ΠγpΓp be the operator that, to every vΓp ≡ (v0
p(s), v1

p(s)) from the space of continuous
Cauchy data VΓp , assigns vγp from the space of the discrete densities Vγp , (p = 1, 2):

vγp = ΠγpΓpvΓp , (3.11)

Moreover, we have from Def. 3.2 that for ṽΓp ∈ ṼΓp , we can define ṽγp ∈ Vγp to be:

ṽγp := ΠγpΓp ṽΓp (3.12)

The exact form of the operator ΠγpΓp will be given in (3.22) - (3.23) in Section 3.2 as well.
Therefore, the weak formulation of the Boundary Equations (3.8) subject to (3.6)-(3.7) is formulated as

follows:

Definition 3.3.
At each time level, find (ṽΓ1

, ṽΓ2
) ≡ (ũΓ1

, ũΓ2
) ∈ ṼΓ1

× ṼΓ2
that minimizes the functional

||l(ṽΓ1
+ ˜̄uΓ1

, ṽΓ2
+ ˜̄uΓ2

)− ψ||2Φ + ||lΓ(ṽΓ1
+ ˜̄uΓ1

, ṽΓ2
+ ˜̄uΓ2

)− φ||2Φ +

2∑

p=1

||QγpΠγpΓp ṽΓp ||2Vγp , (3.13)

where || · ||Φ is the Hilbert norm, ṼΓ1
, and ṼΓ2

are finite dimensional subspaces of VΓ1
and VΓ2

, respectively,

and (˜̄uΓ1
, ˜̄uΓ2) are the finite dimensional approximations of (ūΓ1

, ūΓ2
) (it is a pair of the Cauchy Data of

the particular solution (ūN1 , ūN2)). This finite dimensional approximation is discussed in Section 3.2.
Therefore, at each time level, the unique pair of the densities/traces (vγ1 , vγ2) ∈ Vγ1 × Vγ2 of the approx-

imation (3.5)-(3.7) to the solution (3.1) of (2.5), ( 2.2)-( 2.3) in the composite domain Ω is obtained as the
approximation:

(vγ1 , vγ2) ≈ (ṽγ1 , ṽγ2) = (Πγ1Γ1 ṽΓ1 ,Πγ2Γ2 ṽΓ2). (3.14)

3.2. System of Boundary Equations: Discretization of the Cauchy Data
As before, we will assume that the solution is given at a fixed time level and we will suppress the explicit

dependence on time for the clarity of the presentation.

12



Ω
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Fig. 3.2: Example (a sketch) of the geometry with the curve boundary Ω; point (x?j , y
?
k) is in the set γex ∈M ,

dj∗,k∗ is the distance from this point to the boundary of the domain Ω, and sj?,k? is the corresponding arc
length.

1. As we already showed in Sections 3 - 3.1, at each time level, the problem of finding the approximation
to the unique solution uΩ := (uΩ1

, uΩ2
) of the model (2.5), (2.2) - (2.3) in composite domain

Ω ≡ Ω1 ∪ Ω2 reduces to the problem of finding the unique pair of the densities/traces (vγ1
, vγ2

) ≡
(uγ1 , uγ2) ∈ Vγ1 × Vγ2 (3.14). This pair of the densities/traces satisfies the generalized Poincaré-
Steklov interface equations (3.8), as well as the boundary and interface conditions (3.6) - (3.7).

2. After that, the approximation of the solution (uΩ1
, uΩ2

) of (2.5), ( 2.2)-( 2.3) in Ω̄ is reconstructed
from the approximated densities (ṽγ1

, ṽγ2
) ∈ Vγ1

× Vγ2
using the pair of difference potentials

(PN1γ1 ṽγ1 ,PN2γ2 ṽγ2), see equation (3.5).
In order to solve for the unknown densities/traces in Step 1 above, we will consider a weak formulation

Def. 3.3, Section 3.1, and we will employ a spectral approach for the approximation (3.14) of (vγ1
, vγ2

) as
elaborated below.

Consider a set of basis functions on the curve boundaries Γ1 and Γ2:

φ1(s), ..., φL(s), and φ?1(s), ..., φ?L(s) (3.15)

where s is the arc length and L is the total number of the basis functions. We will consider here the
same basis functions on all parts of the boundaries, although in general, the basis functions can be selected
differently for the different parts of the boundaries. In general, this choice will depend on the smoothness of
the boundary of the domains and on the smoothness of the solution.
Next, we will assume that for every sufficiently smooth single-valued periodic function f(s) defined on the
boundaries Γ1 and Γ2, the sequence

εL := min
u0
p`,u

1
p`

∫
[|f(s)−

L∑

`=1

u0
p`φ`(s)|2 + |f ′(s)−

L∑

`=1

u1
p`φ

?
` (s)|2]ds (3.16)

tends to zero with increasing L: lim εL = 0 as L → ∞.
Therefore, we will employ the following approximation to construct finite-dimensional ṽΓp ∈ ṼΓp :

ṽΓp :=
( L∑

`=1

u0
p`φ`,

L∑

`=1

u1
p`φ

?
`

)
, (3.17)

that discretize the elements vΓp ∈ VΓp from the space of continuous Cauchy Data on the boundary Γp,
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p = 1, 2:

vΓp := (v0
p(s), v1

p(s)), (3.18)

and we have

ṽΓp :≈ vΓp . (3.19)

In (3.17), φ` ≡ (φ`, 0) is the set of basis functions for the first component of the Cauchy data v0(s), and
φ?` ≡ (0, φ?` ) is the set of basis functions for the second component of the Cauchy data v1(s), ` = 1, ...L. In
our numerical experiments, we will consider the same set of basis functions for both components φ` ≡ φ?` .
The coefficients (u0

p`, u
1
p`) with p = 1, 2 and ` = 1, ...L, are the unknown expansion coefficients that need to

be determined.
To obtain the approximation of the discrete densities/traces vγp , (p = 1, 2) at the points (xj , yk) ∈ γp, we

will consider the following Taylor expansion:

vγp ≡ vNp(xj , yk)|γp = v0
p(sj,k) + dj,kv

1
p(sj,k) +O(d2

j,k). (3.20)

Here, sj,k is the value of the arc length s at the point where the continuous boundary Γp intersects the normal
constructed from the point (xj , yk) ∈ γp to Γp. The parameter dj,k is the shortest distance from (xj , yk) ∈ γp
to the intersection point sj,k of the normal with Γp. dj,k is taken with the plus sign if (xj , yk) ∈ Ωp, and
with a minus sign if (xj , yk) /∈ Ωp, see Figure 3.2. Thus, we have

vγp ≈ v0
p(sj,k) + dj,kv

1
p(sj,k). (3.21)

Let us recall the operator ΠγpΓp , Def. 3.2, Section 3.1 that assigns vγp , (p = 1, 2) to every vΓp ≡ (v0
p(s), v1

p(s))
from the space of continuous Cauchy data. We will construct such an operator ΠγpΓp according to the above
Taylor formula (3.21), hence:

vγp ≈ ΠγpΓpvΓp , (3.22)

ΠγpΓpvΓp := v0
p(sj,k) + dj,kv

1
p(sj,k). (3.23)

For example, if vΓp = (v0
p(s), 0), then we have that ΠγpΓpvΓp = v0

p(sj,k). Similarly, if vΓp = (0, v1
p(s)),

then the action of the operator ΠγpΓp is given as ΠγpΓpvΓp = dj,kv
1
p(sj,k). Thus, we have the following

finite-dimensional approximation for the discrete density vγp ∈ Vγp :

vγp ≈ ṽγp = ΠγpΓp ṽΓp =

L∑

`=1

(
u0
p`(ΠγpΓpφ`) + u1

p`(ΠγpΓpφ
?
` )
)
, (p = 1, 2) (3.24)

where ṽγp is as defined previously in (3.12), Section 3.1.
It follows that the approximation of the density/trace vγp is the function of the unknown coefficients u0

p`

and u1
p` which need to be determined. Once the expansion coefficients u0

p` and u1
p` are obtained, the density

ṽγp ≈ vγp ≡ uγp is reconstructed using formula (3.24).

3.3. System of Boundary Equations: Discrete Variational Formulation
As we showed in Section 3, densities/traces (vγ1

, vγ1
) range over the solutions of the Boundary Equation

(3.8) on each discrete grid boundary set (γ1, γ2). Therefore, using the above approximation (3.24) for vγp in
the system of Boundary Equations (3.8), we will obtain the system of linear equations with |γp| equations
for 2L unknowns u0

p := (u0
p1, ..., u

0
pL), u1

p := (u1
p1, ..., u

1
pL):

B0
pu

0
p +B1

pu
1
p = 0, (p = 1, 2). (3.25)

Here, |γp| is the total number of points in the set γp (p = 1, 2) and (u0
1`, u

1
1`), (u0

2`, u
1
2`) are the unknown

expansion coefficients of (ṽΓ1 , ṽΓ2) (3.19). Matrices B0
p and B1

p are defined as B0
p := (b0

p1, ...,b
0
pL) and

B1
p := (b1

p1, ...,b
1
pL). Here, columns b0

p` and b1
p` are |γp| dimensional vectors whose components are computed

as the values at the points of the set |γp| of the grid functions Qγp [ΠγpΓpφ`] and Qγp [ΠγpΓpφ
?
` ], respectively.

For more a detailed discussion on the computation of these matrices please see Appendix Section 7.
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Notice that the linear system (3.25) will be the overdetermined linear system since we have to have
|γp| > L for the accurate resolution of the density vγp . Finally, let us define

Gp(ṽΓp) := ||Qγp [ΠγpΓp ṽΓp ]||2Vγp = ||B0
pu

0
p +B1

pu
1
p||2Vγp , (p = 1, 2) (3.26)

Therefore, at each time level ti+1 we have the following discrete variational formulation of (3.13):

Definition 3.4. Find the unique weak solution pair (ṽΓ1
, ṽΓ2

) ∈ ṼΓ1
× ṼΓ2

for which the constants (u0
1`,

u1
1`) and (u0

2`, u
1
2`) with ` = 1, ...,L minimize the functional:

||l(ṽΓ1
+ ˜̄uΓ1

, ṽΓ2
+ ˜̄uΓ2

)− ψ||2Φ + ||lΓ(ṽΓ1
+ ˜̄uΓ1

, ṽΓ2
+ ˜̄uΓ2

)− φ||2Φ +

2∑

p=1

Gp(ṽΓp). (3.27)

Here, ˜̄uΓp is equal to ˜̄uΓp :=
(∑L

`=1 ū
0
p`φ`,

∑L
`=1 ū

1
p`φ

?
`

)
, and the coefficients (ū0

p`, ū
1
p`) are obtained using

the values of the particular solution ūNp at the points of the set γp, in other words using ūγp ≈ ΠγpΓp
˜̄uΓp .

The values ūγp are known values since the particular solution ūNp is constructed as the solution of the
simple auxiliary problem ((DAP, Def. 2.3), Section 2.1) (for more details see the Remark and Def. 2.8 after
Proposition 2.7 in Section 2.1, as well as discussion in Section 5). Formulation (3.27) is the well-known
least-square problem.

4. Algorithm
In this section, we will give brief summary of the important steps of the Algorithms Composition Scheme

for the model problem (2.5), (2.2) - (2.3) in the composite domain Ω̄ = Ω̄1 ∪ Ω̄2. As it was derived in
Sections 3.1 - 3.3, our algorithm will be based on the discrete variational formulation (3.27). Let us note
a few important points of the method we developed. Firstly, the order of the operations of the proposed
framework does not increase with the choice of the numerical discretization used with it. Moreover, the
overall complexity of the method reduces to the several solutions of simple auxiliary problems on regular
Cartesian meshes (no need for the generation and storage of the unstructured meshes; no need for the design
of the schemes on the unstructured meshes). Finally, the selection of the auxiliary problems and meshes for
each domain Ωp is totally independent of each other, and is done based on the idea of the simplicity and
efficiency of the resulting numerical scheme.

We have the following steps at each time level:
1. Construct a discrete functional Gp(ṽΓp) ≡ ||B0

pu
0
p + B1

pu
1
p||2Vγp for each domain Ωp, (p = 1, 2).

This functional is the weak formulation of the Boundary Equation (3.8) (note that the minimum
of Gp(ṽΓp) gives an approximation to the Cauchy data of the general solution to the homogeneous
equation in each subdomain).
To build Gp(ṽΓp):
• Select the auxiliary domain denoted here as Ω0

Gp
, and place the original domain Ωp into the

auxiliary domain for the computation and construction of Gp(ṽΓp), (p = 1, 2). The choice of
the auxiliary domain Ω0

Gp
should be convenient for computation, so we will choose it to be a

square. Select Cartesian mesh 2np × 2np for each of the auxiliary domains Ω0
Gp

, with np being

a positive integer and (p = 1, 2).
• Recall that ṽΓp ∈ ṼΓp is the finite dimensional approximation of the continuous Cauchy data

vΓp ∈ VΓp (see formula (2.6) in Section 2, as well as (3.19) in Section 3.2), and it is constructed
using the set of the basis functions φ`(s) for the first component of the Cauchy data, as well
as the set of the basis functions φ?` (s) for the second component of the Cauchy data (formula

(3.17), Section 3.1) : ṽΓp :=
(∑L

`=1 u
0
p`φ`,

∑L
`=1 u

1
p`φ

?
`

)
.

• Construct matrices B0
p and B1

p for each domain. This construction reduces to the computation
of the difference potentials (or to the solution of the simple auxiliary problems).

Remark: However if time step will not change during the simulations, and if the geometry,

the grid, and the system of basis functions (3.15) will not depend on time, then it will suffice
to precompute matrices B0

p and B1
p once and to store them.

See details in Section 3.3 and in Appendix Section 7.
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2. Next, choose the new auxiliary domain denoted as Ω0
ūp and place the original domain Ωp into the

auxiliary domain for the computation of the particular solution ūNp , (p = 1, 2). As before, the
choice of the auxiliary domain Ω0

ūp should be convenient for computation, so we will choose it to be

a square. Select Cartesian mesh 2mp × 2mp for the auxiliary domain Ω0
ūp , where mp is a positive

integer. Find any particular solution ūNp , (p = 1, 2) as the solution of the simple auxiliary problem
(see Remark and see Def. 2.8 after Proposition 2.7 in Section 2.1, as well as the discussion at the
beginning of Section 5). After that, calculate their Cauchy data on Γp, (p = 1, 2).

3. Solve the joint discrete variational problem: find Cauchy data ṽΓp ∈ ṼΓp , (p = 1, 2) that minimizes
the functional (3.27), Section 3.3:

||l(ṽΓ1
+ ˜̄uΓ1

, ṽΓ2
+ ˜̄uΓ2

)− ψ||2Φ + ||lΓ(ṽΓ1
+ ˜̄uΓ1

, ṽΓ2
+ ˜̄uΓ2

)− φ||2Φ +

2∑

p=1

Gp(ṽΓp).

Remark: Let us note that if the Dirichlet to Neumann map is well defined for the problem, then

one can solve the overdetermined linear system (3.25) for the unknowns u1
p := (u1

p1, ..., u
1
pL) in terms

of u0
p := (u0

p1, ..., u
0
pL) using the least squares method:

B0
pu

0
p +B1

pu
1
p = 0, (p = 1, 2),

This step can be viewed as the construction of the Dirichlet to Neumann map: to each set u0
p assign

a set u1
p that minimizes Gp(ṽΓp). In this case, the general solution in each Ωp will be approximated

by a difference potential whose density will depend only on u0
p.

4. Using the obtained Cauchy data ṽΓp , construct ṽγp ≈ ΠγpΓp ṽΓp , Section 3.2. After that, extend the
computed densities ṽγp from the grid boundaries γp to the interior of each domain Ωp by computing
difference potentials PNp ṽγp in each domain Ωp.
At each time level reconstruct the desired approximation to the model (2.5), (2.2) - (2.3) in the
composite domain Ω̄ using the discrete generalized Green’s formula:

uNp = PNpγp ṽγp + ūNp , (p = 1, 2)

(see Proposition 3.1 and equation (3.5) in Section 3.)
Remark: Let us emphasize the important flexibility of the algorithm to choose different auxiliary

domains Ω0
Gp

and Ω0
ūp for the computations of the projection and of the particular solution. This

provides an opportunity to consider different grids and combine different discretizations if necessary.

5. Numerical Examples
In this section, we demonstrate the performance of the proposed Algorithms Composition Approach on

several test problems. In the numerical experiments below, we consider the set of the basis functions on
Γp, (p = 1, 2) that is defined as:

φp,1(s) = 1, φp,2(s) = cos
( 2π

|Γ|s
)
, φp,3 = sin

( 2π

|Γ|s
)
, ...

φp,2N (s) = cos
( 2π

|Γ|N s
)
, φp,2N+1 = sin

( 2π

|Γ|N s
)

(5.1)

We assume that the sets φ ≡ φ? in the numerical examples below. In all of the tests, we will consider the
heat equation (2.5) in the composite domain Ω̄ ≡ Ω̄1 ∪ Ω̄2 as our model problem. Here, the heat equation
serves as a simplified model for more realistic systems of the materials, fluids, or chemicals with different
properties in different parts of the domains (for example, the ocean-atmosphere models, chemotaxis models,
or blood flow models [2, 36, 43, 42]). We consider equation (2.5) with the known analytical expressions for
the exact solutions. This allows us to study the errors in the approximate solutions that will depend on the
size of the auxiliary domains, mesh sizes, total number of the basis functions on Γp, etc.

Similar to [48], we will first define three functions

u(1)(x, y) := cos(x) cos(y), (5.2)
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u(2)(x, y) := sin(c1x) sin(c2y)P5(ρ/0.9), (5.3)

and

u(3)(x, y) := max
( 1− ρ2

1 + 4ρ2
, 0
)
. (5.4)

Here, the Cartesian coordinates (x, y) of points are related to their polar coordinates (r, θ) as (x, y) =
(r cos(θ), r sin(θ)). The interface boundary Γ ≡ Γ2 of the domain Ω2 is parametrically defined in polar
coordinates (r, θ) by the relation r(θ) ≡ rΓ(θ) = 1 + 0.22 sin(kθθ), where kθ is the parameter. ρ = r/rΓ(θ)
in (5.3) - (5.4). See Figures 5.1 - 5.4 for the examples of the domains that are used in the numerical tests
below.

The function P5(x) is continuous: identically equal to 1 for x ≤ 0; vanishes for x ≥ 1 and, on the interval
0 ≤ x ≤ 1, it is a unique ninth-degree polynomial whose derivatives up to the fourth order vanish at the
endpoints of 0 ≤ x ≤ 1:

P5(x) :=





1, x ≤ 0,
1− 126x5 + 420x6 − 540x7 + 315x8 − 70x9, 0 ≤ x ≤ 1,
0, x ≥ 1.

(5.5)

Let us note that due to the multiplier P5(ρ/0.9), the function u(2) (5.3) vanishes outside of Ω2 and in a
neighborhood of Γ ≡ Γ2. At the same time, u(2) exhibits strong oscillations deep inside Ω2.
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Figure 2: Sketch of domain Ω with boundary ∂Ω, two subdomains Ω1, Ω2, and the interface Γ

where u denote the solution to the difference scheme (2.15) at each time level. Hence, due to
a uniqueness argument, PNγvγ + fN coincides with the solution uN of the scheme (2.15) on N :
uN = PNγvγ + fN . �

Remark: Finally, let us comment briefly about the space accuracy of the approximation uN =
PNγvγ + fN of (2.25)-(2.26) to the solution u of (2.1) - (2.3). One would expect that the solution
uN will converge to the continuous solution u in the discrete Holder norm of order q + � (with
the arbitrary 0 < � < 1) with the rate O(hp−�) as h → 0. Here, p is the order of the accuracy of
the approximation of the continuous differential operator L∆t by the discrete operator L∆t,h (we
assume that the boundary condition (2.2) is approximated by (2.26) with the same or higher order
than p). Hence, for the central finite difference scheme that is discussed here, we will expect O(h2)
rate in the maximum norm in space. For the detailed discussion and the proof of the accuracy of
the (DPM) method, the reader can consult [7, 4].

3 Algorithms Composition Approach based on the Difference Potentials Method

Below we develop and numerically test the Algorithm Composition Approach for a parabolic model
under consideration (2.1) - (2.3).

We start the introduction of the scheme, and the illustration of the ideas, by considering the
system (2.1) - (2.3) (or formulation (2.8) in its time-discrete form in domain Ω) in some composite
domain Ω - an arbitrary bounded domain in R2 with the boundary ∂Ω - and such that it consists of
two disjoint subdomains Ω1 and Ω2: Ω = Ω1 ∪Ω2, Γ = Ω1 ∩Ω2 with piecewise smooth boundaries
Γ1 := ∂Ω1 ∪ Γ and Γ2 := ∂Ω2 ∪ Γ (see Figure 3). We would like to also emphasize that the two
subdomains are considered here only for the simplicity of the presentation, and that the discussed
idea can be extended in a straightforward way to multiple subdomains or composite domains.
Our goal at each time level ti+1 is to find an approximations to ui+1 in domain Ω:

ui+1
Ω :=

�
ui+1
Ω1

, (x, y) ∈ Ω1,

ui+1
Ω2

, (x, y) ∈ Ω2,
(3.1)

where ui+1
Ωp

(here p = 1, 2) are the solutions to (2.8) in each subdomain Ωp:

L∆t[u
i+1
Ωp

] = G
uΩp

∆t , (x, y) ∈ Ωp, and (p = 1, 2) (3.2)

subject to the appropriate boundary conditions l(ui+1
Ω ) = ψi+1 on the boundary ∂Ω of the original

domain, and to interface conditions on the interface boundary Γ, which we will select to be the
following:

lΓ(ui+1
Ω1

, ui+1
Ω2

) :=

�
ui+1
Ω1

= ui+1
Ω2

, (x, y) ∈ Γ,

∇ui+1
Ω1

· nΓ = β∇ui+1
Ω2

· nΓ, (x, y) ∈ Γ,
(3.3)
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than p). Hence, for the central finite difference scheme that is discussed here, we will expect O(h2)
rate in the maximum norm in space. For the detailed discussion and the proof of the accuracy of
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Fig. 5.1: Test Problem 1: Example of the auxiliary domain Ω0, domains Ω1 and Ω2 and the boundary Γ of
the domain Ω2; parameter kθ = 0

5.1. First Example
In the first example, we will construct our test problem with the analytical solution that is given as,

u(x, y, t) =

{
e−tuΩ1

(x, y) = e−tu(1), (x, y) ∈ Ω1,
e−tuΩ2(x, y) = e−t(u(1) + u(2)), (x, y) ∈ Ω2,

(5.6)

with c1 = c2 = 16 in the formula (5.3). Thus, the solution u(x, y, t) will exhibit strong oscillations inside the
domain Ω2, but none in the domain Ω1. We consider four test problems, Figures 5.1 - 5.4 with kθ = 0 in
the Test Problem 1, Figure 5.1; kθ = 2 in the Test Problem 2, Figure 5.2; with kθ = 3 in the Test Problem
3, Figure 5.3; and with kθ = 5 in the Test Problem 4, Figure 5.4.

We select u(x, y, t) in (5.6) to be the exact solution for the heat equation (2.5), we set time step dt = 1.e−6
for all tests in Section 5.1, we use discrete norm (3.9) with α = 0.5, and we consider time interval [0, 0.01].
In all experiments in this Section, we will choose the auxiliary domains

Ω0
G1
≡ Ω0

ūN1
:= [−2, 2]× [−2, 2],
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than p). Hence, for the central finite difference scheme that is discussed here, we will expect O(h2)
rate in the maximum norm in space. For the detailed discussion and the proof of the accuracy of
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than p). Hence, for the central finite difference scheme that is discussed here, we will expect O(h2)
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than p). Hence, for the central finite difference scheme that is discussed here, we will expect O(h2)
rate in the maximum norm in space. For the detailed discussion and the proof of the accuracy of
the (DPM) method, the reader can consult [7, 4].
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a uniqueness argument, PNγvγ + fN coincides with the solution uN of the scheme (2.15) on N :
uN = PNγvγ + fN . �

Remark: Finally, let us comment briefly about the space accuracy of the approximation uN =
PNγvγ + fN of (2.25)-(2.26) to the solution u of (2.1) - (2.3). One would expect that the solution
uN will converge to the continuous solution u in the discrete Holder norm of order q + � (with
the arbitrary 0 < � < 1) with the rate O(hp−�) as h → 0. Here, p is the order of the accuracy of
the approximation of the continuous differential operator L∆t by the discrete operator L∆t,h (we
assume that the boundary condition (2.2) is approximated by (2.26) with the same or higher order
than p). Hence, for the central finite difference scheme that is discussed here, we will expect O(h2)
rate in the maximum norm in space. For the detailed discussion and the proof of the accuracy of
the (DPM) method, the reader can consult [7, 4].
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the domain Ω2; kθ = 3

for the construction of G1(ṽΓ1), as well as for the computation of the particular solution ūN1 in Ω1 (note
that these auxiliary domains Ω0

G1
and Ω0

ūN1
will coincide with the boundaries of the domain Ω1, see Figures

5.1 - 5.4). At the same time, we will select the auxiliary domain

Ω0
G2

= [−1.6, 1.6]× [−1.6, 1.6]

for the construction of the G2(ṽΓ2
), and we will choose the auxiliary domain

Ω0
ūN2

= [−1.7, 1.7]× [−1.7, 1.7]

for the approximation of the particular solution ūN2
in Ω2. We will use the same Cartesian meshes

2n1 × 2n1 ≡ 2n2 × 2n2 with n1 ≡ n2 = 9,

for the auxiliary domains Ω0
G1

and Ω0
G2
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2m1 × 2m1
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in Ω0

ūN1
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where u denote the solution to the difference scheme (2.15) at each time level. Hence, due to
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assume that the boundary condition (2.2) is approximated by (2.26) with the same or higher order
than p). Hence, for the central finite difference scheme that is discussed here, we will expect O(h2)
rate in the maximum norm in space. For the detailed discussion and the proof of the accuracy of
the (DPM) method, the reader can consult [7, 4].
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where u denote the solution to the difference scheme (2.15) at each time level. Hence, due to
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rate in the maximum norm in space. For the detailed discussion and the proof of the accuracy of
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where u denote the solution to the difference scheme (2.15) at each time level. Hence, due to
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PNγvγ + fN of (2.25)-(2.26) to the solution u of (2.1) - (2.3). One would expect that the solution
uN will converge to the continuous solution u in the discrete Holder norm of order q + � (with
the arbitrary 0 < � < 1) with the rate O(hp−�) as h → 0. Here, p is the order of the accuracy of
the approximation of the continuous differential operator L∆t by the discrete operator L∆t,h (we
assume that the boundary condition (2.2) is approximated by (2.26) with the same or higher order
than p). Hence, for the central finite difference scheme that is discussed here, we will expect O(h2)
rate in the maximum norm in space. For the detailed discussion and the proof of the accuracy of
the (DPM) method, the reader can consult [7, 4].
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where u denote the solution to the difference scheme (2.15) at each time level. Hence, due to
a uniqueness argument, PNγvγ + fN coincides with the solution uN of the scheme (2.15) on N :
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where u denote the solution to the difference scheme (2.15) at each time level. Hence, due to
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system (2.1) - (2.3) (or formulation (2.8) in its time-discrete form in domain Ω) in some composite
domain Ω - an arbitrary bounded domain in R2 with the boundary ∂Ω - and such that it consists of
two disjoint subdomains Ω1 and Ω2: Ω = Ω1 ∪Ω2, Γ = Ω1 ∩Ω2 with piecewise smooth boundaries
Γ1 := ∂Ω1 ∪ Γ and Γ2 := ∂Ω2 ∪ Γ (see Figure 3). We would like to also emphasize that the two
subdomains are considered here only for the simplicity of the presentation, and that the discussed
idea can be extended in a straightforward way to multiple subdomains or composite domains.
Our goal at each time level ti+1 is to find an approximations to ui+1 in domain Ω:

ui+1
Ω :=

�
ui+1
Ω1

, (x, y) ∈ Ω1,

ui+1
Ω2

, (x, y) ∈ Ω2,
(3.1)

where ui+1
Ωp

(here p = 1, 2) are the solutions to (2.8) in each subdomain Ωp:

L∆t[u
i+1
Ωp

] = G
uΩp

∆t , (x, y) ∈ Ωp, and (p = 1, 2) (3.2)

subject to the appropriate boundary conditions l(ui+1
Ω ) = ψi+1 on the boundary ∂Ω of the original

domain, and to interface conditions on the interface boundary Γ, which we will select to be the
following:

lΓ(ui+1
Ω1

, ui+1
Ω2

) :=

�
ui+1
Ω1

= ui+1
Ω2

, (x, y) ∈ Γ,

∇ui+1
Ω1

· nΓ = β∇ui+1
Ω2

· nΓ, (x, y) ∈ Γ,
(3.3)

8

0

Fig. 5.4: Test Problem 4: Example of the auxiliary domain Ω0, domains Ω1 and Ω2 and the boundary Γ of
the domain Ω2; kθ = 5

(hence, h2 := 3.4/2m2) for the computation of the particular solution ūN2 in Ω0
ūN2

, see Tables 5.1 - 5.9.

To compute the particular solution ūN1 in Ω0
ūN1

, we make the smooth extension g̃u ∈ Ω0
ūN1
\Ω1 of the

right-hand side gu = −qi+1 − uiΩ1
(see Def. 2.8) outside of the domain Ω1 (in other words we make a

smooth extension to the entire auxiliary domain/square Ω0, see Figures 5.1 - 5.4). Similarly, to compute the
particular solution ūN2

in Ω0
ūN2

, we make smooth extension of the right-hand side gu = −qi+1−uiΩ2
outside

of the domain Ω2 to the auxiliary domain Ω0
ūN2

. We compute the L2(L∞) (Tables 5.2 - 5.10) and L∞(L∞)

(Tables 5.1 - 5.10) errors respectively:

L2(L∞) := (

Nt∑

i=0

∆t(max
(x,y)
|uicalc − uiexact|)2)1/2,

and

L∞(L∞) := max
(i=0,...,Nt)

(max
(x,y)
|uicalc − uiexact|).

Let us first make a few important remarks about the accuracy of the Algorithms Composition Framework
and validate the developed approach for problems with complex interfaces. We will select a suitable problem
and test the accuracy of the developed approach against the accuracy of the numerical method on the single
and geometrically simple domain. In the current paper we combined the proposed Algorithms Composition
Framework with second-order central finite difference scheme in space and first order Backward Euler scheme
in time: the backward-centered scheme. (However, the developed algorithms composition approach is general.
Future research will include the development of the higher-order space and time discretization within the
proposed Algorithms Composition Framework, see Conclusion Section 6 for a more detailed discussion).
Therefore, the obtained space accuracy is limited by the accuracy of the second order finite difference scheme.
Let us illustrate this point, first using theoretical estimates and then numerically. The complex interface
test problem (5.6) which we consider in this Section can be viewed as the classical solution (without complex
interface) to the heat equation (2.5) in the square domain Ω ≡ [−2, 2]× [−2, 2]. Hence, the solution (5.6) to
(2.5) can be computed approximately using standard backward-centered finite difference scheme for the heat
equation on the single and simple square domain Ω ≡ [−2, 2]× [−2, 2]. Thus we can test the accuracy of our
Algorithms Composition Framework against the accuracy of the “single domain computations”. Moreover,
one would expect that the accuracy of the problem (5.6) with the complex interface will be limited by the
accuracy of “single domain computations”. Let us recall as well, that the theoretical error L∞(L∞) of the
backward-centered finite difference scheme in the square domain with Dirichlet boundary conditions is given
as

max
0≤i≤Nt

max
0≤j,k≤Ns

|u((jh, kh), i∆t)− U ijk| ≤ cT (∆t+ h2), (5.7)
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where c = max{(||∂4u
∂x4 ||L∞(Ω̄×[0,T ]) + ||∂4u

∂y4 ||L∞(Ω̄×[0,T ]))/12, ||∂2u
∂t2 ||L∞(Ω̄×[0,T ])/2}, where u((jh, kh), i∆t) is

the exact solution at the discrete points of the space and time mesh, and U ijk is the approximate solution
obtained by the standard backward-centered scheme. If we now take the smallest mesh size h ≈ 0.0033
(which was used as the smallest mesh size in the problems with complex interfaces below), then by performing
rough estimates using formula (5.7) and expression for the analytical solution (5.6), we can show that the
best accuracy that can be achieved by the backward-centered finite difference scheme on the single and
geometrically simple domain Ω ≡ [−2, 2]× [−2, 2] is about O(10−4)− O(10−5) (note that the second order
continuous piecewise-linear finite element method will result in an error with a similar range). Therefore,
our results in Tables 5.1 - 5.10 (as well as the results in Tables 5.11 - 5.12, and Table 5.13) below will be
limited by the second order space accuracy. We illustrate this point numerically below as well, see Table 5.1.

For the experiment in Table 5.1 we used the settings as described above except in the last two rows of the
table: 2n1 × 2n1 ≡ 2n2 × 2n2 with n1 ≡ n2 = 10 for the auxiliary domains Ω0

G1
and Ω0

G2
, and the time step

was set to dt = 8.e− 7 (instead of 1.e− 6) to avoid the influence of the time discretization error. Notations
in Table 5.1: “Finite Difference” stands for the “single domain computations” approach when solution to
the problem (5.6) viewed as the classical solution (without complex interface) to the heat equation (2.5)
in the square domain Ω ≡ [−2, 2] × [−2, 2], and backward-centered finite difference scheme on the single
and geometrically simple domain Ω ≡ [−2, 2] × [−2, 2] is used to approximate the solution numerically.
Mesh h0 is used everywhere in the domain Ω ≡ [−2, 2]× [−2, 2] for the computation in this “single domain
computations”. “Algorithms Composition Framework” in Table 5.1 is used when we consider (5.6) as the
complex interface problem. Meshes with h1 and h2 are used for the computations of the particular solutions
ūN1 ∈ Ω1 and ūN2 ∈ Ω2, respectively, in the Algorithms Composition Framework. We consider test Problem
3 with 2L = 42 in this experiment with complex interface problem. Notation “ —//—” in Table 5.1 is used
to denote the same value as in the above row.
We see that the accuracy of our Algorithms Composition Framework for complex interface problem (5.6)
does not differ from the accuracy of the “single domain computations”. Moreover, Table 5.1 illustrates
an important flexibility of Algorithms Composition Framework - different meshes can be used in different
subdomains, and the same accuracy is achieved using a much coarser mesh (with bigger size of h) in the
regions/subdomains of the problems where solutions exhibit smaller gradients. This feature of our method is
very important for the future development of the adaptive schemes/simulations for heterogenous problems,
as well as for the parallel computations.

Next, let us continue with more accuracy tests of Algorithms Composition Framework alone using different
curves as the interfaces below (see Tables 5.2 - 5.9). We again observe a second order convergence for the
space discretization for all four test problems from Tables 5.2 - 5.9. Also, there is not much difference in the
results when we change the total number 2L of the basis functions for the approximation of the Cauchy data
from 2L = 42, Table 5.1 to 2L = 22 and 2L = 30, Tables 5.2 - 5.9. This is explained by the low dimension
of the spaces of the Cauchy data uΓ (2.6) of the exact solution u.

Finally, in the last Table 5.10 in this Section, we again consider the test Problem 3 with 2L = 22, but we
fix the mesh size m1 = 7 for the construction of the particular solution ūN1 in the domain Ω0

ūN1
, and we only

vary the mesh size m2. The accuracy of the results is not affected in comparison to the results presented in
Tables 5.2-5.9 with m1 = m2 (this is similar to the performance of Algorithms Composition Framework that is
illustrated in Table 5.1). Again, this is expected due to the highly oscillatory behavior of the solution (5.6) in
the subdomain Ω2, and hence computations of the solution in the subdomain Ω2 requires finer/smaller mesh
sizes. This example again illustrates the advantage of our algorithms composition approach since we have
flexibility to use different meshes in the different parts of the domain, and to solve problems independently
in each domain. This makes the numerical scheme much more computationally efficient and very suitable
for adaptive and parallel computations.

5.2. Second Example
As the second test problem we will again consider the heat equation (2.5), but with the exact solution

given below:

u(x, y, t) =

{
100tuΩ1(x, y) = 100tu(1), (x, y) ∈ Ω1,
100tuΩ2

(x, y) = 100t(u(1) + u(2)), (x, y) ∈ Ω2.
(5.8)

We consider here c1 = c2 = 4 in (5.3). The function u(2) is much less oscillatory now than the one in the
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“Algorithms Composition Framework” “Finite Difference”
m1 m2 h1 h2 L∞(L∞) error of u(x, y) h0 L∞(L∞) error of u(x, y)
6 8 0.0625 0.0133 0.00387 0.0133 0.00388
8 8 0.0156 0.0133 0.00387 0.0133 —//—
7 9 0.0312 0.0066 0.00097 0.0066 0.00097
9 9 0.0078 0.0066 0.00097 0.0066 —//—
8 10 0.0156 0.0033 0.00024 0.0033 0.00024
10 10 0.0039 0.0033 0.00024 0.0033 —//—

Table 5.1. Comparison of the L∞(L∞) Errors for the “Algorithms Composition Framework” (with complex interface:
test problem 3, kθ = 3, number of the basis functions 2L = 42;) and “Classical Approach” (without complex interface) as
functions of the mesh size;

L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 0.00130 0.01523
8 0.00032 4.06 0.00382 3.99
9 0.00008 4.00 0.00096 3.98

Table 5.2. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 22; kθ = 0, Test problem 1

previous Section 5.1.

As before, we set time step dt = 1.e−6 for all tests in Section 5.2, and we consider the same time interval
[0, 0.01]. Here, for the construction of the G1(ṽΓ1), as well as for the computation of the particular solution
ūN1

, we will choose the same auxiliary domains (as in the Section 5.1)

Ω0
G1
≡ Ω0

ūN1
:= [−2, 2]× [−2, 2].

However, we will select the auxiliary domain

Ω0
G2

= [−1.5, 1.5]× [−1.5, 1.5],

for the construction of the G2(ṽΓ2), and we will consider the auxiliary domain

Ω0
ūN2

= [−1.6, 1.6]× [−1.6, 1.6],

for the computation of the particular solution ūN2
. We will use the Cartesian meshes

2n1 × 2n1 ≡ 2n2 × 2n2 with n1 ≡ n2 = 10

for the domains Ω0
G1

and Ω0
G2

, and we will select two different discrete norms (3.9) with α = 0.5 and α = 1.0
for the construction of the G1(ṽΓ1

) and G2(ṽΓ2
). The results are reported in Table 5.11 (α = 0.5) and in

Table 5.12 (α = 1.0). As demonstrated, the results are not affected by the choice of α. The errors that are
reported in Tables 5.11 - 5.12 are smaller than the ones in Tables 5.2 - 5.9. This is again expected due to
the less oscillatory behavior of the function u(2) in (5.8), and due to the choice of the auxiliary problems.

Remark: In the numerical experiments presented in Sections 5.1 and 5.2 we observed the overall second

order convergence of the scheme in space. Let us note that according to the general theoretical results for
a second order differential operator approximated by a discrete one with a second order accuracy [44] (see
also [49]), one would need to consider Taylor expansion in (3.20) with the derivative of order 2 + 2 = 4 to
maintain a second order accuracy of the approximation of the continuous potential by a difference potential.
However, it is also established that in reality this condition can be relaxed (see for example [34] and formula
(3.20) in this paper). We believe that the choice of the norm in the variational formulation (3.13) plays an
important role for the obtained convergence of our method in the considered numerical tests.
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L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 0.00130 0.01523
8 0.00032 4.06 0.00382 3.99
9 0.00008 4.00 0.00096 3.98

Table 5.3. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 30; kθ = 0, Test problem 1

L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 0.00131 0.01534
8 0.00033 3.97 0.00389 3.94
9 0.00008 4.13 0.00097 4.01

Table 5.4. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 22; kθ = 2, Test problem 2

L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 0.00131 0.01534
8 0.00033 3.97 0.00389 3.94
9 0.00008 4.13 0.00097 4.01

Table 5.5. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 30; kθ = 2, Test problem 2

L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 0.00131 0.01540
8 0.00033 3.97 0.00387 3.98
9 0.00008 4.13 0.00097 3.99

Table 5.6. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 22; kθ = 3, Test problem 3

L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 0.00131 0.01540
8 0.00033 3.97 0.00387 3.98
9 0.00008 4.13 0.00097 3.99

Table 5.7. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 30; kθ = 3, Test problem 3

L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 0.00138 0.01588
8 0.00035 3.94 0.00398 3.99
9 0.00009 3.89 0.0010 3.98

Table 5.8. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 22; kθ = 5, Test problem 4

L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 0.00138 0.01588
8 0.00035 3.94 0.00398 3.99
9 0.00009 3.89 0.0010 3.98

Table 5.9. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 30; kθ = 5, Test problem 4
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L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 0.00131 0.01540
8 0.00033 3.97 0.00387 3.98
9 0.00008 4.13 0.00097 3.99

Table 5.10. Errors as functions of the mesh size m2; m1 = 7 is fixed. number of the basis functions 2L = 22; kθ = 3,
Test problem 3

L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
8 0.00001 0.00020
9 2.5e− 6 4.0 0.00005 4.0

Table 5.11. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 22; kθ = 3, α = 0.5, Test
problem 3

5.3. Third Example
As the third test problem we will again consider the heat equation (2.5), but with the exact solution

given below:

u(x, y, t) =

{
e−tuΩ1(x, y) = e−tu(1), (x, y) ∈ Ω1,
e−tuΩ2

(x, y) = e−t(u(1) + u(2) + 1.5u(3)), (x, y) ∈ Ω2.
(5.9)

We consider here c1 = c2 = 1 in (5.3). This test problem (5.9) is more challenging since β(s) 6= 1 in the
interface conditions (3.4) and it will be calculated as

β(s) =
∂uΩ1

∂n

(∂uΩ2

∂n

)−1

(5.10)

As before, we set time step dt = 1.e−6 for the test in Section 5.3, and we consider the same time interval
[0, 0.01]. Here, for the construction of the G1(ṽΓ1), as well as for the computation of the particular solution
ūN1

we will choose the same auxiliary domains (as in the Sections 5.1 - 5.2)

Ω0
G1
≡ Ω0

ūN1
:= [−2, 2]× [−2, 2].

Also, for the construction of the G2(ṽΓ2
) we will select the auxiliary domain

Ω0
G2

= [−1.6, 1.6]× [−1.6, 1.6],

and for the computation of the particular solution ūN2 we will consider the auxiliary domain

Ω0
ūN2

= [−1.7, 1.7]× [−1.7, 1.7].

For the domains Ω0
G1

and Ω0
G2

, we will use the Cartesian meshes

2n1 × 2n1 ≡ 2n2 × 2n2 with n1 ≡ n2 = 10,

and we will select the discrete norm (3.9) with α = 0.5 for the construction of the G1(ṽΓ1
) and G2(ṽΓ2

). The
results are reported in Table 5.13. For this test problem (5.9) we observe that the convergence of our scheme
drops. This could be explained by the jump in the normal derivative of the solution (5.9) at the interface,
by the accuracy limitations of the considered second order finite difference space discretization (used away
from the interface), by the choice of the extension operator (formula (3.23)) , as well as by the first order
time discretization scheme used in this paper within the algorithms composition framework. As the part of
the future research, this result will be improved by considering different time and space discretization within
the developed approach, as well as different choices of the extension operators.
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L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
8 0.00001 0.00020
9 2.5e− 6 4.0 0.00005 4.0

Table 5.12. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 22; kθ = 3, α = 1.0, Test
problem 3

L2(L∞) error of u(x, y) Ratio L∞(L∞) error of u(x, y) Ratio
7 3.3e− 5 0.00051
8 8.3e− 6 3.97 0.00013 3.92
9 3.1e− 6 2.68 4.2e− 5 3.10

Table 5.13. Errors as functions of the mesh size m1 = m2; number of the basis functions 2L = 22; kθ = 0, α = 0.5, Test
problem 1

6. Concluding Remarks

In this work, we developed an efficient and flexible Algorithms Composition Framework based on the idea
of the difference potentials method (DPM) for parabolic problems in composite domains. We illustrated
the accuracy, efficiency, and flexibility of our method with several numerical examples. Here, the parabolic
equation served as the simplified model, and the first step towards future development of the proposed scheme
for more realistic models of materials, fluids, or chemicals with different properties in different domains.

In this work we considered and tested our approach only on the geometries with smooth curvilinear
boundaries. In the future, we plan to extend the proposed method to problems in domains with arbitrary
smooth boundaries and with boundaries with corners. In this respect, the choice of the different basis
functions (3.15) for different parts of the boundaries, as well as the question of the efficient linear solvers for
the scheme (3.13) will be investigated with the goal of designing even more efficient and accurate methods.

Other future investigations will include the extension and further development of the proposed scheme to
problems in physics and biology (see for example [10, 9, 53, 43, 42], [2, 5, 6, 21]), as well as the development
of the space discretization based on the high-order finite difference (see for example [34]), finite-volume (see
for example [22], [7, 10, 9]), finite element methods (see for example [11]), and spectral methods [16] within
the proposed algorithms composition framework. Higher-order time discretization schemes will be studied
as well.
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7. Appendix: Matrix Computation for System of Boundary Equations As we discussed in
Section 3.3 using the approximation (3.24) for vγp in the system of Boundary Equations (3.8), we obtain
the system of linear equations (3.25) with |γp| equations for 2L unknowns u0

p := (u0
p1, ..., u

0
pL), u1

p :=

(u1
p1, ..., u

1
pL):

B0
pu

0
p +B1

pu
1
p = 0, (p = 1, 2).

Once again, here, |γp| is the total number of points in the set γp (p = 1, 2) and (u0
1`, u

1
1`), (u0

2`, u
1
2`) are the

unknown expansion coefficients of (ṽΓ1 , ṽΓ2) (3.19). Matrices B0
p and B1

p are defined as B0
p := (b0

p1, ...,b
0
pL)

and B1
p := (b1

p1, ...,b
1
pL). Columns b0

p` and b1
p` of these matrices are |γp| dimensional vectors. The compo-

nents of the vectors are computed as the values at the points of the set |γp| of the grid functions Qγp [ΠγpΓpφ`]
and Qγp [ΠγpΓpφ

?
` ], respectively. These values of the grid functions

Qγp [ΠγpΓpφ`] ≡ ΠγpΓpφ` −PNγp
[ΠγpΓpφ`]

and

Qγp [ΠγpΓpφ
?
` ] ≡ ΠγpΓpφ

?
` −PNγp

[ΠγpΓpφ
?
` ]

are known and obtained by constructing 2L difference potentials: let us recall that the difference potential
uNp = PNγp

vγp (Def. 2.4, Section 2.1) can be easily constructed in general. The operator PNγp
is the linear

operator of the density vγp . Here, the difference potential

PNγp
[ΠγpΓpφ`], or PNγp

[ΠγpΓpφ
?
` ]

is constructed by solving the simple auxiliary problem ((DAP), Def. 2.3), with the right-hand side given in
(2.19), where density vγp is set to:

vγp := ΠγpΓpφ`? , for (xj , yk) ∈ γp, (7.1)

or to

vγp := ΠγpΓpφ
?
`? , for (xj , yk) ∈ γp, (7.2)

with fixed `? that takes the values from 1 to L. Let us note that for the detailed discussion on the general
construction of the difference potential, one may refer to [49, 10].
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