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Abstract. A stochastic Galerkin formulation for a stochastic system of balanced or conserva-
tion laws may fail to preserve the hyperbolicity of the original system. In this work, we develop a
hyperbolicity-preserving stochastic Galerkin formulation for the one-dimensional shallow water equa-
tions by carefully selecting the polynomial chaos expansion of the nonlinear q2/h term in terms of
the polynomial chaos expansions of the conserved variables. In addition, in an arbitrary finite sto-
chastic dimension, we establish a sufficient condition to guarantee the hyperbolicity of the stochastic
Galerkin system through a finite number of conditions at stochastic quadrature points. Further, we
develop a well-balanced central-upwind scheme for the stochastic shallow water model and derive the
associated hyperbolicity-preserving CFL-type condition. The performance of the developed method
is illustrated on a number of challenging numerical tests.
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1. Introduction. The classical one-dimensional deterministic Saint-Venant sys-
tem of shallow water equations is

(1.1)

(h)t + (q)x = 0,

(q)t +

\biggl( 
q2

h
+

1

2
gh2
\biggr) 

x

=  - ghBx,

where h = h(x, t) is the water height, q = q(x, t) is the water discharge, g is the
gravitational constant, and B = B(x) is the time-independent bottom topography.
This system was first derived in [9] and since then has been widely used in modeling
the flows whose horizontal scales are significantly larger than their vertical scales,
such as water flows in rivers, lakes, and coastal areas. However, the accuracy and
prediction capabilities of shallow water models depend strongly on the presence of
various uncertainties that naturally arise in measuring or empirically approximating,
e.g., the bottom topography data or initial and boundary conditions. Hence, it is
important to consider a stochastic version of the shallow water equations (SWE).
In this work, we focus on uncertainty that results in parameterized SWE, where
parameters are modeled as random variables. In particular, we study the polynomial
chaos expansions (PCE) strategy, which is very effective when quantities of interest
vary smoothly with respect to the parameters.

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section August 18,
2020; accepted for publication (in revised form) December 21, 2020; published electronically March
11, 2021.

https://doi.org/10.1137/20M1360736
Funding: The work of the third author was partially supported by the NSF through grant

DMS-1848508.
\dagger Department of Mathematics, University of Utah, Salt Lake City, UT 84112 USA (dai@math.

utah.edu, epshteyn@math.utah.edu).
\ddagger Scientific Computing and Imaging (SCI) Institute, University of Utah, Salt Lake City, UT 84112

USA (akil@sci.utah.edu).

A929

D
ow

nl
oa

de
d 

05
/0

5/
21

 to
 1

28
.1

10
.1

84
.5

5.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/20M1360736
mailto:dai@math.utah.edu
mailto:dai@math.utah.edu
mailto:epshteyn@math.utah.edu
mailto:akil@sci.utah.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A930 DIHAN DAI, YEKATERINA EPSHTEYN, AND AKIL NARAYAN

There are two widely used classes of methods for addressing uncertainty in (pa-
rameterized) partial differential equations using PCE. One class, of nonintrusive type
methods, computes stochastic quantities by generating an ensemble of solution realiza-
tions, each of which may be treated as a deterministic problem. Statistical information
is obtained from this ensemble by postprocessing the ensemble solutions. Examples of
such methods include Monte Carlo--type methods that use randomly selected samples
and stochastic collocation methods that use a priori preselected samples (see, e.g.,
[42, 31, 29]). Since they rely on multiple queries of existing deterministic solvers,
nonintrusive methods are easy to implement and highly parallelizable, but they can
result in less accurate approximations than the intrusive-type methods.

The other group of methods are intrusive methods. Such methods typically re-
quire a substantial rewrite of legacy code and solvers. In the context of PCE methods,
the prototypical intrusive strategy is the stochastic Galerkin (SG) approach, wherein
one replaces an underlying stochastic process with its truncated PCE [40, 43] and then
forms a system of differential equations via Galerkin projection in stochastic space.
As a consequence, one derives a new system of partial differential equations whose
unknowns are (time- and space-varying) coefficients of the PCE. Intrusive methods
are projection-based approximations, and thus their accuracy is near-optimal in an
L2 sense for static problems. Discussion on the existing convergence theory for SG
methods can be found, for example, in [2, 27]. SG methods have been successfully em-
ployed for modeling uncertainty in diffusion models [44, 12], kinetic equations [17, 37],
and conservation and balanced laws with symmetric Jacobian matrices [39].

For hyperbolic systems, such as the SWE, the associated SG system may not
be hyperbolic in general [11, 18]. Thus, the intrusive SG formulation can result in
a system of differential equations of a class different from the original deterministic
system. There are currently several efforts to resolve this issue for more general types
of equations and to preserve the hyperbolicity of the SG system. For quasi-linear
hyperbolic systems, hyperbolicity can be ensured by multiplying the SG formulation
of the system by the left eigenvector matrix of its flux Jacobian matrix [41]. Unfor-
tunately, this transformation results in a nonconservative form and numerical solvers
designed for conservative formulations cannot be applied directly. A recent operator-
splitting-based approach has been developed for both the Euler equations [8] and the
SWE [7], where the original systems are split into hyperbolic subsystems whose SG
formulations remain hyperbolic. However, this may still lead to complex eigenvalues
due to the mismatch in the hyperbolicity sets of the subsystems [36]. Another strat-
egy to resolve the hyperbolicity issue of SG formulation is to introduce an appropriate
change of variables. For example, the SG system of balanced/conservation laws in
terms of entropic variables can be shown to be hyperbolic [35, 34]. In addition, an
optimization-based method, called the intrusive polynomial moment method (IPMM),
was proposed to calculate the PCE of entropic variables given the PCE of the con-
served variables [11, 35, 34]. However, the optimization problem in the IPMM that
must be solved for each cell and at each time step can be computationally expensive.
There are also strategies that employ Roe variable formulations: In [33, 15, 14], the
flux of the SG system is constructed using Roe variables and the conservative form
of the system is preserved. It has been shown that both the SG formulations of the
Euler equation [33] and the SWE [15] in terms of Roe variables are hyperbolic when
using a Wiener--Haar expansion. The SG formulation of the isothermal Euler equa-
tions in terms of Roe variables is hyperbolic for any basis function under a positive
definiteness condition [15]. However, it can still be expensive to implement the Roe
formulation since the PCE of Roe variables needs to be calculated by solving both a
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nonlinear equation and a linear equation.
The SG formulation of the SWE may not be hyperbolic due to the PCE of the

nonlinear, nonpolynomial term q2/h [11]. This issue can be partially resolved by using
the Roe variables and the Wiener--Haar expansion [15, 14]. In this work, we develop
hyperbolicity-preserving SG PCE formulation for the SWE by carefully selecting the
PCE of the q2/h term using only the PCE of the conserved variables. Further, we
establish a connection between the hyperbolicity of the SG system and the original
system. Namely, we show that preserving positivity of the water height at a finite
number of stochastic quadrature points is sufficient to preserve the hyperbolicity of the
SG formulation of the SWE. In addition, we will present the well-balanced discretiza-
tion for our SG formulation of SWE, which preserves positivity of the water height at
certain quadrature points in the stochastic domain. In this paper, we adopt the filter
from [36] to ensure the positivity-preserving property of the algorithm at stochastic
quadrature points, which is one ingredient for ensuring hyperbolicity. However, one
can go further in filtering. For example, recent work [26] utilizes a more sophisticated
Lasso-regression-based filter to reduce oscillations of the numerical solution at shocks
in the spatial domain.

In this work, we consider central-upwind scheme as an example of the underlying
numerical scheme for the stochastic SWE. However, the main ideas developed in this
work are independent of the particular choice of the numerical solver for hyperbolic
problems and can be employed with various choices of the numerical schemes for
hyperbolic problems. The central Nessyahu--Tadmor schemes and their generalization
into higher resolution central schemes and semidiscrete central-upwind schemes are
a class of robust Godunov-type Riemann problem-free projection-evolution methods
for hyperbolic systems. They were originally developed in [30, 25, 22]. The family
of central-upwind schemes has been successfully applied to problems in science and
engineering and, in particular, to deterministic SWE and related models. A second-
order central-upwind scheme was first extended to SWE in [20]. However, the scheme
did not simultaneously satisfy the positivity-preserving and well-balanced properties.
It was improved in [23], where the developed method captures the ``lake-at-rest""
steady state and preserves the positivity of the water height. We refer the interested
reader to [24, 21, 5, 6, 28, 19] for examples of other closely related works. The
numerical scheme developed in this work is mainly based on further extension to
stochastic SWE of the framework proposed in [22, 23].

This paper is organized as follows. In section 2, we introduce the stochastic SWE
and the SG discretization of the system using a particular choice of the PCE for q2/h.
In section 3, we discuss the hyperbolicity of the SG system obtained in section 2 and
present a sufficient condition to guarantee the hyperbolicity of the SG SWE system.
In section 4, we present a well-balanced central-upwind scheme for the SG SWE model
and derive a hyperbolicity-preserving CFL-type condition. In section 5, we illustrate
the robustness of the developed numerical scheme with several challenging tests.

2. Modeling stochastic SWE. This section sets up the stochastic SWE prob-
lem and introduces notation used in this article.

2.1. Stochastic modeling of the SWE. We consider a complete probability
space (\Omega ,\scrF , P ) with event space \Omega , \sigma -algebra \scrF , and probability measure P . For
\omega \in \Omega , a stochastic version of (1.1) is

(2.1)

(h(x, t, \omega ))t + (q(x, t, \omega ))x = 0,

(q(x, t, \omega ))t +

\biggl( 
q2(x, t, \omega )

h(x, t, \omega )
+

1

2
gh2(x, t, \omega )

\biggr) 
x

=  - gh(x, t, \omega )Bx(x, \omega ),
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A932 DIHAN DAI, YEKATERINA EPSHTEYN, AND AKIL NARAYAN

where uncertainty enters the equation through, e.g., a stochastic model of the initial
conditions or of the bottom topography B. Here, we present a stochastic model of the
bottom topography. However, all our results generalize to other models of uncertainty
(e.g., in the initial conditions). We model B as a finite-dimensional random field,

B = B(x, \xi ) = B0(x) +

d\sum 
k=1

Bk(x)\xi k,

where \xi = (\xi 1, . . . , \xi d) is a d-dimensional random variable. Such a model can result, for
example, from truncation of an infinite-dimensional Karhunen--Lo\`eve decomposition.
Under this model, the stochastic SWE model (2.1) can be written as a function of \xi ,

(2.2)

(h(x, t, \xi ))t + (q(x, t, \xi ))x = 0,

(q(x, t, \xi ))t +

\biggl( 
q2(x, t, \xi )

h(x, t, \xi )
+

1

2
gh2(x, t, \xi )

\biggr) 
x

=  - gh(x, t, \xi )Bx(x, \xi ),

which, for the purposes of this paper, forms the continuous model problem for which
we seek to compute numerical solutions.

2.2. Polynomial chaos expansions. We assume that the random variable \xi 
has a Lebesgue density \rho : \BbbR d \rightarrow \BbbR . Polynomial chaos expansions (PCE) seek to
approximate dependence on \xi by a polynomial function of \xi . With \nu = (\nu 1, . . . , \nu d) \in 
\BbbN d

0 a multi-index, then for \zeta \in \BbbR d we adopt the standard notation,

\zeta \nu :=

d\prod 
j=1

\zeta 
\nu j

j , \zeta 0 = \zeta (0,0,...,0) = 1.

We let \Lambda \subset \BbbN d
0 denote any nonempty, size-K finite set of multi-indices. We will assume

throughout that 0 = (0, 0, . . . , 0) \in \Lambda . Our PCE approximations will take place in a
polynomial subspace defined by \Lambda :

P\Lambda = span\{ \zeta \nu 
\bigm| \bigm| \nu \in \Lambda \} , dimP\Lambda = K := | \Lambda | .

We will also need ``powers"" of this set, defined by r-fold products of P\Lambda elements:

P r
\Lambda := span

\left\{   
r\prod 

j=1

pj
\bigm| \bigm| pj \in P\Lambda , j = 1, . . . , r

\right\}   , dimP r
\Lambda \leq 

\biggl( \biggl( 
K
r

\biggr) \biggr) 
=

\biggl( 
K + r  - 1

r

\biggr) 
,(2.3)

where the dimension bound results from a combinatoric argument. Note that since
0 \in \Lambda , then P r

\Lambda \subseteq P s
\Lambda for any r \leq s. We will later exercise the notation above for r = 3.

If \rho has finite polynomial moments of all orders, then there is an L2
\rho (\BbbR d)-orthonormal

basis \{ \phi k\} \infty k=1 of P\Lambda , i.e.,

\langle \phi k, \phi \ell \rangle \rho :=

\int 
\BbbR 
\phi k(s)\phi \ell (s)\rho (s)ds = \delta k\ell , \phi 1(\xi ) \equiv 1,(2.4)

for all k, \ell \in \{ 1, . . . ,K\} , with the latter identification of \phi 1 being an assumption we
make without loss since 0 \in \Lambda . If y(x, t, \cdot ) \in L2

\rho (\BbbR ), then under mild conditions on
the probability measure \rho (see [13]) there exists a convergent expansion of y in these
basis functions,

y(x, t, \cdot )
L2

\rho 
=

\infty \sum 
k=1

\^yk(x, t)\phi k(\cdot ),
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where \^yk(x, t) are (stochastic) Fourier coefficients in the basis \{ \phi k\} k\in \BbbN , and \{ \phi \ell \} \ell >K

are any L2
\rho (\BbbR d)-orthonormal basis for the orthogonal complement of P\Lambda in the space of

all d-variate polynomials. A K-term P\Lambda PCE approximation of the stochastic process
y is then formed by truncating the summation above to terms in P\Lambda :

(2.5) y(x, t, \xi ) \approx 
K\sum 

k=1

\^yk(x, t)\phi k(\xi ) =: \scrG \Lambda [y](x, t, \xi ).

Above, we have defined the linear projection operator \scrG \Lambda : L2
\rho \rightarrow P\Lambda .

2.3. Operations on truncated PCE. Polynomial statistics of PCE expan-
sions can be computed from a straightforward manipulation of their coefficients. For
example,

(2.6) \BbbE [\scrG \Lambda [y](x, t, \xi )] = \^y1(x, t), Var[\scrG \Lambda [y](x, t, \xi )] =

K\sum 
k=2

\^y2k(x, t),

where \BbbE is the expectation operator, and Var is the variance. In contrast, computing
PCE of nonlinear expressions is more complicated. To calculate the P\Lambda -truncated
PCE of the product of two stochastic processes y(x, t, \xi ) and z(x, t, \xi ), we introduce
the notation

\scrG \Lambda [y, z] := \scrG \Lambda [\scrG \Lambda [y] \scrG \Lambda [z]] =

K\sum 
m=1

\left(  K\sum 
k,\ell =1

\^yk\^z\ell \langle \phi k\phi \ell , \phi m\rangle \rho 

\right)  \phi m(\xi ).(2.7)

The approximation above defines the pseudospectral product, which is a widely used
strategy for computing PCE products (see, e.g., [10, 15]). The pseudospectral product
is an exact projection onto P\Lambda of the product of two P\Lambda projections. Such an operation
can be cast in linear algebraic terms by considering vectors comprised of the PCE
coefficients. Given y \in P\Lambda , we will hereafter let \^y \in \BbbR K denote its \phi k-expansion
coefficients. We now introduce the linear operator \scrP : \BbbR K \rightarrow \BbbR K\times K ,

\scrP (\^y) :=

K\sum 
k=1

\^yk\scrM k, \scrM k \in \BbbR K\times K , (\scrM k)\ell m = \langle \phi k, \phi \ell \phi m\rangle \rho ,(2.8)

where \scrM k is a symmetric matrix for each k. The following properties hold:

\scrP (\^y) =
\bigl( 
\scrM 1\^y| \scrM 2\^y| \cdot \cdot \cdot | \scrM K \^y

\bigr) 
, \scrP (\^y)\^z = \scrP (\^z)\^y, \widehat \scrG \Lambda [y, z] = \scrP (\^y)\^z,(2.9)

where the last property is due to (2.7) and allows us to conclude the following.

Lemma 2.1. Let a(\xi ), b(\xi ), c(\xi ) \in P\Lambda have \phi j-expansion coefficients \^a,\^b, \^c \in \BbbR K ,

respectively. Then \langle a, b c\rangle \rho = \^aT\scrP (\^b)\^c.

Proof. Since a \in P\Lambda , then

\langle a, b c\rangle \rho = \langle b c, a\rangle \rho = \langle \scrG \Lambda [b, c], a\rangle \rho = \^aT \widehat \scrG \Lambda [b, c]
(2.9)
= \^aT\scrP (\^b)\^c.

We will also need to compute P\Lambda truncations of ratios of processes (when for each
(x, t) the denominator is a single-signed process with probability 1). We start by
noting the following exact representation when y is a single-signed process:

(2.10) \scrG \Lambda 

\biggl[ 
y
z

y

\biggr] 
(x, t, \xi ) = \scrG \Lambda [z](x, t, \xi ).
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A934 DIHAN DAI, YEKATERINA EPSHTEYN, AND AKIL NARAYAN

We then use this to motivate the assumption

\scrG \Lambda 

\biggl[ 
y,
z

y

\biggr] 
= \scrG \Lambda [z]

(2.9)\Leftarrow \Rightarrow \scrP (\^y)
\widehat \biggl( z
y

\biggr) 
= \^z.(2.11)

This expression motivates the following definition for a new operator \scrG \dagger 
\Lambda 

\Bigl[ 
z
y

\Bigr] 
:

(2.12) \scrG \dagger 
\Lambda 

\biggl[ 
z

y

\biggr] 
(\xi ) :=

K\sum 
k=1

ck\phi k(\xi ),

where ci is the ith element of
\widehat \Bigl( z
y

\Bigr) 
defined by (2.11), assuming \scrP (\^y) is invertible.

2.4. SG formulation for SWE. We start with (2.2) and perform a standard
Galerkin procedure in stochastic (\xi ) space using polynomials from P\Lambda . In other words,
the first step is to replace h and q by the ansatz,

h \simeq h\Lambda :=

K\sum 
k=1

\^hj(x, t)\phi j(\xi ), q \simeq q\Lambda :=

K\sum 
k=1

\^qj(x, t)\phi j(\xi ),(2.13)

respectively, and B by \scrG \Lambda [B]. Following this, we apply the projection operator \scrG \Lambda to
both sides of (2.2) and insist on equality. However, in addition we make the following
crucial assumption about how we approximate the term q2/h:

q2

h
=
q

h
q  - \rightarrow \scrG \Lambda 

\biggl[ 
q2\Lambda 
h\Lambda 

\biggr] 
= \scrG \Lambda 

\biggl[ 
q\Lambda \scrG \dagger 

\Lambda 

\biggl[ 
q\Lambda 
h\Lambda 

\biggr] \biggr] 
.

Performing these steps on (2.2) results in the system

(2.14)
\partial 

\partial t

\biggl( 
\^h
\^q

\biggr) 
+

\partial 

\partial x

\biggl( 
\^q

1
2g\scrP (\^h)\^h+ \scrP (\^q)\scrP  - 1(\^h)\^q

\biggr) 
=

\biggl( 
0

 - g\scrP (\^h) \widehat Bx

\biggr) 
,

where \^h and \^q are each length-K vectors whose entries are the coefficients introduced
in (2.13). With \^U := (\^h, \^q)T , and the flux and source terms

F ( \^U) =

\biggl( 
\^q

1
2g\scrP (\^h)\^h+ \scrP (\^q)\scrP  - 1(\^h)\^q

\biggr) 
, S( \^U, \^B) =

\biggl( 
0

 - g\scrP (\^h) \widehat Bx

\biggr) 
,(2.15)

then the system (2.14) can be written in general conservation law form,

(2.16) \^Ut + (F ( \^U))x = S( \^U, \^B),

with flux Jacobian

(2.17) J( \^U) :=
\partial F

\partial \^U
=

\biggl( 
O I

g\scrP (\^h) - \scrP (\^q)\scrP  - 1(\^h)\scrP (\^u) \scrP (\^u) + \scrP (\^q)\scrP  - 1(\^h)

\biggr) 
,

where we have introduced

(2.18) \^u = \scrP  - 1(\^h)\^q,

which can be viewed as the PCE coefficient vector of the velocity u := q
h . The

computation that gives the expression (2.17) for the Jacobian uses the property (2.9).
For more details, we refer interested readers to section 2.2 of [18].

We emphasize that (h, q) are the (x, t, \xi )-dependent solutions to the original
stochastic SWE (2.2), whereas (h\Lambda , q\Lambda ) are the (x, t, \xi )-dependent solutions to our
SGSWE (2.16). In general, these two solutions are distinct. We first articulate suffi-
cient conditions under which (2.16) is a well-posed hyperbolic system.
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3. Hyperbolicity of the SG system. In this section, we show that the sys-
tem (2.16) is hyperbolic under the condition that the matrix \scrP (\^h) is positive definite.
When there is no uncertainty, this condition reduces to h > 0, which ensures hyper-
bolicity for the deterministic SWE (1.1).

Theorem 3.1. If the matrix \scrP (\^h) is strictly positive definite, the SG formulation
(2.16) is hyperbolic.

Proof. We will show that the Jacobian \partial F
\partial \^U

is diagonalizable with real eigenvalues.

Since \scrP (\^h) is positive definite, then define

G :=

\sqrt{} 
g\scrP (\^h), A := gG - 1\scrP (\^q)G - 1, B := \scrP (\^u),(3.1)

where
\surd 
M is the (unique) symmetric positive definite square root of a symmetric

positive definite matrix M . Using these matrices, define

P1 :=

\biggl( 
I I

B +G B  - G

\biggr) 
, P - 1

1 =

\biggl( 
 - 1

2

\biggr) \biggl( 
G - 1B  - I  - G - 1

 - G - 1B  - I G - 1

\biggr) 
,

where the formula for P - 1
1 can be verified by direct computation. Then a calculation

shows that

P - 1
1

\partial F

\partial \^U
P1 =  - 1

2

\biggl( 
 - 2G - B  - A A - B

A - B 2G - B  - A

\biggr) 
,(3.2)

which is symmetric. Thus, \partial F
\partial \^U

is similar to a diagonalizable matrix with real eigen-
values, and so is itself real diagonalizable.

Remark 3.2. In the deterministic case, all the PCE coefficients are zero, except
possibly the very first coefficient, and the matrix P1 in (3.2) reduces to the eigenmatrix
that symmetrizes the deterministic Jacobian matrix, and the matrix on the right-hand
side of (3.2) reduces to a diagonal matrix.

For the deterministic SWE (1.1), the velocity u is bounded between the smallest
and the largest eigenvalues of the Jacobian of the deterministic SWE. For the SG
formulation (2.14), we have an analogous relation.

Proposition 3.3. The eigenvalues of the matrix \scrP (\^u) are bounded between the
smallest and the largest eigenvalues of the Jacobian matrix J( \^U), i.e.,

(3.3) \lambda max(J( \^U)) \geq \lambda max (\scrP (\^u)) \geq \lambda min (\scrP (\^u)) \geq \lambda min(J( \^U)).

Proof. By the proof of Theorem 3.1, the matrix J( \^U) is similar to the sym-
metric matrix D := P - 1

1
\partial F
\partial \^U
P1 defined in (3.2). For an arbitrary unit vector \^y =

(\^y1, \^y2, . . . , \^yK)
T \in \BbbR K , then \^z := 1\surd 

2
[\^yT , \^yT ]T \in \BbbR 2K is also a unit vector. Then

(3.4) \^zTD\^z = \^yT\scrP (\^u)\^y.

From the above relation, and using properties of the Rayleigh quotient for \scrP (\^u),

\lambda max(\scrP (\^u)) \geq \^zTD\^z \geq \lambda min(\scrP (\^u)),

where equalities can be achieved by proper selections of \^y. Using similar Rayleigh
quotient properties for D and noting that \^z ranges over a subset of \BbbR 2K , then

(3.5) \lambda max(D) \geq \lambda max (\scrP (\^u)) \geq \lambda min (\scrP (\^u)) \geq \lambda min(D).

The inequalities (3.3) follow since D is similar to J( \^U).
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A936 DIHAN DAI, YEKATERINA EPSHTEYN, AND AKIL NARAYAN

In the deterministic SWE, positivity of the water height h ensures the hyper-
bolicity of the PDE system. Theorem 3.1 shows that the stochastic variant of the
positivity condition is that \scrP (\^h) is positive definite. Much of the rest of this paper is
devoted to deriving numerical procedures to guarantee this condition.

3.1. Positive definiteness of \bfscrP (\^\bfith ). In this subsection, we present a computa-

tionally convenient sufficient condition that guarantees \scrP (\^h) > 0 and hence guarantees
hyperbolicity.

Theorem 3.4. Given \Lambda , let nodes \xi m and weights \tau m satisfying \{ (\xi m, \tau m)\} Mm=1 \subset 
\BbbR d \times (0,\infty ) represent any M -point positive quadrature rule that is exact on P 3

\Lambda , i.e.,\int 
\BbbR d

p(\xi )\rho (\xi )d\xi =

M\sum 
m=1

p(\xi m)\tau m, p \in P 3
\Lambda .(3.6)

If

h\Lambda (x, t, \xi m) > 0 \forall m = 1, . . . ,M,(3.7)

then the SGSWE system (2.16) is hyperbolic.

Proof. We will show that (3.7) implies \scrP (\^h) > 0, which in turn ensures hyperbol-

icity from Theorem 3.1. Let \^z = (\^zk)
K
k=1 be any nontrivial vector in \BbbR K , and define

its associated P\Lambda polynomial z(\xi ) :=
\sum K

k=1 \^zj\phi k(\xi ) \not = 0. Then z(\xi ) cannot vanish at
all quadrature points simultaneously since if it did, we obtain the contradiction,

0 \not = \| \^z\| 2 = \langle z, z\rangle \rho 
(3.6)
=

M\sum 
j=1

z2(\xi j)\tau j = 0,

where we have used the fact that P 2
\Lambda \subseteq P 3

\Lambda to utilize (3.6). Then, since the quadrature
rule is positive and (3.7) holds, we have

0 <

M\sum 
j=1

h\Lambda (x, t, \xi j)z
2(\xi j)\tau j

(3.6)
=
\bigl\langle 
h\Lambda (x, t, \xi ), z

2(\xi )
\bigr\rangle Lemma 2.1

= \^zT\scrP (\^h)\^z,

establishing that \scrP (\^h) is positive definite.

Thus, by guaranteeing the positivity of h\Lambda at a finite number of points, we can
ensure the hyperbolicity of the SGSWE system. For arbitrary stochastic dimension d
and polynomial space P\Lambda , there is a worst-case upper bound on the size of this finite
set.

Corollary 3.5. There is some M \leq dimP 3
\Lambda \leq K(K+1)(K+2)

6 such that the dis-
crete pointwise positivity condition (3.7) guarantees the hyperbolicity of (2.16).

We give the proof in Lemma B.2 in Appendix B. One might consider the somewhat
simpler condition of restricting \^h1 > 0 for hyperbolicity since \^h1 is the expected value
of h\Lambda . This condition is actually implied by the condition in Theorem 3.4.

Corollary 3.6. If the conditions of Theorem 3.4 are satisfied, then \^h1 > 0.

Proof. Since \tau j > 0 and h\Lambda > 0 at the quadrature points, then

\^h1 =

\int 
\BbbR d

h\Lambda (x, t, \zeta )\rho (\zeta )d\zeta =

M\sum 
j=1

h\Lambda (x, t, \xi j)\tau j > 0.
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A computable condition ensuring hyperbolicity therefore requires a positive quad-
rature rule that is exact on P 3

\Lambda . For general densities \rho over \BbbR d, computing such a
quadrature rule is a very difficult task. But this is possible in specialized cases.

For example, if d = 1 and \Lambda = \{ 0, 1, . . . ,K  - 1\} , then an optimal choice of
positive quadrature is the \rho -Gaussian quadrature. Since P 3

\Lambda = span\{ 1, \zeta , . . . , \zeta 3K - 3\} ,
then choosing the positive M -point Gaussian quadrature,

\{ \xi m\} Mm=1 = \phi  - 1
M+1(0), \tau m =

1\sum M
j=1 \phi 

2
j (\xi m)

,

withM \geq 
\bigl\lceil 
3K
2

\bigr\rceil 
 - 1 satisfies the conditions of Theorem 3.4 (and does so with substan-

tially fewer points than the \sim K3/6 worst-case bound from Corollary 3.5). Gaussian
quadrature rules have real-valued nodes and positive weights [38].

In spaces with d > 1, if \rho is tensorial, then tensorizing Gauss quadrature rules
achieves similar results. In other words, assume

\rho (\xi ) =

d\prod 
J=1

\rho J(\xi J), \xi \in \BbbR d.

We can always enclose P\Lambda within a tensor-product polynomial space:

P 3
\Lambda \subseteq P3k,\infty :=

\bigl\{ 
\lambda \in \BbbN d

0

\bigm| \bigm| \lambda J \leq 3\kappa J for J = 1, . . . , d
\bigr\} 
, \kappa J := max

\nu \in \Lambda 
\nu J .

For a fixed J \in \{ 1, . . . , d\} , let \{ (\xi (J)m,MJ
, \tau 

(J)
m,MJ

)\} MJ
m=1 denote the MJ := (

\bigl\lceil 
3\kappa J

2

\bigr\rceil 
 - 1)-

point \rho J -Gaussian quadrature rule on \BbbR . Then the tensorization of these d univariate
quadrature rules results in an M :=

\bigl( \prod d
J=1MJ

\bigr) 
-point positive quadrature rule that

is exact on P3k,\infty , and hence on P 3
\Lambda , and thus satisfies the conditions of Theorem 3.4.

4. Numerical scheme for stochastic SWE. In this section, we derive a well-
balanced central-upwind scheme that preserves the hyperbolicity of the SG formula-
tion (2.16) at every time step.

4.1. Central-upwind scheme for the SG system. We first introduce the
central-upwind scheme for the SG system (2.16). Appendix A provides a brief sum-
mary of the second-order central-upwind schemes for balance laws. With \{ \scrC i\} Ni=1 a
partition of a bounded closed interval, let xi\pm 1

2
denote the partition boundaries, and

define the cell average of the vector \^U over the ith cell \scrC i =:
\bigl[ 
xi - 1

2
, xi+ 1

2

\bigr] 
as

Ui(t) :=

\biggl( 
hi(t)
qi(t)

\biggr) 
:=

1

\Delta x

\int 
\scrC i

\biggl( 
\^h(x, t)
\^q(x, t)

\biggr) 
dx \in \BbbR 2K .

We have introduced notation for common quantities in finite volume--type schemes.
While \^Uk is the kth component of the vector \^U , the bold letter U with subscripts and
superscripts is used here to introduce the cell averages and pointwise reconstructions,
respectively, of the vector \^U(x, t). For instance, U - 

i+ 1
2

is the approximated value of

\^U at the left-hand side of spatial location x = xi+ 1
2
, which is reconstructed from

the cell averages Ui. A similar reasoning applies to (h, \^h, \^hk) and (q, \^q, \^qk). To
minimize clutter, we will notationally suppress t dependence from here onward. The
possible discontinuities of the system (2.16) at the cell interface x = xi+ 1

2
, where
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A938 DIHAN DAI, YEKATERINA EPSHTEYN, AND AKIL NARAYAN

\scrC i =
\bigl[ 
xi - 1

2
, xi+ 1

2

\bigr] 
, propagates with left- and right-sided local speeds that can be

estimated by

(4.1)
a - 
i+ 1

2

= min
\Bigl\{ 
\lambda 1

\Bigl( 
J(U - 

i+ 1
2

)
\Bigr) 
, \lambda 1

\Bigl( 
J(U+

i+ 1
2

)
\Bigr) 
, 0
\Bigr\} 
,

a+
i+ 1

2

= max
\Bigl\{ 
\lambda 2K

\Bigl( 
J(U - 

i+ 1
2

)
\Bigr) 
, \lambda 2K

\Bigl( 
J(U+

i+ 1
2

)
\Bigr) 
, 0
\Bigr\} 
,

where \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda 2K are the eigenvalues of the J(\cdot ) in (2.17), and U - 
i+ 1

2

and U+
i+ 1

2

are the left- and right-sided pointwise reconstructions in the ith cell. The

semidiscrete form of the central-upwind scheme for the SG system (2.16) reads as

d

dt
Ui =  - 

\scrF i+ 1
2
 - \scrF i - 1

2

\Delta x
+ Si, Si \approx 

1

\Delta x

\int 
\scrC i

S(U,B)dx,(4.2)

with Si a well-balanced discretization of the source term, which we discuss below.
With F the flux term in (2.15), the numerical flux \scrF is given by

(4.3) \scrF i+ 1
2
:=

a+
i+ 1

2

F (U - 
i+ 1

2

) - a - 
i+ 1

2

F (U+
i+ 1

2

)

a+
i+ 1

2

 - a - 
i+ 1

2

+
a+
i+ 1

2

a - 
i+ 1

2

a+
i+ 1

2

 - a - 
i+ 1

2

\Bigl[ 
U+

i+ 1
2

 - U - 
i+ 1

2

\Bigr] 
.

4.2. Well-balanced property. In applications of the deterministic SWE, sim-
ulations should accurately capture the so-called lake-at-rest steady state solution or
small perturbations of the lake-at-rest steady state. A well-balanced numerical scheme
for the SWE captures the lake-at-rest solution exactly at discrete level. An analogous
lake-at-rest state for the stochastic SWE (2.14) is

(4.4) q\Lambda (x, t, \xi ) \equiv 0, h\Lambda + \scrG \Lambda [B](x, t, \xi ) \equiv C(\xi ),

where C(\xi ) depends only on \xi . This solution corresponds to still water with a flat
stochastic water surface. Equation (4.4) can be rewritten in the vector form

(4.5) \^q \equiv 0, \^h+ \^B \equiv \^C.

In order to derive a well-balanced central upwind scheme for the SGSWE, we first
replace the original bottom function \^B by its continuous linear interpolant. At every
time step, we compute the PCE vector for the cell averages of the water surface by
wi := hi +Bi and the pointwise reconstructions of the water surface by w\pm 

i+ 1
2

using

a generalized minmod limiter (see Appendix A). The pointwise reconstructions of the
water height are then computed by

h\pm 
i+ 1

2

:= w\pm 
i+ 1

2

 - Bi+ 1
2
,(4.6)

where Bi+ 1
2
is the PCE vector for \scrG \Lambda 

\bigl[ 
B(xi+ 1

2
, t, \xi )

\bigr] 
. The numerical fluxes \{ \scrF i+ 1

2
\} Ni=1

are subsequently computed using the reconstructed PCE of the water height defined
in (4.6). After that, the well-balanced property of the scheme is ensured by a special
choice of the source term Si.

Lemma 4.1. With Bi\pm 1
2
the PCE vectors for \scrG \Lambda 

\bigl[ 
B(xi\pm 1

2
, t, \xi )

\bigr] 
, if we choose

(4.7) Si :=

\Biggl( 
0

 - 1
\Delta xg\scrP (hi)

\Bigl( 
Bi+ 1

2
 - Bi - 1

2

\Bigr) \Biggr) 
,

then the central-upwind scheme (4.2) satisfies the well-balanced property.
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Proof. We have Bi = (Bi+ 1
2
+Bi - 1

2
)/2, and the cell average PCE vector of the

water surface is wi := hi + Bi. Let the pointwise reconstructions for water surface
be w\pm 

i+ 1
2

. Assume that at time t, the stochastic water surface is flat and the water

is still, i.e., wi \equiv w\ast is a constant vector for all i, and qi \equiv 0. Then a second-order
piecewise linear reconstruction procedure produces w\pm 

i+ 1
2

\equiv w\ast and q\pm 
i+ 1

2

\equiv 0. Hence,

the numerical flux defined in (4.3) becomes

(4.8) \scrF i+ 1
2
=

\biggl( 
0

g
2\scrP (w\ast  - Bi+ 1

2
)(w\ast  - Bi+ 1

2
)

\biggr) 
=:

\Biggl( 
\scrF \^h

i+ 1
2

\scrF \^q

i+ 1
2

\Biggr) 
.

Then, with Si =
\bigl( 
S
T

i,1,S
T

i,2

\bigr) T
, the corresponding semidiscrete form is

(4.9)

d

dt
\bfh i = \bfS i,1,

d

dt
\bfq i =  - 1

\Delta x

g

2

\Bigl[ 
\scrP (\bfw \ast  - \bfB i+ 1

2
)(\bfw \ast  - \bfB i+ 1

2
) - \scrP (\bfw \ast  - \bfB i - 1

2
)(\bfw \ast  - \bfB i - 1

2
)
\Bigr] 
+ \bfS i,2.

To balance these equations, we choose Si,1 and Si,2 so that the right-hand side
vanishes. Clearly, we need Si,1 \equiv 0. To simplify the computation for Si,2, let
\Delta Bi = Bi+ 1

2
 - Bi - 1

2
; then Bi = Bi+ 1

2
 - 1

2\Delta Bi = Bi - 1
2
+ 1

2\Delta Bi. By linearity

of the operator \scrP and the property (2.9),

(4.10)

Si,2 =
1

\Delta x

g

2

\Bigl[ 
\scrP (w\ast  - Bi+ 1

2
)(w\ast  - Bi+ 1

2
) - \scrP (w\ast  - Bi - 1

2
)(w\ast  - Bi - 1

2
)
\Bigr] 

=
1

\Delta x

g

2

\biggl[ 
\scrP 
\biggl( 
w\ast  - Bi  - 

1

2
\Delta Bi

\biggr) \biggl( 
w\ast  - Bi  - 

1

2
\Delta Bi

\biggr) 
 - \scrP 

\biggl( 
w\ast  - Bi +

1

2
\Delta Bi

\biggr) \biggl( 
w\ast  - Bi +

1

2
\Delta Bi

\biggr) \biggr] 
=

1

\Delta x

g

2

\biggl[ 
\scrP (w\ast  - Bi) ( - \Delta Bi) - \scrP 

\biggl( 
\Delta Bi

2

\biggr) \bigl( 
2w\ast  - 2Bi

\bigr) \biggr] 
=  - g\scrP (w\ast  - Bi)

\biggl( 
Bi+ 1

2
 - Bi - 1

2

\Delta x

\biggr) 
=  - g\scrP (hi)

\biggl( 
Bi+ 1

2
 - Bi - 1

2

\Delta x

\biggr) 
.

This completes the proof.
In the meantime, (4.7) reduces to the deterministic well-balanced quadrature

approximation when there is no uncertainty. The deterministic formula is obtained
by applying the midpoint quadrature rule to the cell averages (4.2) with the derivative
term Bx(xi) approximated by the finite difference

\bigl( 
Bi+ 1

2
 - Bi - 1

2

\bigr) 
/\Delta x [23].

4.3. Hyperbolicity-preserving CFL-type conditions. In order to deter-
mine hyperbolicity-preserving CFL-type conditions, we focus on the first K equations
in (4.2) which prescribe evolution of hi,

(4.11)
d

dt
hi =  - 1

\Delta x

\Bigl[ 
\scrF \^h

i+ 1
2
(t) - \scrF \^h

i - 1
2
(t)
\Bigr] 
,

where

(4.12) \scrF \^h
i+ 1

2
=
a+
i+ 1

2

q - 
i+ 1

2

 - a - 
i+ 1

2

q+
i+ 1

2

a+
i+ 1

2

 - a - 
i+ 1

2

+
a+
i+ 1

2

a - 
i+ 1

2

a+
i+ 1

2

 - a - 
i+ 1

2

\Bigl[ 
h+
i+ 1

2

 - h - 
i+ 1

2

\Bigr] 
.
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A fully discrete version of (4.11) computes the unknowns at fixed values of time, tn,
n \in \BbbN 0, with t

n < tn+1. For example, with h
n

i the numerical approximation to hi(t
n),

and \Delta tn := tn+1  - tn, the forward Euler discretization of (4.11) reads as

h
n+1

i = h
n

i  - \lambda ni

\Bigl[ 
\scrF \^h

i+ 1
2
(tn) - \scrF \^h

i - 1
2
(tn)

\Bigr] 
, \lambda ni :=

\Delta tn

\Delta xi
.(4.13)

The following CFL condition guarantees the hyperbolicity of the system (4.13) at
t = tn+1 for all cell averages by enforcing the positivity condition prescribed in The-
orem 3.4.

Lemma 4.2. Let \{ \xi j\} Mj=1 be the nodes of a quadrature rule satisfying the condi-

tions of Theorem 3.4. Assume that h
n

i (\xi j) > 0 for 1 \leq j \leq M . If \Delta tn satisfies

\Delta tn < \Delta tnh := min
1\leq j\leq M

i

\left\{     \Delta xi

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
(h

n

i )
T\Phi (\xi j)\Bigl[ 

\scrF \^h
i+ 1

2

(tn) - \scrF \^h
i - 1

2

(tn)
\Bigr] T

\Phi (\xi j)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\right\}     ,(4.14)

then the flux Jacobian (2.17), J
\bigl( 
U

n+1

i

\bigr) 
, is diagonalizable with real eigenvalues.

Proof. Theorem 3.4 guarantees the conclusion if h
n+1

i (\xi j) > 0, for 1 \leq j \leq M , so
we proceed to show this latter property. For each j, the inequality

0 < (h
n+1

i )T\Phi (\xi j) = (h
n

i )
T\Phi (\xi j) - \lambda ni

\Bigl[ 
\scrF \^h

i+ 1
2
(tn) - \scrF \^h

i - 1
2
(tn)

\Bigr] T
\Phi (\xi j)(4.15)

holds if we choose

\Delta tn

\Delta xi
= \lambda ni < min

1\leq j\leq M

\left\{     
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

(h
n

i )
T\Phi (\xi j)\Bigl[ 

\scrF \^h
i+ 1

2

(tn) - \scrF \^h
i - 1

2

(tn)
\Bigr] T

\Phi (\xi j)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\right\}     .

Multiplying both sides by \Delta xi and minimizing over i yields the conclusion.

The condition (4.14) ensures the positivity of the water height, but we also need
to adhere to standard wavespeed-based CFL stability conditions. Thus, we will choose

(4.16) \Delta tn = 0.9min

\Biggl\{ 
\Delta tnh,min

i

\Delta xi

max\{ a+
i+ 1

2

, - a - 
i+ 1

2

\} 

\Biggr\} 
.

To extend these conditions to hold for higher-order schemes, we use strong stability-
preserving Runge--Kutta schemes [16] to solve the semidiscrete system (4.2). The
analysis above for the condition (4.14) still holds for this solver since the ODE solver
can be written as a convex combination of several forward Euler steps. However, an
adaptive time-step control needs to be adopted to determine the time step [6, 19].
The analysis above can also be naturally extended to any other finite volume solvers.

Remark 4.3. The CFL condition (4.14) can be relaxed if the signs of the fluxes
are taken into account in the inequality (4.15). In implementation, this can be used
to reduce the simulation time.

It is important to note that the CFL-type condition provided above is limited
to the cell averages. For the second-order (or higher-order) central-upwind scheme,
additional correction is required for the pointwise reconstructions U\pm 

i+ 1
2

to ensure the

hyperbolicity of (4.13). Similarly, special correction is needed for the near-dry states,
where the matrices \scrP (h\pm 

i+ 1
2

) are close to singular, to ensure hyperbolicity.
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4.3.1. Hyperbolicity-preserving correction to the reconstruction. As-

suming (h
n

i )
T\Phi (\xi j) > 0, we are able to enforce (h

n+1

i )T\Phi (\xi j) > 0 for j = 1, . . . ,M
under the CFL-type condition (4.16); see Lemma 4.2. However, the one-sided prop-
agation speeds (4.1) in the central-upwind scheme (4.13) are estimated by the eigen-
values of the Jacobian \partial F

\partial \^U
using the pointwise values at the cell interfaces. Thus,

computation of these wave speeds requires the positivity of the pointwise recon-
structions at quadrature points, i.e., (h\pm 

i+ 1
2

)T\Phi (\xi j) > 0, which is not guaranteed

by (h
n

i )
T\Phi (\xi j) > 0. To resolve this problem, we use the filtering strategy proposed

in [36] to filter h\pm 
i+ 1

2

.

Given a polynomial p\^y(\xi ) =
\sum K

k=1 \^yk\phi k(\xi ) with positive moment \^y1, we find the
smallest possible weight \mu \prime such that the weighted averages of the polynomial p\^y(\xi )
and the moment \^y1 are nonnegative at given quadrature points \{ \xi j\} Mj=1, i.e.,

(4.17) \mu \prime \^y1 + (1 - \mu \prime )p\^y(\xi ) \geq 0 \leftrightarrow \^y1 +
K\sum 

k=2

(1 - \mu \prime )\^yk\phi k(\xi j) \geq 0, j = 1, . . . ,M,

and the coefficients of the polynomial are filtered by

\^\sansy 1 = \^y1, \^\sansy k = (1 - \mu )\^yk, k = 2, . . . ,K,(4.18)

where \mu = min\{ \mu \prime + \delta , 1\} , and we select \delta = 10 - 10 in our scheme. Hence, the filtered

polynomial p\^\sansy (\xi ) =
\sum K

k=1 \^\sansy k\phi (\xi ) is positive at given quadrature points \{ \xi j\} Mj=1. We

filter p\^y(\xi ) =
\sum K

k=1 \^yk\phi k(\xi ) and p\^z(\xi ) =
\sum K

k=1 \^zk\phi k(\xi ) simultaneously by calculating
the individual filtering parameters \mu \prime 

\^y and \mu \prime 
\^z for p\^y(\xi ) and p\^z(\xi ), respectively, through

(4.17). Then the simultaneous filtering parameter is set to \mu = min\{ \mu \prime 
\^y + \delta , \mu 

\prime 
\^z + \delta , 1\} .

We will exercise the filtering strategy (4.17)--(4.18) for pointwise reconstructions.
We compute the filtering parameter \mu n

i at time t = tn for the ith cell for (h\pm 
i\mp 1

2

)T\Phi (\xi )

according to (4.17). The pointwise reconstructions h\pm 
i\mp 1

2

are then filtered by

(4.19)
\Bigl( 
\sansh \pm 
i\mp 1

2

\Bigr) 
1
=
\Bigl( 
h\pm 
i\mp 1

2

\Bigr) 
1
,
\Bigl( 
h\pm 
i\mp 1

2

\Bigr) 
k
= (1 - \mu n

i )
\Bigl( 
\sansh \pm 
i\mp 1

2

\Bigr) 
k
, k = 2, . . . ,K.

The corresponding cell average is adjusted accordingly in order to remain consistent:

(4.20) \sansh 
n

i =
1

2

\Bigl( 
\sansh +
i - 1

2

+ \sansh  - 
i+ 1

2

\Bigr) 
.

Remark 4.4. To reduce oscillations in q\Lambda (x, t, \xi ), we can also filter the discharge
reconstructions q\pm 

i - 1
2

. The corresponding cell average needs to be adjusted similarly

to (4.20). In subsection 5.3, when (\alpha , \beta ) = (1, 3), we adopt this filtering approach to
reduce oscillations in the discharge.

As an alternative to the filtering above, one can use a convex-optimization-based
method [4] to enforce the positivity of (h\pm 

i\mp 1
2

)T\Phi (\xi ) at quadrature points \{ \xi j\} Mj=1.

4.3.2. Near-dry state correction. When the polynomial (h
n

i )
T\Phi (\xi ) \sim 0, two

issues related to the dry state may occur. One is that the first moments of the
polynomials (h\pm 

i\mp 1
2

)T\Phi (\xi ) may become nonpositive. This can happen even when the

system is deterministic [23]. Nonpositive first moments may lead to the failure of the
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filtering correction (4.17)--(4.18). In our scheme, we adopt the following correction for
nonpositive first moments. Denote the first moments of h\pm 

i\mp 1
2

by
\bigl( 
h\pm 
i\mp 1

2

\bigr) 
1
; then

if
\Bigl( 
h\pm 
i\mp 1

2

\Bigr) 
1
\leq 0, then take h\pm 

i\mp 1
2

= 0, h\mp 
i\pm 1

2

= 2h
n

i .(4.21)

Note that this strategy reduces to a similar correction in the central-upwind scheme
for the deterministic SWE [23].

Another issue may happen when the matrix \scrP (h+
i+ 1

2

) or \scrP (h - 
i+ 1

2

) is ill-conditioned,

which may lead to problems with round-off errors when solving the corresponding
linear system (2.18). To resolve this issue, we extend to the stochastic model the
desingularization process for the deterministic problem [23, 19]. We demonstrate our
correction using the matrix \scrP (h - 

i+ 1
2

) as an example. Let

\scrP (h - 
i+ 1

2

) = QT\Pi Q

be the eigenvalue decomposition for \scrP (h - 
i+ 1

2

), where \Pi = diag(\lambda 1, . . . , \lambda K). For k =

1, . . . ,K and a given \epsilon > 0, define

\Pi cor = diag(\lambda cor1 , . . . , \lambda corK ), \lambda cork =

\surd 
2\lambda k\sqrt{} 

\lambda 4k +max\{ \lambda 4k, \epsilon 4\} 
.(4.22)

In our scheme, we choose \epsilon = \Delta x. Then the corrected PCE coefficient vector for the
velocity u - 

i+ 1
2

is given by

(4.23) u - 
i+ 1

2

= QT\Pi corQq - 
i+ 1

2

.

For well-conditioned \scrP (h - 
i+ 1

2

), the correction (4.23) reduces to the system (2.18), but

when \scrP (h - 
i+ 1

2

) is near singular, the discharge needs to be recomputed,

(4.24) q - 
i+ 1

2

= \scrP (h - 
i+ 1

2

)u - 
i+ 1

2

,

in order to keep the scheme consistent.

Remark 4.5. If there is no uncertainty, the correction (4.22)--(4.23) reduces to the
deterministic velocity desingularization in [23, 19].

5. Numerical results. In this section, we summarize numerical tests to illus-
trate the robustness of the proposed schemes for the SGSWE system (2.16) with
different uncertainty models and parametric distributions. For simplicity, we con-
sider only one-dimensional stochastic spaces (d = 1) associated to a Beta density over
[ - 1, 1],

\rho (\xi ) := \rho (\alpha ,\beta )(\xi ) = C(\alpha , \beta )(1 - \xi )\alpha (1 + \xi )\beta , C(\alpha , \beta ) - 1 = 2\alpha +\beta +1\scrB (\beta + 1, \alpha + 1),

where \scrB (\cdot , \cdot ) is the Beta function, and the parameters \alpha , \beta >  - 1 can be chosen freely
and control how mass concentrates at \xi = 1 and \xi =  - 1, respectively. In particular,
\alpha = \beta = 0 corresponds to the uniform distribution on [ - 1, 1]. The numerical examples
in the coming sections consist of the following numerical experiments:
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\bullet Subsection 5.1: Stochastic bottom topography model comparing the SGSWE
solution (2.16) with K = 9 and K = 17 with the uniform density, \alpha = \beta = 0.
The results are compared against a K = 9 stochastic collocation solution
computed with \scrS = 100 stochastic points. The stochastic collocation solution
for, e.g., the water height h, is computed via quadrature,

hSC(x, t, \xi ) :=

K\sum 
j=1

\^hSC,j(x, t)\phi k(\xi ), \^hSC,j(x, t) :=

\scrS \sum 
s=1

h(x, t, \zeta s)\phi j(\zeta s)zs,

where \{ \zeta s, zs\} \scrS s=1 is the \scrS -point \rho -Gaussian quadrature rule, and h(x, t, \zeta s) is a
numerical solution to a deterministic specialization of the SWE (2.2) obtained
by setting \xi = \zeta s and numerically solved using a deterministic central-upwind
scheme.

\bullet Subsection 5.2: Stochastic water surface model testing the well-balanced
property of the scheme with \alpha = \beta = 0.

\bullet Subsection 5.3: Stochastic discontinuous bottom topography model investi-
gating the effects of different values of M used to enforce \scrP (\^h) > 0. This
example also investigates different distributions with (\alpha , \beta ) = (3, 1) and
(\alpha , \beta ) = (1, 3).

The parameter \theta in the generalized minmod limiter is set to \theta = 1.3 for the first
two examples and \theta = 1 for the third example. The gravitational constant g is set
to g = 1 for the first two examples and g = 2 for the last example. We filter only
the water heights h\Lambda except in the very last numerical test. In the third numerical
example, when (\alpha , \beta ) = (1, 3), we filter both the water heights and the discharges
of the water. In all examples, the CFL condition we use in our simulation is (4.16).
However, we observe that in practice, a relaxed time step c\Delta tn(c > 1) will not result
in loss of hyperbolicity and the plots are similar visually to the results obtained from
the condition (4.16). We believe this is because condition (3.7) is only a sufficient but
not necessary condition for the hyperbolicity of SGSWE.

Our numerical results will report quantile regions indicating the range of behavior
for solutions. These quantile regions are computed empirically by computing the
corresponding PCE on 105 randomly sampled points from the density \rho on [ - 1, 1].

For a fixed spatial grid, the computational cost depends on the dimensionK of the
chosen polynomial subspace P\Lambda . In order to compute the propagation speeds (4.1),
the eigenvalues of the 2K \times 2K Jacobian J(U) matrix must be computed, making
this cost increase as K increases. In addition, to preserve hyperbolicity, we need to
ensure the positivity of the water height at all the quadrature points for every spatial-
temporal point (Theorem 3.1). Therefore, the cost for preserving the hyperbolicity
is at most of order O(K3) per cell per time step (Corollary 3.5). These relations are
formally independent of the dimension d of the stochastic space, but in practice K
can grow considerably as d is increased. For example, one may choose P\Lambda to be the
space of the polynomials with degree up to L. In this case, K =

\bigl( 
L+d
d

\bigr) 
. When L \geq d,

as d increases, K increases and also therefore does the computational cost. In this
paper, we only consider numerically the case d = 1. We plan to investigate higher
dimensional stochastic space in a future work. However, note that the developed
theory in sections 2 and 3 extends to d > 1.

5.1. Stochastic bottom topography. We consider the shallow water system
with deterministic initial conditions

(5.1) w(x, 0) =

\Biggl\{ 
1, x < 0,

0.5, x > 0,
q(x, 0) = 0,
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and with a stochastic bottom topography

(5.2) B(x, \xi ) =

\Biggl\{ 
0.125(cos(5\pi x) + 2) + 0.125\xi , | x| < 0.2,

0.125 + 0.125\xi otherwise.

In this example, we model \xi as a uniform random variable (\alpha = \beta = 0). The
corresponding orthonormal basis functions \phi j are the orthonormal Legendre polyno-
mials on [ - 1, 1] with density \rho (\xi ) = 1

2 . Initially, the highest possible bottom barely
touches the initial water surface at x = 0.5. In Figures 1 and 2, we use a uniform
grid size \Delta x over the physical domain x \in [ - 1, 1] and compute up to terminal time
t = 0.8. We present the numerical solutions for K = 9 and K = 17 using M = 17
and M = 33-point Gaussian quadrature nodes, respectively, to enforce the positivity
condition (3.7).
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Fig. 1. Results for subsection 5.1, water surfaces. Top left: SG, K = 9, \Delta x = 1/800. Top
right: SG, K = 17, \Delta x = 1/800. Bottom: SC, K = 9, \Delta x = 1/800.

The 99\% confidence region of the water surface stays above the 99\% confidence
region of the bottom function in the first three (top left, top right, bottom) subfigures
in Figure 1.

For reference and comparison, a solution obtained by the stochastic collocation
method (100 quadrature points, K = 9-term PCE as explained in section 5) is com-
puted. Results for water surface and discharge are shown in the bottom subfigures of
Figures 1 and 2, respectively. We note that the stochastic collocation (SC) solution is
a different PDE model, so we do not necessarily expect the numerical results from the
SG and SC solvers to be identical for a fixed, finite K. In particular, we do not expect
``convergence"" of one model to the other as, say, \scrS \uparrow \infty and/or \Delta x \downarrow 0. However,
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Fig. 2. Results for subsection 5.1, discharges. Top left: SG, K = 9, \Delta x = 1/800. Top right:
SG, K = 17, \Delta x = 1/800. Bottom: SC, K = 9, \Delta x = 1/800.

the results in the figures do show substantial similarity between these solutions. The
numerical solution obtained from the collocation method is less oscillatory near sharp
gradients of water surface and discharges.

We observe small oscillations near sharp gradients of the water surface and dis-
charge in all of the figures. We investigate the oscillations for the discharge more
carefully in Figure 3. We observe that both higher resolution and larger K can re-
duce the magnitude of the oscillations that appear in quantiles.

5.2. Stochastic water surface. Consider a stochastic shallow water system
with a deterministic bottom function,

(5.3) B(x, \xi ) =

\left\{         
10(x - 0.3), 0.3 \leq x \leq 0.4,

1 - 0.0025 sin2(25(\pi (x - 0.4))), 0.4 \leq x \leq 0.6,

 - 10(x - 0.7), 0.6 \leq x \leq 0.7,

0 otherwise,

and a stochastic water surface,

(5.4) w(x, 0, \xi ) =

\Biggl\{ 
1.001 + 0.001\xi , 0.1 < x < 0.2,

1 otherwise,
q(x, 0, \xi ) \equiv 0.

We again model \xi as a uniform random variable (\alpha = \beta = 0) with K = 9. A small
uncertain region was originally at 0.1 \leq x \leq 0.2, where the water surface is slightly
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Fig. 3. Results for subsection 5.1, discharges on [0, 0.3] for different values of K and \Delta x, zoom
view. Top: K = 9; bottom: K = 13. Left: \Delta x = 1/200; middle: \Delta x = 1/400; right \Delta x = 1/800.

perturbed. The 17-point \rho -Gaussian quadrature rule is used to enforce the condition
(3.7) to guarantee hyperbolicity. We compute the cell averages of the vector of PCE
coefficients for water surface and discharges at terminal time t = 1.0 on the physical
domain [ - 1, 1] with uniform grid size \Delta x = 1/400. We observe from the top right
of Figure 4 that the perturbed water surface with uncertainties propagates along
different directions. The right-moving wave interacts with the nonflat bottom and
gets partially reflected. The magnitude of the uncertainties doesn't seem to exceed
the magnitude of the initial uncertainties, which illustrates the well-balanced property
of our scheme.

5.3. Stochastic discontinuous bottom. For our last example, consider the
shallow water system with deterministic initial conditions,

(5.5) w(x, 0, \xi ) =

\Biggl\{ 
5.0, x \leq 0.5,

1.6, x > 0.5,
u(x, 0, \xi ) =

\Biggl\{ 
1.0, x \leq 0.5,

 - 2.0, x > 0.5,

and a stochastic discontinuous bottom,

(5.6) B(x, \xi ) =

\Biggl\{ 
1.5 + 0.1\xi , x \leq 0.5,

1.1 + 0.1\xi , x > 0.5,

where initially we model \xi as a random variable with Beta density defined by (\alpha , \beta ) =
(3, 1), which is more concentrated toward \xi =  - 1, and hence the bottom topography
has a higher probability of having smaller values. At time t = 0, the highest possible
bottom barely touches the initial water height at x = 0.5. We compute the numerical
solutions of a K = 9-term PCE with an M = 17-point \rho -Gaussian quadrature to
enforce the condition (3.7). We compute on a physical domain x \in [0, 1] with uniform
cell size \Delta x = 1/400 up to terminal time t = 0.15.

In this example, we observe over- and undershoots in the neighborhood of the
bottom discontinuity for both the water surface w and the discharge q (see Figure 5).
This phenomenon also occurs in deterministic version of (5.5)--(5.6) when numerical
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Fig. 4. Results for subsection 5.2: water surface (top left), zoomed water surface (top right),
and discharge (bottom) at t = 1 for (5.3)--(5.4), K = 9.
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Fig. 5. Results for subsection 5.3: K = 9, t = 0.15, (\alpha , \beta ) = (3, 1). Left figure: water surface
and bottom. Right figure: discharge.

solutions are computed using the schemes from [1, 32]. In addition, we observe in
this example a numerical artifact resulting from our enforcement of the positivity of
the water height (3.7) at only a finite number of points: although the 99\% quantile
region of water heights lies above 0, the \xi -global minimum of the water height in
some cells can still be negative. Since \scrP (\^h) > 0 only requires the positivity of h\Lambda at
a finite number of points, there are (low-probability) regions of the domain where the
height can be negative. Note, however, that the SGSWE system is still hyperbolic
and simulation can continue, despite the low probability of negative water height.
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Nevertheless, the existence of negative water heights imposes doubts about the
applicability of the SGSWE model. Fortunately, this situation can be mitigated by
increasing the number of points M where positivity of h\Lambda is enforced. We observe
that if the positivity of the water height is enforced at more points, the stochastic
region of negative height shrinks. We demonstrate this with results in Table 1. In
particular, we observe that (a) the negative region occurs on a subinterval containing
\xi values greater than the maximum quadrature point, and (b) the probability of \xi 
lying in this region is quite small.

In a separate experiment, we also compute the numerical results when \xi is modeled
as random according to a (\alpha , \beta ) = (1, 3) distribution, which is more concentrated
toward \xi = 1. Figure 6 shows that at the terminal time the ``pressure"" from the
stochastic bottom that skews positively causes more oscillations on the water surface
and the discharge compared to Figure 5. In this experiment, we filter both the water
heights and the discharges.

Appendix A. The semidiscrete second-order central-upwind scheme.
We briefly describe the central-upwind schemes for one-dimensional balance laws.

For a complete description and derivation, we refer the reader to [22]. Consider the
balance law,

(A.1) Ut + (F (U))x = S(U).

For a uniform mesh with cells \scrC i :=
\bigl[ 
xi - 1/2, xi+1/2

\bigr] 
of size | \scrC i| \equiv \Delta x, centered at

xi = (xi - 1/2 + xi+1/2)/2, assume that at a certain time level, the cell averages

(A.2) U
n

i \approx 1

\Delta x

\int 
\scrC i

U(x, tn)dx

are available. The cell averages are then used to construct a nonoscillatory second-
order linear piecewise reconstruction,

(A.3) \widetilde Un
i (x) = U

n

i + (Ux)i(x - xi), x \in \scrC i,

whose slopes (Ux)i are obtained by generalized minmod limiter,

(A.4) (Ux)i = minmod

\Biggl( 
\theta 
U

n

i+1  - U
n

i

\Delta x
,
U

n

i+1  - U
n

i - 1

2\Delta x
, \theta 

U
n

i  - U
n

i - 1

\Delta x

\Biggr) 
,

where the minmod function is defined to be

minmod(z1, z2, . . . ) :=

\left\{     
min\{ z1, z2, . . . \} if zi > 0 \forall i,
max\{ z1, z2, . . . \} if zi < 0 \forall i,
0 otherwise,

and the parameter \theta \in [1, 2] controls the amount of numerical dissipation. The left-
and right-sided reconstructions at the endpoints of \scrC i are

(A.5) U+
i - 1

2

= U
n

i  - \Delta x

2
(Ux)i, U - 

i+ 1
2

= U
n

i +
\Delta x

2
(Ux)i.

The semidiscrete form of the central-upwind scheme is then given by

(A.6)
d

dt
Ui(t) =  - 

\scrF i+ 1
2
 - \scrF i - 1

2

\Delta x
+ Si,
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Table 1
Numerical study of the \xi -region and associated probabilities where the water height is negative.

M maxm \xi m Negative region NM Pr[\xi \in NM ]

15 0.934077 [0.934079, 1] 5.75 \times 10 - 6

17 0.946839 [0.946899, 1] 2.43 \times 10 - 6

19 0.956205 [0.956320, 1] 1.12 \times 10 - 6

21 0.963310 [0.963980, 1] 5.18 \times 10 - 7
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Fig. 6. Numerical results with (\alpha , \beta ) = (1, 3), K = 9, t = 0.15. Left figure: water surface and
bottom. Right figure: discharge.

where the numerical flux \scrF and the source term Si are given in (4.3) and (4.2),
respectively.

Appendix B. Proof of Corollary 3.5. The corollary is immediate from the
following lemma.

Lemma B.1. For some M \leq dimP 3
\Lambda , there is an M -point positive quadrature rule

that is exact on P 3
\Lambda .

The veracity of this lemma immediately yields M \leq dimP 3
\Lambda in Corollary 3.5.

The second bound in that corollary results from chaining this with the dimension
bound in (2.3). Thus, we need only prove the above lemma, which in turn is a simple
consequence of Tchakaloff's theorem.

Lemma B.2 (Tchakaloff's theorem [3]). Let PT,\ell denote the space of polynomials
of degree up to \ell on \BbbR d:

PT,\ell := span

\Biggl\{ 
\zeta \nu 
\bigm| \bigm| d\sum 

J=1

\nu J \leq \ell 

\Biggr\} 
.

Then, for some M \leq dimPT,\ell , there exists a set of quadrature nodes \{ \zeta m\} Mm=1 and
positive weights \{ \tau m\} Mm=1 such that

\int 
\BbbR d

p(\zeta )\rho (\zeta )d\zeta =

M\sum 
m=1

p(\zeta m)\tau m, p \in PT,\ell .

Now given P 3
\Lambda , let \ell 

\ast denote the maximum polynomial degree of any element in
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P 3
\Lambda :

\ell \ast := sup
p\in P 3

\Lambda 

deg p = max
k=1,...,K

deg \phi k,

which is finite. Then clearly we have P 3
\Lambda \subseteq PT,\ell \ast . By Lemma B.2, there is some

M\ast \leq dimPT,\ell \ast such that \{ \zeta \ast m\} M\ast 

m=1 and \{ \tau \ast m\} M\ast 

m=1 are nodes and (positive) weights,
respectively, corresponding to a quadrature rule that is exact on P\Lambda (since it's exact on
the larger set PT,\ell \ast ). Note that ifM\ast \leq dimP 3

\Lambda =: Q, then the result of Lemma B.1 is

immediate, so we assume otherwise. Let \{ \psi k\} Qk=1 denote any basis for P 3
\Lambda , and define

\Psi (\zeta ) := [\psi 1(\zeta ), \psi 2(\zeta ), . . . , \psi Q(\zeta )]
T \in \BbbR Q.

Then exactness of the quadrature rule on P 3
\Lambda implies the vector-valued equality,

M\ast \sum 
m=1

\tau \ast m\Psi (\zeta \ast m) = e, (e)k :=

\int 
\BbbR d

\psi k(\zeta )\rho (\zeta )d\zeta .

In other words, e \in \BbbR Q lies in the convex hull of \{ \Psi (\zeta \ast m)\} M
\ast 

m=1. By Carath\'eodory's

theorem, there must be a size-Q subset of nodes \{ \zeta m\} Qm=1 \subset \{ \zeta \ast m\} M
\ast 

m=1, with positive

weights \{ \tau m\} Qm=1, such that
\sum Q

m=1 \tau m\Psi (\zeta m) = e, which proves Lemma B.1.
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