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Approximating a function with a finite series, e.g., involving polynomials or trigonometric functions, is
a critical tool in computing and data analysis. The construction of such approximations via now-standard
approaches like least squares or compressive sampling does not ensure that the approximation adheres to
certain convex linear structural constraints, such as positivity or monotonicity. Existing approaches that
ensure such structure are norm-dissipative and this can have a deleterious impact when applying these
approaches, e.g., when numerical solving partial differential equations. We present a new framework that
enforces via optimization such structure on approximations and is simultaneously norm-preserving. This
results in a conceptually simple convex optimization problem on the sphere, but the feasible set for such
problems can be very complex. We establish well-posedness of the optimization problem through results
on spherical convexity and design several spherical-projection-based algorithms to numerically compute
the solution. Finally, we demonstrate the effectiveness of this approach through several numerical
examples.

Keywords: structure-preserving emulators; high-order accuracy; quadratic programming; geodesic
convex optimization.

1. Introduction

Approximating an unknown function with a superposition of basis functions (e.g., polynomials or
Fourier series) is a widely -used technique in computing and numerical analysis. For example, when
solving a system of partial differential equations (PDEs), the class of spectral methods proposes
such a superposition ansatz and determines the coefficients through minimization conditions on the
PDE residual. Traditionally, fundamental properties of the approximation, such as stability, accuracy
and computational efficiency are major considerations for the approximations. However, for certain
problems, approximations are required to preserve certain implicit ‘structures,’ i.e., approximations
should inherit certain desirable qualitative features of the original function. Such structure can include
positivity, monotonicity, conservation of energy, etc. An approximation that fails to be structure-
preserving may lead to numerical instability or even the failure of numerical schemes [36]. From the
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2 D. DAI ET AL.

broader viewpoint of building predictive emulators from data, this structure can be crucial to generate
a meaningful emulator; for example, emulators built to predict population trends should not predict
negative values. In this manuscript, we consider building approximations that respect general families of
linear homogeneous convex inequality constraints (for which positivity and monotonicity are examples)
along with a single quadratic equality constraint (an energy constraint).

Based on the existing framework for linear inequality constraints [35], we impose a new spherical
constraint, i.e., a quadratic constraint in addition to the linear constraints. While a seemingly benign
addition, this extra constraint substantially changes the optimization problem and its properties. With a
coordinate vector p̂ provided (e.g., a vector of Fourier coefficients), the formulation we consider in this
paper gives rise to an optimization problem of the form,

min
v̂∈RN

‖̂v − p̂‖2
2

s.t. gk (̂v, y) ≤ 0, ∀y ∈ ωk, k ∈ [K]

‖̂v‖2 = ‖̂p‖2, (1.1)

where the linear constraints are given by the y-parameterized scalar-valued functions gk(·, y) and the
energy-preserving constraint is given by the equality constraint ‖̂v‖2 = ‖̂p‖2. The parameters y can take
values from a (possibly uncountably infinite) set ωk, and hence the feasible set can be very complex.
Generally, the feasible set in (1.1) is the intersection of a finite collection of homogeneous convex
cones and a sphere. The model (1.1) corresponds to a semi-infinite programming (SIP) problem [23]. In
several SIP algorithms, a discrete approximation to the domain ωk is constructed (and perhaps refined).
For linear constraints corresponding to positivity, this would correspond to requiring positivity at only a
finite collection of points on the domain and hence structure is only preserved at a discrete set of points
instead of on the whole domain. An additional difficulty is that the feasible set is a subset on the surface
of a sphere, which is not a convex set in Euclidean space and hence the approaches from [35] do not
apply. Thus, computationally solving (1.1) can be very challenging.

1.1 Related problems and approaches

There is existing literature on the study of optimization over ellipsoids (or spheres), which is closely
related to the solution of the subproblems in the class of trust-region methods [18, 20, 30, 31]. However,
in those approaches, the number of linear constraints is finite, and therefore such approaches are not
directly applicable in our setting.

There are existing energy-preserving numerical methods that focus on energy-conservation of a
Hamiltonian system, where a differential equation is discretized in a special way so that the energy of
the discretized system is preserved, see [5, 10, 21, 29]. However, our focus is to preserve the energy of
the approximation to a given function rather than the energy of a differential equation system, which is
a different problem. In addition, methods built for differential equations assume very particular types of
discretizations; the formulation we investigate in this paper applies to general discretizations.

A number of techniques have been proposed for preserving special kinds of structure for special
choices of basis functions. To ensure positivity preservation, one can simply enforce positivity at a finite
collection of points in the computational domain. The corresponding feasible set is a convex polytope
and there are several algorithms available to computationally solve this problem [6]. Unfortunately,
such techniques do not guarantee positivity of the approximation over the entire domain (a generally
uncountable Euclidean set). An alternative to constraints over a finite set is to use special mappings.
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 3

For example, one can approximate
√

f and square the resulting approximation, or approximate log f
and subsequently exponentiate the approximation in order to guarantee the resulting approximation is
positive. However, such mapping functions are not easy to construct for more complicated constraints,
and the introduction of such maps can affect accuracy; for example, x �→ √

x is not smooth at
x = 0. For univariate polynomial approximation, one can take advantage of the special representations
of nonnegative polynomials (Lukács theorem) to develop optimizations with a finite number of
constraints [8].

In these univariate polynomial approximation methods that leverage Lukács’s theorem, Nesterov
[26] represented the convex cone of nonnegative polynomials over an interval by the linear images
of the cone of positive semidefinite matrices. The corresponding optimization problem can then be
solved by semidefinite programming (SDP) [34]. In [27], Nie and Demmel used the Nesterov’s idea
to determine a rational function satisfying several shape constraints. In [1], Allen and Kirby adapt
the cone representation for Bernstein polynomial basis representation. In particular, they considered
the best L2- approximation and imposed a mass conservation constraint (a linear equality). They also
proposed approximation for multivariate polynomials, but the corresponding feasible set is a subset
(rather than an exact characterization) of the set of all nonnegative polynomials. We also note that there
exists theoretical bounds for structure-preserving univariate polynomial approximations [1, 8, 13]. In
special multivariate polynomial settings with a discrete number of constraints, additional estimates are
possible [22, 25]. In this work, we are interested in the problem with more generality than the previously
mentioned approaches. We allow more general (non-polynomial) basis functions and do not impose any
restrictions for the domain or dimension of the space.

Other approaches include using an adaptive construction scheme for certain kinds of constraints [4]
or linearly scaling the high-order coefficients of the polynomial to limit the oscillations [36]. Finally,
we note that there are existing theoretical investigations for structure-preserving approximation in [2, 3,
14, 28], but these investigations do not translate into algorithms.

Our approach extends the recent technique in [35], which considers building approximations with
linear structure, in the sense that the constraints are linear with respect to the approximant. In [35], the
authors formalize a model for the structure-preserving problem with linear constraints, which applies to
general, nontrivial linear structure. Under a mild condition, the corresponding function approximation
problem can be cast to a semi-infinite convex optimization problem in a finite-dimensional Euclidean
space with a unique solution. In addition, the work in [35] develops several projection-based algorithms
to preserve the desired structures. However, their method, which amounts to filtering the approximation
in a nonlinear manner, does not preserve the L2 norm, and thus is dissipative. The work of this paper
preserves the quadratic (energy) norm through a modified formulation of the problem. This slight
modification results in nontrivial changes to well-posedness and algorithmic development that we
address.

1.2 Contributions of this paper

In this work, we are interested in providing theory and algorithms to address non-dissipative, structure-
preserving function approximation methods of the form (1.1). Using notions of spherical convexity and
spherical projections [16, 17], we show that the corresponding function approximation problem can be
converted to a spherically convex feasibility problem, and establish uniqueness of the solution under
mild conditions, see Theorem 3.1. Based on our theoretical results and by extending algorithms in [35],
we propose three algorithms to solve the spherically convex feasibility problem; see sections 4.2, 4.3,
and 4.4. Our algorithms do not rely on the discretization of the domain and therefore differ from many
existing SIP algorithms [19, 32].
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4 D. DAI ET AL.

The setup of the general problem is as follows: We first assume that the unconstrained approximation
to the unknown function is available, e.g., an unconstrained projection of the unknown function
onto a finite-dimensional subspace. The unconstrained approximation is then post-processed via our
algorithms so that the linear constraints, such as positivity, are satisfied without augmenting or reducing
the quadratic energy of the approximant.

This paper is structured as follows. In Section 2, we give the theoretical framework of the structure-
preserving function approximation problem as well as formalization of the constraints. In Section 3,
we provide a brief overview of spherical geometry and present the uniqueness result of the function
approximation problem. In Section 4, we discuss projections on the sphere and develop two algorithms
for solving the function approximation problem. Finally, in Section 5, we demonstrate the efficacy of
our algorithms with numerical results for polynomial and Fourier series approximations. Our energy-
and structure-preserving results show similar rates of convergence as those of the unconstrained
approximation as the subspace is refined.

2. Setup

Let Ω ⊆ R
d be a spatial domain. Consider the Hilbert space H formed by scalar-valued functions over

Ω with inner product 〈·, ·〉H ,

H = H(Ω) := { f : Ω → R | ‖ f ‖H < ∞}, ‖ f ‖2 := 〈 f , f 〉H ,

A prototypical example is H = L2(Ω;R). Let V ⊆ H be an N-dimensional subspace spanned by
orthonormal basis functions {vn}n∈[N],

V = span{v1, · · · , vN}, 〈vj, vk〉H = δj,k, j, k ∈ [N],

where δj,k is Kronecker delta function, and [N] := {1, · · · , N}. Our numerical examples will be restricted
to d = 1 or d = 2 on a closed interval or a closed rectangle Ω , respectively, but the theoretical
framework we develop holds for general choices of d and Ω .

We assume throughout this document that V has no common zeros on Ω , i.e., that,

∀x ∈ Ω ∃ v ∈ V such that v(x) �= 0.

This assumption is true if, for example, V contains constant functions.

2.1 The unconstrained problem – linear measurements

We assume availability of an unconstrained function approximation scheme from H onto V using a
finite collection of data. In this section, we briefly mention canonical approaches for accomplishing
this via linear measurements, but our optimization problem is independent of how this unconstrained
approximation is formed.

Let u ∈ H be a function about which a finite number of observations {um}m∈[M] := {φm(u)}m∈[M] ⊂
R are available, where φ1, · · · , φM are M linear functionals on H, and are bounded on V . The functionals
can be, e.g., vm-projections 〈·, vm〉 or pointwise evaluations δxm

(·), where δxm
is the Dirac mass centered
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 5

at xm ∈ Ω . An approximation p ∈ V to u is frequently built by enforcing these linear measurements:

Find p =
∑

n∈[N]

p̂nvn satisfying Âp = b, (2.1)

where

(A)m,n = φm(vn), (m, n) ∈ [M] × [N], b = [φ1(u), · · · , φM(u)]� ∈ R
M . (2.2)

The condition M = N is necessary for the problem (2.1) to be well-posed, and so in practice one relaxes
(2.1) in appropriate ways depending on whether the system is under-/over-determined. For example,
with v̂ the vn-coordinates of an element v ∈ V , one could relax (2.1) in the following ways:

(M > N) p̂ = arg min
v̂∈RN

∥∥Âv − b
∥∥

2 (Least squares)

(M = N) p̂ = A−1b (Interpolation)

(M < N) p̂ = arg min
v̂∈RN : Âv=b

‖̂v‖1 (Compressive sampling) (2.3)

where ‖ · ‖p is the �p([N]) norm on vectors. Theory for well-posedness of each of these problems is
mature [9, 12, 15, 33]. The numerical results in this paper utilize the interpolation (M = N) formulation
above for simplicity, but this choice is independent of the theory and algorithms developed in this paper.
The essential idea is that we assume the ability to construct p̂ that, in the absence of linear inequality or
quadratic equality constraints, is considered a good approximation to the original function u based on
available data.

2.2 The constraints

In many practical situations, we require not only a solution to (2.1), but instead a solution that also
obeys certain physical constraints, such as positivity over Ω . The unconstrained approximation (2.1)
need not obey any such constraints, even if the original function u does obey them, which may lead to
unphysical approximations. We therefore consider the problem of imposing these additional constraints.
We consider simultaneously imposing two types of constraints: a (possibly uncountable) set of linear
constraints, along with a single quadratic constraint.

2.2.1 The linear constraints. The constraints we consider in this section are motivated by the
following examples of structural desiderata:

• positivity: p(y) ≥ 0 for all y ∈ Ω ,

• monotonicity: p′(y) ≥ 0 for all y ∈ Ω ,

• convexity: p′′(y) ≥ 0 for all y ∈ Ω .

As it is pointed out in [35], these constraints can be characterized by families of linear constraints
and a unique solution to the linearly constrained problem is guaranteed under some mild assumptions.
Linearity in this context refers to linearity of the constraint with respect to the function p in V . In the
rest of this subsection, we briefly review the abstract formulation introduced in [35].
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6 D. DAI ET AL.

Assume that there are K types of linear constraints (e.g., K = 2 if we simultaneously impose
positivity and monotonicity). For each k ∈ [K], each type of linear constraint is a family defined by
the condition,

Lk(v, y) ≤ 0, ∀y ∈ ωk, (2.4)

where,

• ωk is a subset (possibly containing uncountably many elements) of the spatial domain Ω ,

• Lk(·, y) is a y-parameterized unit-norm element in the dual space V∗.

The feasible set of elements v ∈ V that satisfy (2.4) for the family-k constraint is given by

Ek := {v ∈ V | Lk(v, y) ≤ 0, ∀y ∈ ωk}. (2.5)

Positivity, monotonicity, and convexity can be describes by the abstract formulation (2.4). The linear
feasible set E0 is the set of all v ∈ V that satisfy all K constraints simultaneously, and hence is the
intersection of all the Ek,

E0 :=
⋂

k∈[K]

Ek =
⋂

k∈[K]

{v ∈ V | Lk(v, y) ≤ 0, ∀y ∈ ωk}. (2.6)

Note that E0 is always non-empty since it contains 0.
Since V is N-dimensional, we can identify the feasible set E0 in V with a feasible set in the vn-

coordinate space RN . By the Riesz representation theorem, for any L ∈ V∗, there exists a unique Riesz
representor � ∈ V such that,

L(v) = 〈v, �〉H , ∀v ∈ V .

The function � ∈ V can also be written explicitly using the orthonormal basis {vn}n∈[N],

�(·) =
N∑

n=1

�̂nvn(·), �̂n = 〈�, vn〉 = L(vn),

and the following relation holds,

‖L‖V∗ = ‖�‖V = ‖̂�‖, ̂� = ( �̂1, · · · , �̂N)T.

In what follows we denote the Riesz representor for Lk(·, y) by �k(·, y) and the corresponding coordinate
vector by ̂�k(y) ∈ RN . Since Lk(·, y) is unit-norm, we have

‖Lk(·, y)‖V∗ = ‖�k(y)‖V = ‖̂�k(y)‖ = 1. (2.7)
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 7

Finally, the set Ck ⊆ RN corresponding to the feasible set Ek ⊆ V is given by,

Ck =
⋂

y∈ωk

{̂
v ∈ R

N
∣∣∣ 〈̂v,̂�k(y)

〉
≤ 0
}

=:
⋂

y∈ωk

ck(y), k ∈ [K], (2.8)

and the set C0 ⊆ RN corresponding to E0 is

C0 =
⋂

k∈[K]

Ck. (2.9)

It can be verified that all Ck, k ∈ [K] are closed, convex cones in R
N (and that Ek is a closed convex

cone in V) [35] and thus their intersection C0 is also a convex cone. Note that, although C0 is simply
a convex cone, the geometry of C0 can be very complicated with infinitely many extreme points since
every Ck is the intersection of infinitely many half-spaces ck(y) if the ωk is a set with infinite cardinality,
e.g., ωk is an interval.

Remark 2.1. In [35], an additional rk parameter is introduced to define affine convex cones as feasible
sets. We specialize here to the homogeneous case rk = 0, so that our cones all have vertices at the origin.
If rk �= 0, the problem we consider in this paper is not necessarily well-posed; see Example 2.3.

We summarize one example from [35] to demonstrate the notation and how it can be specialized to
familiar types of constraints.

Example 2.1. (Positivity) Let Ω = [−1, 1] and V be any N-dimensional subspace of L2(Ω)
⋂

L∞(Ω).
We want to impose a positivity-structure for v ∈ V: v(x) ≥ 0, ∀x ∈ Ω . Thus, only K = 1 family is
needed and ω1 = Ω . Fixing y ∈ ω1, the corresponding unit-norm linear operator is given by

L1(v, y) := −λ(y)v(y), λ(y) =
(

N∑
n=1

vn(y)
2

)− 1
2

, (2.10)

where λ(y) is a y-dependent normalization factor. The corresponding y-parameterized Riesz representor
�1(·, y) and its coordinate vector ̂�1(y) are, respectively,

�1(·, y) = −λ(y)
N∑

n=1

vn(y)vn(·), ̂�1(y) = [−λ(y)v1(y), · · · , −λ(y)vN(y)
]� . (2.11)

Once the orthonormal basis is specified, ̂�1(y) can thus be explicitly identified.

2.2.2 Constraints that are “determining” In order to establish uniqueness of the solution to our
quadratic-linear constrained problem, we require an additional condition on the linear constraints
(Lk, ωk) defining C0.

Definition 2.1. The set of constraints (Lk, ωk)k∈[K] is V-determining if

v ∈ V and Lk(v, y) = 0 ∀y ∈ ωk∀k ∈ [K] �⇒ v = 0
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8 D. DAI ET AL.

We will assume V-determining linear constraints, which amounts to a technical assumption about
the geometry of the associated RN-feasible set C0 that we later exploit. The V-determining condition
precludes certain problem setups, but all the practical situations we consider in this paper are V-
determining. As a simple example, to enforce positivity for every point in Ω as in Example 2.1 we
have that L1(v, y) is a scaled point evaluation at y. Therefore, the V-determining condition requires that
if v ∈ V satisfies v(y) = 0 for every y ∈ Ω then v = 0, which is a quite natural condition.

For more intuition, the following lists some additional examples, with Ω = [−1, 1], K = 1, and �1
the normalized point-evaluation operator in Example 2.1,

• If V = span{x j| j = 0, . . . , N − 1} and |ω1| ≥ N, then the linear constraint is V-determining

• If V = span{x j| j = 0, . . . , N − 1} and |ω1| < N, then the linear constraint is not V-determining

• If V = span{x j| j = 1, . . . , N}, and |ω1| ≤ N with 0 ∈ ω1, then the linear constraint set is not
V-determining.

• If V = span{H(x), 1 − H(x)}, with H the Heaviside function, and ω1 = [−1, 0.5], then the linear
constraint set is V-determining.

• If V = span{H(x), 1 − H(x)}, with H the Heaviside function, and ω1 = [−1, −0.5], then the linear
constraint set is not V-determining.

Note that the V-determining condition is violated only for specialized cases, e.g., either when ω1 has
finite cardinality less than N, or when V contains very special types of functions. In all the numerical
examples we consider, the linear constraints are V-determining.

2.2.3 The quadratic energy constraint In addition to the linear constraints, we further impose a single
quadratic norm constraint analogous to an L2-energy of the function. To be precise, we impose that our
constrained solution must have same norm as the unconstrained solution,

‖v‖H = ‖p‖H , (2.12)

where p is the unconstrained solution with coordinate vector p̂ from solving (2.3). The corresponding
discretized constraint set inRN is a sphere with radius ‖̂p‖,

CH := {̂v ∈ R
N
∣∣‖̂v‖

RN = ‖̂p‖
RN }, (2.13)

where v̂ is the coordinate vector for v.
We can now state the overall procedure we consider in this paper:

1. Given data {um}m∈[M], solve the unconstrained problem (2.3) to obtain the unconstrained solution
p̂.

2. Post-process the unconstrained solution p by solving the constrained problem

d = arg min
v̂∈C

1

2
‖̂v − p̂‖2, (2.14)

where C = CH ⋂C0. This constrained problem optimizes a quadratic function over a subset C
of a sphere inRN .

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac021/6663654 by guest on 15 August 2022



NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 9

Our focus is on the theory and algorithms for the second step, post-processing the unconstrained
solution to obtain a structure-preserving solution. We show in Theorem 3.1 that the problem above has
a unique solution. Furthermore, in Section 4, we are able to naturally extend the existing algorithms
proposed in [35] to the new optimization problem. We end this section with two examples that illustrate
why some alternative formulations to the two-step procedure above do not necessarily result in well-
posed problems.

Example 2.2. (An alternative formulation with nonunique solutions) One possible alternative to our
framework proposed above is to instead consider the following constrained problem

d = arg min
v̂∈C

1

2
‖Âv − b‖2. (2.15)

with A and b as introduced in Section 2.1. This formulation incorporates the constraints and a least-
squares problem simultaneously. However, the solution to this alternative formulation (2.15) is not
necessarily unique. The issue lies in the fact that if the singular values of the full-rank matrix A are
not all equal to 1, then the problem corresponds to optimization over an ellipsoid, which can yield
non-unique solutions.

For example, consider the case when N = M = 2. Let

A =
[

0.4 0
0 1

]
, b =

[
0

0.5

]
, C = {(cos t, sin t)

∣∣0.01 ≤ t ≤ π − 0.01
}

.

The constrained set C is a spherically convex set (Definition 3.4). The loss/cost function associated to
(2.15) is

cost(t) = 0.4 cos2 t + (sin t − 0.5)2 = 0.6 sin2 t − sin t + 0.65,

which has two distinct global minima over the feasible set C at t = arcsin( 5
6 ) and t = π − arcsin( 5

6 ).

Example 2.3. (Nonhomogeneous cones as in Remark 2.1) In Remark 2.1, we mention that in previous
work [35] an rk parameter is introduced to include more general linear constraints. If rk �= 0, then our
optimization problem does not necessarily have unique solutions. Consider the following problem. Let
the feasible set

C =
{
(x, y)

∣∣x2 + y2 = 1
}⋂{

(x, y)
∣∣y ≤ 4x + 2, y ≤ −4x + 2

}
.

The feasible set consists of two disjoint arcs (red arcs in Figure 1). If the unconstrained solution lies in
the middle of the dark green arc (the black dot), there will be two solutions to (2.14), one from each red
arc.

3. Solution to the constrained optimization problem

In this section, we will study the solution to the constrained optimization (2.14). Specifically, we will
show in Theorem 3.1 that the solution is unique under reasonable conditions.
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10 D. DAI ET AL.

Fig. 1. An illustration to Example 2.3.

3.1 Spherical geometry

We introduce some definitions and relevant results for the spherical geometry in this subsection. We refer
to [16, 17] for technical details. We largely focus on the unit sphere in this section, i.e., CH = S

N−1. In
Section 4, we will use the more general origin-centered sphere of nonzero radius.

The intrinsic distance on S
N−1 is defined to be the great circle distance between two points, which

corresponds to the angle between the two unit vectors in the ambient space.

Definition 3.1. (Intrinsic distance on the sphere) Given u, w ∈ S
N−1, the intrinsic distance between

them is

d(u, w) = arccos〈u, w〉. (3.1)

If S is an origin-centered sphere with radius r > 0, then the intrinsic distance between u, w ∈ S is

dr(u, w) = r arccos 〈u/‖u‖, w/‖w‖〉 . (3.2)

Note that the intrinsic distance between two points on a sphere of radius r �= 1 is given by the
intrinsic distance between the unit-normalized points, scaled by the radius.

Definition 3.2. (Geodesics on a sphere) A geodesic on the unit sphere S
N−1 is a great circle, i.e,

the intersection curve of the sphere and a hyperplane in R
N through the origin. The unique arclength-

parameterized geodesic segment from u to w, where u, w ∈ S
N−1 and u �= ±w, is given by

γuw(t) = csc d(u, w) [u sin(d(u, w) − t) + w sin t] , t ∈ [0, d(u, w)]. (3.3)
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 11

The (non-unique) geodesic segments joining u and −u, starting at u with velocity v satisfying ‖v‖ = 1
at u, is given by

γu{−u} := cos(t)u + sin(t)v, t ∈ [0, π ]. (3.4)

For a general sphere S centered at the origin with radius r, the geodesic segments can be defined via
rescaling (3.3) or (3.4).

Definition 3.3. (Exponential Mapping) The exponential mapping at u is defined to be

expu : TuS
N−1 → S

N−1, v → u cos(‖v‖) + v
‖v‖ sin(‖v‖), (3.5)

which maps an element on the tangent plane TuS
N−1 at u to the endpoint of the geodesic segment

of length ‖v‖ starting at u in the direction of v. In (3.3), the geodesic segment can be expressed as
γuw(t) = expu(tγ ′

uw(0)). For a general sphere S centered at the origin with radius r, the geodesic as well
as the exponential mapping can be defined via rescaling (3.5).

Definition 3.4. (Spherically convex set) A subset C ⊆ S
N−1 is said to be spherically convex if for any

s, t ∈ C, all the geodesic segments joining s and t are contained in C.

Proposition 3.1. ([17], Proposition 2) Let C ⊆ S
N−1. C is a spherically convex set if and only if the

cone

KC = {zs|s ∈ C, z ∈ [0, +∞)} (3.6)

is convex (in Euclidean sense) and pointed, i.e., KC
⋂

(−KC) = {0}.
If we choose C = CH ∩ C0 as is done in our problem articulated in Section 2.2.3, then KC = C0, the

convex cone corresponding to only the linear equalities. Thus, in our framework spherical convexity of
CH ∩ C0 is determined by whether or not C0 is a pointed cone.

Proposition 3.2. A closed hemisphere is not spherically convex.

Proof. Noticing the existence of the antipodal points on a closed hemisphere, then there is a nontrivial
v such that v, −v ∈ KC. Therefore KC ∩(−KC) contains at least one nontrivial point, and Proposition 3.1
yields the conclusion. �

One major utility of convex sets on the sphere is the ability to perform projections.

Definition 3.5. (Spherical projection onto a closed convex set) Let C ⊂ S
N−1 be a spherically convex,

closed set. The projection of z ∈ S
N−1 onto C is defined to be:

Ps
C(z) =

{
t ∈ S

N−1|d(t, z) ≤ d(t, r), ∀r ∈ C
}

, (3.7)

i.e., the nearest intrinsic distance projection.

The definition above does not immediately reveal uniqueness or computability for this type of
projection, but the following proposition proved in [17] shows the relation between spherical projection
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12 D. DAI ET AL.

onto a closed spherically convex set and the Euclidean projection onto the convex cone spanned by the
spherical convex set.

Proposition 3.3. ([17], Proposition 8) Let C ⊆ S
N−1 be a spherical convex set. Take z ∈ S

N−1. Let
u = PKC

(z), be the Euclidean projection of z onto KC, the latter of which is defined in (3.6). If u �= 0,
then the spherical projection of z onto C is unique, and is given by,

Ps
C(z) = u

‖u‖ = expzv,

where

v =
(

−z cot θ + u
‖u‖ csc θ

)
θ , θ = d(z, u/‖u‖).

3.2 Uniqueness of the solution to (2.14)

In this subsection, we present a uniqueness theorem for the solution to (2.14). Our first step is to
introduce the formulation (3.8) below that is equivalent to (2.14).

Lemma 3.1. The constrained optimization problem (2.14) is equivalent to finding the spherical
projection of p̂ onto the feasible set C,

d = arg min
v̂∈C

d(̂v, p̂). (3.8)

Proof. The proof is direct,

arg min
v̂∈C

1

2
‖̂v − p̂‖2 = arg min

v̂∈C

(
1

2
(‖̂v‖2 + ‖̂p‖2) − 〈̂v, p̂〉

)
= arg max

v̂∈C
〈̂v, p̂〉,

= arg min
v̂∈C

d(̂v, p̂). (3.9)

�
Using Lemma 3.1, we are able to show the following uniqueness theorem.

Theorem 3.1. Assume the following hold for the constraint set C = CH ⋂C0 defined by (2.8)-(2.9)
and (2.13):

(a) The set of constraints (Lk, ωk)k∈[K] are V-determining in the sense of Definition 2.1.

(b) The Euclidean projection onto the linearly-constrained set satisfies PC0 p̂ �= 0.

(c) The set CH in (2.13) is SN−1, i.e., ‖̂p‖ = 1.

Then the solution to (3.8) (or equivalently, (2.14)) is unique.

Proof. We first show that C is a closed spherically convex set. A subsequent application of
Proposition 3.3 will prove the result.
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 13

Since ck(y) are closed half-spaces, CH ∩ ck(y) are closed hemispheres and

C = CH
⋂

C0 =
⋂

y∈ωk ,k∈[K]
(CH∩ck(y))

is closed. On the other hand, from Proposition 3.1, the set C is spherically convex if and only if the
cone KC (see also Proposition 3.1 for the definition) is convex and pointed. Direct calculation shows
that KC = C0, which has been shown to be a closed convex set in [35].

Define

W := C0
⋂

{−C0} =
{

v|
〈
̂�k(y), v

〉
= 0, ∀y ∈ ωk, k ∈ [K]

}
. (3.10)

Take x ∈ W ⊆ C0. By assumption (a) and Definition 2.1, the only element v of V satisfying Lk(v, y) = 0
for every y ∈ ωk and k ∈ [K] is v = 0. Thus, W = {0} and therefore KC = C0 is pointed.

By Proposition 3.3 set C is a spherical convex set and the solution to (3.8) (or equivalently, (2.14))
is unique. �

Corollary 3.1. The conclusions in Theorem 3.1 hold with loosening assumption (c) to ‖̂p‖ > 0.

The proof is direct since all arguments hold unchanged via scaling by ‖̂p‖ > 0.

3.3 Approximation errors from quadratic constraints

The optimization problem we consider, (2.14) or equivalently (3.8), contains both linear and
quadratic in/equality constraints in general multivariate and non-polynomial scenarios. As discussed in
Section 1.1, there are many existing approaches in more specialized cases that consider only linear
inequality constraints for polynomials (such as positivity). Such specializations sometimes yield
approximation errors of the linearly constrained problem relative to unconstrained best approximation
errors. (See, e.g., [1, 8, 13].)

Since our framework imposes an additional quadratic constraint in addition to linear constraints,
a natural question is how much introduction of this extra constraint affects approximation errors. We
provide a simple result below, indicating that the error committed by our linear-quadratic constraints
is comparable to the error committed by only the linearly constrained problem. Therefore, any
theory establishing error of the linearly constrained solution can immediately be ported to our linear-
quadratically constrained case.

Precisely, we recall our notation from Section 2.1 where u is a given function in a Hilbert space
H and p is some prescribed approximation to u from the finite-dimensional space V . Recalling that
E0 ⊂ V is the closed convex set corresponding to our linear inequality constraints defined in (2.6), then
the projections PE0(u) and PE0(p) onto E0 ⊆ V are unique (and the latter is equivalent to the vector
projection PC0 (̂p) inRN). A simple application of triangle inequality yields∥∥u − PE0(p)

∥∥
H ≤ ‖u − p‖H + ∥∥p − PE0(p)

∥∥
H , (3.11)

providing an upper bound on the error committed with only linear constraints. In particular, the first
error term above is due to imposition of p as the initial unconstrained approximation, and the second
term is due solely to the optimization/projection. In our linear-quadratically constrained case, if p̂∗ is
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14 D. DAI ET AL.

any vector solution to the optimization (2.14) corresponding to the function p∗ ∈ V , then we would hope
that ‖u−p∗‖H has error comparable to (3.11). The following lemma establishes precisely this statement.

Lemma 3.2. Let u ∈ H and p ∈ V be given, where p has expansion coefficients p̂. Let a linear-
quadratic constraint set C = CH ∩ C0 be given, where C0 is the linear constraint set, and let p∗ ∈ V
denote the function associated to a(ny) solution p̂∗ of the linear-quadratic constrained problem (2.14) or
equivalently (3.8). Then we have the following estimates,

∥∥u − p∗∥∥
H ≤ ‖u − p‖H + 2

∥∥p − PE0(p)
∥∥

H (3.12)

∥∥u − p∗∥∥
H ≤ 5

∥∥∥p − p†
∥∥∥

H
+ 2

√
2
∥∥u − PE0(u)

∥∥
H , (3.13)

where p† is the H-best approximation from V , i.e.,

p† = arg min
p∈V

‖u − p‖H .

Before proving this result we emphasize the practicality of these statements: (3.12) provides an
upper bound comparable to (3.11), indicating that the linear-quadratically constrained solution p∗ has
error similar to an approximation with only linear constraints. The estimate (3.13) is a statement in terms
of best approximations, showing that the error in p∗ splits into (i) a component ‖p − p†‖H that is due
to the quality of the initial unconstrained approximation provided, and (ii) the best approximation error
from the linearly constrained space E0 ⊆ V . In other words, modulo the quality of p relative to p†, the
linear-quadratic constrained approximation p∗ commits an error scaling precisely like the error in the
best possible linearly-constrained approximation.

Proof. of Lemma 3.2 We first prove (3.12). Using the triangle inequality, we first divide the error into
one part solely due to imposition of p as the starting unconstrained approximation, and a second part
due to the linear-quadratic optimization p:

∥∥u − p∗∥∥
H ≤ ‖u − p‖H + ∥∥p − p∗∥∥

H (3.14a)

We compute the last term using our notation inRN , i.e.,

∥∥p − p∗∥∥
H = ∥∥̂p − p̂∗∥∥ . (3.14b)

To bound this norm, first assume that PC0( p̂), the solution to the linearly-constrained problem, is non-
zero. Then define,

q := ‖̂p‖
‖PC0 (̂p)‖PC0( p̂) ∈ C.
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 15

A direct computation shows,

∥∥̂p − p̂∗∥∥ (2.14)≤ ∥∥̂p − q
∥∥

≤ ∥∥̂p − PC0 (̂p)
∥∥+ ∥∥PC0 (̂p) − q

∥∥
= ∥∥̂p − PC0 (̂p)

∥∥+ ∣∣∥∥PC0 (̂p)
∥∥− ∥∥̂p

∥∥∣∣
≤ 2

∥∥̂p − PC0 (̂p)
∥∥ ,

where the last inequality uses the reverse triangle inequality. If we have PC0 (̂p) = 0, then defining q
instead as any feasible point in C and using the same computations along with ‖q‖ = ‖̂p − PC0 (̂p)‖
proves the same inequality. Therefore,

∥∥̂p − p̂∗∥∥ ≤ 2
∥∥̂p − PC0 (̂p)

∥∥ (3.15)

is true in general. Combining this with (3.14) proves (3.12).
Finally, since u − p† is orthogonal to V then using the Pythagorean theorem can be used to begin the

following inequality chain:

∥∥u − p∗∥∥
H =

√∥∥u − p†
∥∥2

H + ∥∥p† − p∗∥∥2
H

≤
∥∥∥u − p†

∥∥∥
H

+
∥∥∥p† − p∗∥∥∥

H

≤
∥∥∥p − p†

∥∥∥
H

+
∥∥∥u − p†

∥∥∥
H

+ ∥∥p − p∗∥∥
H

(3.15)≤
∥∥∥p − p†

∥∥∥
H

+
∥∥∥u − p†

∥∥∥
H

+ 2
∥∥p − PE0(p)

∥∥
H

≤
∥∥∥p − p†

∥∥∥
H

+
∥∥∥u − p†

∥∥∥
H

+ 2
(∥∥∥p − p†

∥∥∥
H

+
∥∥∥p† − PE0(p†)

∥∥∥
H

+
∥∥∥PE0(p†) − PE0(p)

∥∥∥
H

)
= 3

∥∥∥p − p†
∥∥∥

H
+ 2

∥∥∥PE0(p†) − PE0(p)

∥∥∥
H

+
(∥∥∥u − p†

∥∥∥
H

+ 2
∥∥∥p† − PE0(p†)

∥∥∥
H

)
(∗)≤ 5

∥∥∥p − p†
∥∥∥

H
+
(∥∥∥u − p†

∥∥∥
H

+ 2
∥∥∥p† − PE0(p†)

∥∥∥
H

)
≤ 5

∥∥∥p − p†
∥∥∥

H
+ 2

(∥∥∥u − p†
∥∥∥

H
+
∥∥∥p† − PE0(p†)

∥∥∥
H

)
(∗∗)≤ 5

∥∥∥p − p†
∥∥∥

H
+ 2

√
2
√∥∥u − p†

∥∥2
H + ∥∥p† − PE0(p†)

∥∥2
H

= 5
∥∥∥p − p†

∥∥∥
H

+ 2
√

2
∥∥u − PE0(u)

∥∥
H , (3.16)

where the inequality (∗∗) uses |a| + |b| ≤ √
2
√

a2 + b2, and the inequality (∗) uses the non-expansive
property of projections onto closed convex sets,

∥∥PE0(q) − PE0(r)
∥∥

H ≤ ‖q − r‖H ,
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16 D. DAI ET AL.

see, e.g., [11, Theorem 3]. The final equality (3.16) is the fact that,

∥∥u − PE0(u)
∥∥2

H = min
q∈E0

‖u − q‖2
H = min

q∈E0

∥∥∥u − p†
∥∥∥2

H
+
∥∥∥p† − q

∥∥∥2

H
=
∥∥∥u − p†

∥∥∥2

H
+
∥∥∥p† − PE0(p†)

∥∥∥2

H
.

�
Note that Lemma 3.2 does not require uniqueness of the optimization (3.8). In particular, we do

not require assumptions (a)-(c) from Theorem 3.1. The corollary (3.13) shows that if the unconstrained
input p to our linear-quadratic optimization problem is a good approximation to u (in particular if it is
the best approximation p†), then the optimization error committed is at most 2

√
2 times that of the best

possible linearly constrained approximation to u.

4. Algorithm: spherical projections

Having established the well-posedness of the problem (3.8), we proceed to discuss algorithms for
solving the problem. In particular, we extend some procedures from [35] to the spherical optimization
problem (3.8). We will shift our focus back to a general sphere centered at the origin with radius r �= 0,
equipped with the intrinsic distance dr(·, ·) (Equation 3.2). Here, r = ‖̂p‖ �= 0 is the norm of the
unconstrained solution.

4.1 Spherical projection onto a closed hemisphere

To start, we first compute the spherical projection of a point on the sphere onto a closed hemisphere
ck(y)

⋂
CH , which later serves as an ingredient of our main algorithms. Note that Proposition 3.3 is

not directly applicable since a closed hemisphere is not spherically convex The proof in this section is
elementary but we provide it in order to make our work self-contained.

Theorem 4.1. Let p̂ be given, and fix (k, y). If ̂�k(y) is not parallel to p̂, then the spherical projection
of p̂ onto the closed hemisphere CH ∩ ck(y) is unique, i.e., the solution ck( p̂; y) to

ck( p̂; y) = arg min
v̂∈CH∩ck(y)

dr

(̂
v, p̂
)

, (4.1)

is unique, and is given by

ck( p̂; y) =
{

p̂, p̂ ∈ CH ∩ ck(y),
PLp̂

‖PLp̂‖ ‖̂p‖, p̂ �∈ CH ∩ ck(y),
(4.2)

where PL is the Euclidean projection operator onto the subspace L, with the latter defined as,

L := ∂ck(y) =
{

s|
〈
̂�k(y), s

〉
= 0
}

.

Proof. For simplicity, we will suppress k, p̂, and y notationally in the proof, i.e., c := ck( p̂; y), and
̂� := ̂�k(y). Since CH ∩ ck(y), is non-empty and compact, there is at least one solution to (4.1).
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 17

Following similar computations to the proof to Lemma 3.1, it can be shown that

c = arg max
v̂∈CH∩ck(y)

〈̂v, p̂〉, (4.3)

is equivalent to (4.1). If p̂ ∈ CH ∩ck(y), then c = p̂ is the unique solution to (4.3) by the Cauchy-Schwarz
inequality, which verifies part of (4.2). Thus, the remainder of the proof assumes p̂ is not in the feasible
set. Let ĉ be any solution to (4.3). Since ĉ lies in ck(y) and since p̂ lies in CH but is not feasible, then we
have 〈̂

c,̂�
〉
≤ 0,

〈̂
p,̂�
〉
> 0.

By the above inequalities, any solution ĉ to (4.3) satisfies,

〈̂c, p̂〉 = 〈PLĉ, PL̂p
〉+ 〈(I − PL)̂c, (I − PL)̂p

〉 = 〈PLĉ, PL̂p
〉+ 〈̂c,̂�

〉 〈̂
p,̂�
〉

,

(i)≤ 〈PLĉ, PL̂p
〉 (ii)≤ ‖PLĉ‖ ‖PL̂p‖ (iii)≤ ‖̂c‖ ‖PL̂p‖ = ‖̂p‖ ‖PL̂p‖

The choice ĉ = c in (4.2) is the unique solution that achieves equality in (i), (ii), and (iii) above. To
see this, first note that c is feasible since it lies in both CH and ck(y), and is well-defined since p̂ is not
parallel to ̂�k(y) and hence PL̂p �= 0. Equality in (i) and (iii) can be established by noting that c ∈ L, so

that
〈
c,̂�
〉
= 0 and PLc = c. Equality in (ii) is achieved if and only if PLc = c has the same direction

as PL̂p, which the choice (4.2) satisfies. This also shows that c is the only vector that achieves this
equality, and hence (4.3) (equivalently, (4.1)) has a unique solution (4.2). �

Remark 4.1. The solution (4.2) implies that when p̂ is not feasible and is not parallel to ̂�k(y), the
solution to (4.1) can be computed by first computing a Euclidean projection onto the hyperplane L, and
the simply rescaling this projection to have norm ‖̂p‖. We exploit this fact in algorithms.

4.2 A greedy approach

We first introduce a new notation for the spherical projection

ck( p̂; y) := Ps
ck(y)̂

p, (4.4)

which by Theorem 4.1 is well-defined for every p̂ that is not a multiple of ̂�k(y).
A greedy procedure, in the spirit of the greedy algorithm of [35], iteratively updates p̂ by repeatedly

identifying most-violated constraints. Defining p̂0 = p̂, and using p̂j to denote the iterate at step j, we
seek to compute,

p̂j+1 = Ps
ck∗ (y∗ )̂p

j, (k∗, y∗) := arg max
k∈[K],y∈ωk

dr( p̂j, ck(y)), (4.5)

for j ≥ 1. Lemma 4.1 first allows us to conclude that the set of (k, y) such that dr( p̂, ck(y) ∩ CH) > 0 is
equal to the set of (k, y) such that p̂ �∈ ck(y).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac021/6663654 by guest on 15 August 2022



18 D. DAI ET AL.

Lemma 4.1. Let p̂ be the solution to the current iteration, then

dr( p̂, ck(y) ∩ CH) > 0 ⇔ p̂ �∈ ck(y), (4.6)

where r = ‖̂p‖.

Proof. Let dist(·, ·) be the Euclidean distance function, then

dist( p̂, ck(y)) = min
s∈ck(y)

‖̂p − s‖2 = ‖̂p − PL̂p‖2 = ‖̂p‖ sin θk(y), (4.7)

where L := ∂ck(y) is the boundary of the half-space ck(y), and θk(y) = arccos
〈̂
p/r, ck( p̂; y)/r

〉
is the

angle between p̂ and its spherical projection ck( p̂; y) onto the half-space ck(y). The last equality in (4.7)
is true since PL̂p and ck( p̂; y) have the same direction (Theorem 4.1). The angle θk(y) is the angle
between the vector p̂ and the plane L, thus θk(y) ∈ [0, π/2].

For any (k, y), a direct calculation using the Pythagorean theorem and the definition of the intrinsic
distance dr(·, ·) yields

p̂ �∈ ck(y) ⇔ dist( p̂, ck(y)) > 0,

⇔ ‖̂p‖ sin θk(y) > 0,

⇔ θk(y) > 0,

⇔ dr( p̂, ck(y) ∩ CH) > 0,

�
The proof to Lemma 4.1 motivates the following relation

(k∗, y∗) = arg max
k∈[K],y∈ωk

dr( p̂, ck(y))

= arg max
k∈[K],y∈ωk

(dist( p̂, ck(y)))

= arg min
y∈ωk ,k∈[K]

sdist( p̂, ck(y)), (4.8)

where the Euclidean signed distance between p̂ and the Euclidean half-space ck(y) can be computed by
(see [35])

sdist( p̂, ck(y)) = −〈̂�k(y), p̂〉. (4.9)

Equations (4.8)-(4.9) imply that, to determine the parameters for the geodesically farthest hemisphere,
we only need to determine the parameters for the Euclidean-farthest hyperplane, which is a much easier
computational task.

Algorithm 1 summarizes the above iterative procedure of computing the solution to (3.8) through
greedy spherical projection.
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 19

Algorithm 1: Iterative greedy spherical projection to compute the solution to (4.1).

Require: the matrix A and the observational vector b, tolerance parameter δ ≥ 0
Require: constraints {(̂�k(y), ωk)}k∈[K]
Ensure: greedy solution p̂.

1: Compute the unconstrained solution p̂, e.g. via solving (2.3).
2: while sdist( p̂, ck(y)) ≤ −δ for some k ∈ [K], y ∈ ωk do
3: compute (y∗, k∗) via (4.8)
4: update p̂ via (4.5)
5: end while

4.3 An averaging approach

The greedy procedure above can lead to oscillatory behavior of the iteration trajectory. To mitigate this
behavior, we introduce an averaging projection approach to suppress potential oscillatory behavior of
iterates in the previous greedy approach. The notion of an average position of a collection of points
on the sphere is defined by the Karcher mean, which is a natural extension of the Euclidean weighted
average.

Definition 4.1. (Karcher mean) Let S ⊂ RN be the sphere centered at the origin with radius r. Let
q1, · · · , qJ be J points lying on S associated with nonnegative convex weights w1, · · · , wJ ∈ [0, 1]. The
Karcher mean is given by the solution to

q = arg min
x∈S

(
1

2

n∑
i=1

wi · d2
r (x, qi)

)
:= arg min

x∈S
f (x). (4.10)

The Karcher mean as defined above is unique under mild assumptions.

Theorem 4.2. ([7], Theorem 1) With S the radius-r origin-centered sphere in R
N , suppose that given

points q1, · · · , qJ all lie in a closed hemisphere H ⊂ S, with at least one point qj in the interior of H
with wj > 0. Then f (x) defined in (4.10) has a single critical point q in the interior of H , and this point
q is the global minimum of f , hence the unique Karcher mean.

The definition of the Karcher mean in (4.10) can be extended to a collection of infinitely many
points by integration, and our averaged projection algorithm is based on this generalized Karcher
mean. Let p̂0 = p̂ be the first iterate in the algorithm. To compute the next iterate, the averaging
algorithm first identifies all the parameters (y, k) for which the associated linear constraints are
violated,

ω
j
k− = {y ∈ ωk|sdist( p̂j, ck(y)) < 0}. (4.11)

Instead of projecting onto the most violated constraint (as in the previous section) we seek a point that
minimizes the Karcher mean objective over all violated constraints. With r = ‖̂p‖, the averaged position
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p̂j+1 at the next iteration is given by

p̂j+1 = arg min
x∈CH

⎛⎜⎝1

2

∑
k∈D−

j

∫
ω

j
k−

d2
r (x, ck( p̂j; y))wk( p̂j, y)dy

⎞⎟⎠ , (4.12)

where D−
j = {k ∈ [K]|ωj

k− �= ∅} is the set of the indexes where the corresponding constraints are
violated at jth iteration, and the weight,

wk( p̂j; y) :=
⎛⎝ d2

r ( p̂j, ck( p̂j; y))∑
�∈D−

j

∫
ω

j
�−

d2
r ( p̂j, c�( p̂j; z))dz

⎞⎠ (4.13)

is introduced for each spherical projection ck(y) in order to prioritize updates that mitigate the impact of
the more violated constrained sets. In practice, we approximate the integral (4.12) via quadrature with
positive weights, i.e.,

p̂j+1 = arg min
x∈CH

⎛⎜⎝1

2

∑
k∈D−

j

Qk∑
q=1

wk,qd2
r (x, ck( p̂j; yk,q))

⎞⎟⎠ , (4.14)

where Qk is the number of the quadrature points associated with the kth constraint, and {wk,q}k∈[K],q∈[Qk]
are the product of the (positive) quadrature weight with an approximations to the weight (4.13) at the
quadrature points {yk,q}k∈[K],q∈[Qk].

All the discussion above is provided in the context of assuming that the hemisphere condition in
Theorem 4.2 holds. The following lemma shows that all the candidate spherical projection ck( p̂j; yk,q)

indeed lie on the same hemisphere.

Lemma 4.2. The spherical projections ck( p̂; y) defined by (4.2) with ̂� = ̂�k(y), k ∈ [K] are always on
the hemisphere

H = {x
∣∣∣‖x‖ = ‖̂p‖, 〈̂p, x〉 ≥ 0}, (4.15)

for any y and k.

Proof. Since ‖ck( p̂; y)‖ = ‖̂p‖, we only need to verify the second condition in (4.15). Using (4.2), a
direct computation yields, 〈

p̂, ck( p̂; y)
〉 = ‖̂p‖‖Pck(y)̂p‖ ≥ 0.

�
All the above is almost sufficient to guarantee that the algorithm described by (4.14) has a unique

solution. The last obstacle we have yet to overcome is to ensure that the points ck( p̂j; yk,q) are uniquely
defined. To ensure this, we make the following assumption.
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 21

Assumption 4.1. ̂�k(y) is not parallel to p̂j for all (k, y) pairs for y ∈ ω−
k .

Assumption 4.1 is necessary to ensure unique existence of the spherical projections ck( p̂j; yk,q).
Although we cannot yet theoretically justify of Assumption 4.1, in all of our numerical experiments,
Assumption 4.1 holds. Under this assumption, we can prove uniqueness of the update (4.14).

Proposition 4.1. Under Assumption 4.1, the solution p̂j+1 to (4.14) is unique.

Proof. Under Assumption 4.1 and Lemma 4.2, the candidate points ck( p̂j; yk,q) are all in the interior

of H . Therefore, from Theorem 4.2, the solution p̂j+1 to (4.14) is unique and furthermore lies in the
interior of H . �

Algorithms that compute the average spherical projection by solving the optimization problem (4.14)
can be adapted from [7, Algorithms A1 or A2) or [24, Equation 10).

4.4 A hybrid approach

We propose a final algorithm: the averaging algorithm of the previous section results in less oscillatory
iterate trajectories, but moves relatively slowly. The algorithm in this section combines the ideas of the
greedy and averaging approach. First we denote the greedy update (4.5) at the jth iteration by p̂ j+1

g and

the average update (4.12) by p̂ j+1
a . The hybrid update we propose moves in the direction of the averaged

update p̂ j+1
a , but with a distance defined by the greedy update p̂ j+1

g . Specifically, at the jth iteration,

i. Compute the geodesic projection p̂ j+1
g and the average projection p̂ j+1

a via (4.5) and (4.14),
respectively.

ii. If dr( p̂ j, p̂ j+1
g )/r < 10−6, i.e., the most violated constraint is very close to the current update,

we simply perform the greedy update, setting p̂ j+1 = p̂ j+1
g .

iii. Otherwise, we compute p̂ j+1 by moving p̂ j along the unique geodesic from p̂ j to p̂ j+1
a by a

distance given by the intrinsic distance between p̂ j and p̂ j+1
g . Let p̃ j, p̃ j

a, and p̃ j
g be the unit-

norm versions of p̂ j, p̂ j+1
a , and p̂ j+1

g , respectively. Then the update we propose is

p̃ j+1 = expp̃j

(
d(p̃ j, p̃ j+1

g )v
)

,

p̂ j+1 = ‖̂p j‖p̃ j+1, (4.16)

where v is the unit-speed velocity at the base point p̃ j of the geodesic segment leading to
p̃ j+1

a , i.e., v = γ ′
p̃jp̃j+1

a
(0).

We use the greedy update in step 2 above since in this case we are relatively close to the solution,
and so typically the greedy procedure converges very quickly.

5. Numerical experiments

Throughout this section, we take M = N observations, and the observation functionals {φn}n∈[N] are
chosen to be the projection functionals φn(·) := 〈·, vn

〉
onto the given subspace V . We denote the
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22 D. DAI ET AL.

unknown function by u, the H-best projection onto V by v, the norm-constrained solution (the solution
to (2.14)) by vNC, and the linearly constrained solution by vLC. I.e., vLC is the solution to (2.14) but with
only the linear inequality constraints,

vLC :=
∑

n∈[N]

wnvn, w := arg min
v̂∈C0

1

2
‖̂v − p̂‖2 .

For other choices of observation functionals, e.g., pointwise observations (collocation-based approxi-
mations), our theory and algorithms can be generalized naturally.

For our univariate examples, we consider the Sobolev spaces on a general interval [a, b] as our
Hilbert spaces H,

Hq([a, b]) :=
{

u : [a, b] → R
∣∣∣‖u‖2

Hq < ∞
}

, ‖u‖2
Hq :=

q∑
j=0

∫ b

a

[
u(j)(x)

]
dx, (5.1)

and choose the subspace V according to the choice of the pair (a, b),

if (a, b) = (−1, 1), then V = Vpoly := span
{
{xn}N−1

n=0

}
,

if (a, b) = (0, π), then V = Vcos := span
{
{cos nx}N−1

n=0

}
. (5.2)

We will test our algorithms for H0(= L2), H1, and H2 using the linear constraint sets,

• (Positivity) U0 := {u ∈ H|u(x) ≥ 0 ∀x ∈ [a, b]}
• (Monotonicity) U1 := {u ∈ H|u′(x) ≥ 0 ∀x ∈ [a, b]}
• (Convexity) U2 := {u ∈ H|u′′(x) ≥ 0 ∀x ∈ [a, b]}

Although our theoretical result in Theorem 3.1 does not guarantee the uniqueness of the solution
when a boundedness constraint imposed, we still test our algorithms with imposing the constraint,

• (Boundedness) G0 := {u ∈ H|u(x) ≤ 1 ∀x ∈ [a, b]},
for some of our tests. When a boundedness constraint is imposed, the hyperplane is an affine plane.

In this case, we first project the current iteration to the affine hyperplane, then rescale the point with
respect to the vertex r0 of the cone (the projection of the origin onto the affine plane) to the sphere, i.e.,
the projection (4.4) is replaced by

c = Ps
H p̂ := r0 +

√‖̂p‖2 − ‖r0‖2√‖PH p̂‖2 − ‖r0‖2
(PH p̂ − r0).

We will also introduce a metric to measure the change between the constrained solutions and the
unconstrained solution:

η∗ = ‖v − v∗‖H

‖v − u‖H
, (5.3)
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 23

where asterisk “∗” on the subscript of v can be either “LC” (the linearly constrained approximation
using the dissipative formulation in [35]) or ‘NC’ (the non-dissipative procedure in this article). Since
v − u is H-orthogonal to V , the Pythagorean theorem implies,

‖v∗ − u‖H =
√

1 + η2‖v − u‖2
H .

The quantity
√

1 + η2 can therefore be used to measure the error in a constrained solution relative to
error in the unconstrained solution (which in this case is the H-best approximation from V). Values of η

that are O(1) indicate that the error committed by the constrained solution is comparable to that of the
unconstrained solution. It is also interesting to measure the difference between the linearly constrained
solution and the norm-constrained solution ‖vLC−vNC‖. In all of our experiments, the norm-constrained
solution vNC differs only slightly from the linearly-constrained solution vLC.

Algorithm 1 is the greedy algorithm, but it is also the template for the average algorithm. To apply
the average algorithm, one only needs to replace the update of p̂ with (4.14). In line 2 of Algorithm 1,
δ is set to be 10−10. In addition, we restrict the maximum number of iterations to be 10, 000 to avoid
infinite loops.

Time complexity: A single step of the greedy algorithm requires determining (y∗, k∗) associated
with the farthest hyperplane (Algorithm 1), whose complexity is basis-dependent. For univariate
polynomial approximation, the complexity is O(N2), where N is the dimension of the subspace V [35].
A single step of the average algorithm requires computing the integrals and the Karcher mean ((4.14)).
The cost of computing the integrals consists of two parts,

• determining the negative region D−
j : this part requires finding the zeros of the unconstrained

approximation. For univariate polynomial approximation, the total complexity is O(KN2).

• applying the quadrature rule: let Q = maxk∈[K] Qk. Since the number of negative regions is at most
O(N) and computing dr(x, ck( p̂j; yk,q)) is of O(N), the total cost is O(QN2).

For the computation of Karcher mean, we use the algorithm of locally linear rate of convergence
([7], Algorithm A1). Let μ be its rate of convergence and ε be a desired tolerance level, the complexity
is O(logμ ε) and is independent of the choice of the basis functions.

The time complexity for finding a feasible solution to the original optimization problem remains
unknown since we do not know how many steps the algorithms take to achieved a desired tolerance
level. The algorithms converge quickly in some examples but slowly on others (e.g., Table 2). In our
numerical test, the greedy algorithm performs better than the average algorithm.

5.1 Performance comparison of algorithms

In this section, we present the comparison of solutions from the linearly-constrained optimization in [35]
and the norm-constrained optimization proposed in our work. We consider the case (a, b) = [−1, 1] and
degree-(N − 1) polynomial approximations with V = Vpoly. The test functions are chosen as a step
function and its antiderivatives:

uj+1(x) := cj+1

∫ x

−1
uj(t)dt, u0(x) =

{
0, x ≤ 0,
1, x > 0,

(5.4)
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24 D. DAI ET AL.

Table 1 Comparison of number of iterations (I) and relative errors (η) on the test function u = u2
with positivity-constraint imposed for different values of N and different algorithms. The ambient Hilbert
space is H = L2([−1, 1]).

N = 6 N = 31

I η I η

Greedy 17 1.1479 23 0.9859
Average 87 1.1483 220 0.9856
Hybrid 15 1.1494 22 0.9885

Table 2 Comparison of the minimum values of vNC, v′
NC, and v′′

NC using average approach at
10, 000 iterations. ‘Converge’ indicates the corresponding procedure finds a feasible solution before
the maximum number of iterations is reached.

N = 6 N = 31

vNC v′
NC v′′

NC vNC v′
NC v′′

NC

H0 –1.05e-6 9.35e-5 –1.86e-4 –2.18e-7 –2.35e-3 –3.06e-2
H1 converge converge converge –1.33e-8 –3.84e-7 –1.51e-3
H2 converge converge converge converge converge converge

where cj+1 is a normalized constant that ensures the uj+1(1) = 1. We provide a summary of the
performance of our three proposed approaches for norm-preserving optimization Table 1. We observe
that, compared to greedy approach, there is a slight decrease in the number of iterations. Both greedy
approach and the hybrid approach are much faster than the average approach. The relative error of the
three proposed approaches are comparable.

5.2 Polynomial space approximation example

In this section, we continue to consider the approximation using (a, b) = (−1, 1) and V = Vpoly. In our
first experiment, we test the capability of our algorithms for approximating the step function u0(x) in
(5.4) and the similarity between vLC and vNC. We compute the approximation for N = 6 and N = 31
Figure 2 and consider three choices of linear constraint sets E0 introduced in (2.6):

(i) (positivity) E0 = U0,

(ii) (positivity and monotonicity) E0 = U0
⋂

U1, and

(iii) (positivity, monotonicity, boundedness) E0 = U0
⋂

U1
⋂

G0.

We note that, for (i) and (ii), the norm-constrained solutions are simply slight adjustment of the linearly
constrained solution, both visually and quantitatively. The discrepancy is more obvious in case (iii).
Increasing the order in the polynomial approximation further decreases the discrepancy between vLC
and vNC. We also note that, the Gibbs’-type oscillations presented in the left column of Figure 2
can be alleviated by enforcing the monotonicity and the boundedness constraint. All computed ηNC
values are order 1, which shows that our norm-preserving approximations are comparable to the H-best
approximation.
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NON-DISSIPATIVE STRUCTURE-PRESERVING EMULATORS 25

Fig. 2. Greedy algorithm results: comparison of different methods: degree 5 polynomial positivity-preserving approximation
to the step function for different constraints and different polynomial spaces. Left: constraint U0. Middle: constraint U0

⋂
U1.

Right: U0
⋂

U1
⋂

G0. Top: N = dimV = 6. Bottom: N = dimV = 31.

In the second experiment of this section, we investigate how the choice of ambient Hilbert space
H affects the accuracy of the approximation. We approximate the function u2(x) with linear constraint
set E0 = U0

⋂
U1
⋂

U2 for N = 6 and N = 31 on different Hilbert spaces H = H0, H1, and H2. We
observe relatively large values of both ηNC and ηLC, but increasing the regularity of the Hilbert space
and/or increasing the order of the polynomial can reduce these relative errors. Similar to the previous
test, the discrepancy between vLC and vNC decreases as the order of polynomial order increases. It
increases as the complexity of the linear constraint set increases. Nevertheless, both approximations are
qualitatively good for N = 31. The results are shown in Figure 2.

Quantitatively, we find that the minimum values of vNC, v′
NC, and v′′

NC converge slowly for some
examples with less regular Hilbert space H = H0, H1. Among our three proposed approach, the greedy
approach and the hybrid approach performs slightly better than the average approach. For different
choices of the ambient Hilbert spaces, we report in Table 2 the minimum values of vNC, v′

NC and v′′
NC

using average approach at 10, 000 iterations. The ‘converge’ in Table 2 indicates that the procedures
achieve the desired tolerance levels. We note that, by increasing the regularity of the ambient Hilbert
space, our procedures can identify a feasible solution much faster. We emphasize that the simplicity of
this example belies the complexity and difficulty of the geometry of the problem, which is evidenced
by algorithms requiring more iterations to complete. In the remaining examples of this paper, all the
algorithms identify an element of the feasible set (to within precision tolerances).

5.3 Convergence rate

In this subsection, we compare the rates of convergence between the unconstrained solution and the
norm-constrained solution. We consider u = u0(x) and u = u2(x) using V = Vpoly. The ambient Hilbert

D
ow

nloaded from
 https://academ

ic.oup.com
/im

aiai/advance-article/doi/10.1093/im
aiai/iaac021/6663654 by guest on 15 August 2022



26 D. DAI ET AL.

Fig. 3. Comparison of different approximations to u2(x) for different ambient Hilbert spaces and different polynomial spaces.
The red curves (vLC) are covered by the black curves (vNC). The constraint is U0

⋂
U1
⋂

U2. Left: H = H0. Middle: H = H1.
Right: H = H2. Top: N = dimV = 6. Bottom: N = dimV = 31.

space is H = L2([−1, 1]). We compute the rate of convergence on the constrained sets U0, U0
⋂

U1,
and U0

⋂
U1
⋂

G0. We observe from Figure 4 that our norm-constrained solutions have a similar rate
of convergence to the unconstrained (H = L2-optimal) solution u (even when a boundedness constraint
is imposed).

5.4 M-shape function using cosine basis

In this section, we will choose V = Vcos for approximating an M-shape function defined on [0, π ],

u(x) =

⎧⎪⎨⎪⎩
− (x − π

8

) (
x − π

2

)
π
8 ≤ x < π

2 ,

− (x − π
2

) (
x − 7π

8

)
π
2 ≤ x < 7π

8 ,

0 otherwise,

(5.5)

with positivity constraint U0 imposed. For a cosine polynomial, the difficult part for applying our
algorithm is to determine the y-parameter corresponding to the most violated constraint (or the negative
y-region), which requires to find the zeros of a trigonometry polynomials. Fortunately, this difficulty
can be resolved by taking advantage of the Chebyshev polynomials. The results are shown in Figure 5.

5.5 Two-dimensional cylinder indicator function

In our last example, we consider the approximation to a cylinder

u(x, y) =
{

1 if
√

(x − 0.5)2 + (y − 0.5)2 < 0.5,
0 otherwise.

(5.6)
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Fig. 4. Rate of convergence. Approximations to u = u0(x) (top) and u = u2(x) (bottom) with U0 (left), U0
⋂

U1 (middle), and
U0
⋂

U1
⋂

G0 (right) imposed. The x-axis indicates the dimension of the polynomial space V = Vpoly. The ambient Hilbert
space is H = L2([−1, 1]).

Fig. 5. Comparison of the approximations to (5.5) with different N. Constraint: U0, positivity-preserving. From left to right:
N = 6, 16, 31. The red curve is covered by the black curve.

The computational domain is [−1, 1] × [−1, 1], and the polynomial space is the tensor product
space Vpoly ⊗ Vpoly, where N is chosen to be 15. The positivity constraint U0 is imposed. The
computation requires to find the global minimum of a two-dimensional nonconvex function (4.9) (see
also (2.10)–(2.11)). We use Matlab’s optimization function fmincon, using the sequential quadratic
programming option, and approximate the global minimum by solving the optimization with several
randomly initialized starting points. The constraints we set for fmincon are the boundaries for the
computational domain.

The results are shown in Figure 6. The numerical results show that our norm-constrained approxima-
tion can preserve both the positivity and the norm by ‘correcting’ the linearly constrained solution. The
function is entirely non-negative for both the linearly constrained solution (bottom middle, Figure 6)
and the norm-constrained solution (bottom right, Figure 6).
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28 D. DAI ET AL.

Fig. 6. Comparison of different approximations to (5.6), greedy procedure. Constraint: U0, positivity-preserving. Top: mesh
plot. Bottom: negative region indicator function, where the black region represent the region where the approximation is
negative. Left: unconstrained solution u. Middle: linearly constrained solution vLC . Right: Norm-constrained solution vNC .
ηLC = 0.1229, ηNC = 0.1230, ‖vLC − vNC‖ = 0.0030.
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