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Abstract

 

—An algorithm composition scheme for the numerical solution of boundary value problems
in composite domains is proposed and illustrated using an example. The scheme requires neither differ-
ence approximations of the boundary conditions nor matching conditions on the boundary between the
subdomains. The scheme is suited for multiprocessor computers.
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INTRODUCTION

An algorithm composition scheme for the numerical solution of boundary value problems in composite
and complex domains is proposed and illustrated using an example. The scheme is based on the difference
potential method and is suitable for multiprocessor computers.

An example of a problem in a composite domain is that of determining the steady-state temperature in a
body composed of two materials with different heat conduction properties with given conditions set on the
boundary of the body and with matching conditions specified at the interface between the materials consti-
tuting the body.

Generally, the various parts of a composite domain can have even different dimensionality (e.g., a three-
dimensional body with flat edges). The desired physical fields in the constituent subdomains can be
described by different equations (heat conduction in a metal body with cavities filled with a heat-conducting
fluid).

It is natural to construct algorithms for homogeneous bodies and, then, to combine them for the original
problem in a composite domain.

An example of a problem in a complex domain is heat conduction in a body with narrow bridges near
which the temperature varies sharply when the task is to determine the temperature to equally high accuracy
throughout the body. In this case, finite difference methods on a regular grid would require very fine meshes
in order to provide a good approximation of the solution near the bridges. Another approach is to apply
irregular meshes and the finite element method.

An alternative to these approaches in the case of complex domains is to decompose the original domain
into subdomains in each of which the solution has roughly identical smoothness properties. After decompo-
sition, the original complex domain can be regarded as a composite one in which an algorithm can be
designed as a composition of the algorithms developed for the subdomains. Thus, the decomposition prob-
lem can be viewed as a special case of the composition of an algorithm in a composite domain from algo-
rithms designed for solving the problems in the constituent subdomains with matching conditions imposed
at the subdomains' interfaces.

Problems of algorithm decomposition and composition in complex and composite domains were
addressed by many authors (see, e.g., [1–8] and the references therein).

In most of these studies, after decomposing the computational domain into subdomains, a fairly conve-
nient finite-difference or finite-element approximation is constructed inside each of them (and in a neigh-
borhood of each of them) and grid approximations of matching conditions for solutions are used on their
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boundaries. In decomposition problems, for example, overlapping computational subdomains are fre-
quently used and a solution in a composite domain is sought by applying the Schwarz alternating method
in order to obtain boundary conditions for the next iteration in a given subdomain.

In this case, most of the computations in each subdomain are performed irrespective of the others, which
is well suited for multiprocessor computers and parallel computations.

The algorithm composition scheme proposed in this paper for the numerical solution of problems in
composite domains is based on the difference potential method and is related to [9–16].

To be definite, assume that a composite domain 

 

D

 

 consists of two subdomains 

 

D

 

1

 

 and 

 

D

 

2

 

 and that the
problem in 

 

D

 

 = 

 

D

 

1

 

 

 

∪ 

 

D

 

2

 

 is set by two equations

with matching conditions for the solutions  and  specified on the boundaries 

 

Γ

 

1

 

 = 

 

∂

 

D

 

1

 

 and 

 

Γ

 

2

 

 = 

 

∂

 

D

 

2

 

and with additional boundary conditions.
We construct expressions

that depend on a certain number 

 

K

 

j

 

 of arbitrary constants 

 

, …, 

 

 (

 

j

 

 = 1, 2) and somewhat approximate

the general solutions 

 

 

 

to the original equation in 

 

D

 

j

 

. It is assumed that the approximation becomes pro-
gressively more accurate with increasing 

 

K

 

j

 

, 

 

j

 

 = 1, 2.
After an approximation of the general solution

to the original equation with given right-hand sides was constructed, the desired particular solution is

obtained by choosing constants 

 

, …, 

 

 and 

 

, …, 

 

 for which the boundary and matching conditions
are satisfied as accurately as possible.

There are three major difficulties encountered in implementing this plan.
1. For a good approximation, 

 

K

 

1

 

 and 

 

K

 

2

 

 must be sufficiently large.

2. To construct the general solutions , we have to find 

 

K

 

j

 

 particular solutions in the curvilinear
domains 

 

D

 

j

 

, 

 

j

 

 = 1, 2.

3. A system of equations of order 

 

K

 

1

 

 + 

 

K

 

2

 

 (i.e., a high-order system) has to be solved to determine 

 

, …,

 

, 

 

j 

 

= 1, 2.

The difference potential method makes it possible to reduce these difficulties and design a reasonable,
flexible algorithm.

The number 

 

K

 

1

 

 + 

 

K

 

2

 

 of arbitrary constants required for achieving a prescribed accuracy in the approxi-
mation is decreased using the difference potential method, which involves a nondifference approximation
of the boundary and matching conditions that automatically takes into account the smoothness of the solu-
tion. Such self-tuning is impossible for difference or finite-element approximations of these conditions. The
difference potential method also overcomes the difficulties associated with the computation of solutions to
the boundary value problems in the curvilinear domains 

 

D

 

j

 

. Specifically, these problems are reduced to those
in simple auxiliary domains with simple auxiliary boundary conditions. The latter are solved using differ-
ence schemes on regular grids that do not need to be consistent with each other or with the curvilinear
boundaries of

 

 D

 

1

 

 and 

 

D

 

2

 

. Another important point is that the algorithms for computing the solutions to the

large number 

 

K

 

1

 

 + 

 

K

 

2

 

 of problems for deriving 

 

(

 

x

 

, , …, ) 

 

are entirely independent of each other;
therefore, they are perfectly suited for multiprocessor computers.

This paper is organized as follows.
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Section 1 presents the necessary preliminaries to potentials with projectors and to difference potentials
for their discrete constructive approximations [14].

In Section 2, we outline an abstract general scheme for the composition of an algorithm for second-order
elliptic equations based on potentials with projectors and pseudodifferential boundary equations. Later, this
abstract scheme is discretized and made constructive by applying the difference potential method.

Section 2 is a development of the scheme sketched in [15, ch. 13].
A numerical example illustrating the general approach is presented in Section 3. The effect of the various

parameters of a particular algorithm is estimated qualitatively and quantitatively.

1. PRELIMINARIES TO POTENTIALS WITH PROJECTORS [13–15]

Our considerations are restricted to constructions for second-order linear elliptic equations

in a bounded domain D and its neighborhood Q, D ⊂ Q. Examples of such equations are

Here, a(x1, x2) ≥ 1, b(x1, x2) ≥ 1, and f(x1, x2) are given functions that are smooth in the given domain , in
which D is contained strictly inside together with its piecewise smooth boundary Γ = ∂D.

The Cauchy data vΓ for an arbitrary continuous piecewise smooth function v(x1, x2) defined on Γ and in
some of its neighborhoods are defined as

(1)

where  is the inward normal derivative relative to D.

Consider the auxiliary problem

(2)

with u vanishing on the boundary of :

(3)

Since Q containing D can be arbitrary, for convenience, we choose Q to be a square. It is well known that
the Dirichlet boundary value problem (2), (3) for a second-order linear elliptic equation is uniquely solvable.

Let us construct a potential with a density vΓ. Define the vector function

(4)

where ϕ0(s) and ϕ1(s) are two piecewise smooth continuous functions on |Γ| that are s-periodic with a period
of |Γ|, s is the arc length along Γ, and |Γ| is the length of the boundary. Here, the arc length is chosen as a
parameter only for definiteness. Another parameter along Γ is used in the numerical examples given in Sec-
tion 3.

Let v(x1, x2) = vQ be an arbitrary sufficiently smooth function on Q that satisfies condition (3). Suppose
that its Cauchy data vΓ given by (1) coincide with the vector function vΓ defined by formula (4).

Lu f x1 x2,( ), x1 x2,( ) D,∈=

∂2u

∂x1
2

-------- ∂2u

∂x2
2

--------+ f x1 x2,( ), x1 x2,( ) D,∈=

∂
∂x1
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∂x1
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∂x2
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∂x2
--------+ f x1 x2,( ), x1 x2,( ) D.∈=

Q

v Γ

v Γ

∂v
∂n
-------
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⎜ ⎟
⎛ ⎞

,=

∂
∂n
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Lu f x1 x2,( ), x1 x2,( ) Q,∈=

Q

u ∂Q
0.=

v Γ
ϕ0 s( )

ϕ1 s( )⎝ ⎠
⎜ ⎟
⎛ ⎞

,=
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Consider problem (2), (3) with the right-hand side

The restriction of the solution of this problem to D+ is denoted by  = vΓ. Additionally, consider

problem (2), (3) with the right-hand side

The restriction of the solution of this problem to D– is denoted by  = vΓ.

We introduce the notation uD = PDΓvΓ, which means  = vΓ or  = vΓ depending on which

of the two equalities, D = D+ or D = D–, takes place.

Theorem 1. The function uD = PDΓvΓ depends only on Cauchy data (4) but is independent of the choice
of a particular function v(x) satisfying (3) whose Cauchy data coincide with (4).

By virtue of this theorem, the following concept is defined.

Definition 1. The function  = vΓ is called a potential with the density vΓ.

Theorem 2. Suppose that vΓ coincides with the Cauchy data

for a solution u(x1, x2) to the homogeneous equation Lu = 0 (x ∈ D) that is continuous, together with its first

derivative, in the closed domain . Suppose also that u(x1, x2) satisfies condition (3) if D = D–. Then, the
solution uD can be recovered everywhere in D from its Cauchy data uΓ by the formula

(5)

Define a boundary operator PΓ that maps an arbitrary sufficiently smooth density vΓ of type (4) from the
space VΓ of all such densities to a pair of functions uΓ ∈ VΓ by the formula

Theorem 3. Let vΓ be a vector function of type (4) and uD(x1, x2) be a smooth (up to the boundary) solu-
tion to the homogeneous equation Lu = 0, (x1, x2) ∈ D that satisfies condition (3) if D = D–. Then, vΓ is
Cauchy data for uD(x1, x2) if and only if vΓ satisfies

(6)

The operator PΓ is a projector: PΓ ≡ .

This theorem means that the equation Lu = 0, (x1, x2) ∈ D for smooth (up to the boundary Γ) solutions
that satisfy condition (3) if D = D– is equivalent to Eq. (6) with respect to the Cauchy data for the solution,

and two Eqs. (6) for two scalar functions v|Γ and  are boundary equations. The latter are pseudodiffer-

ential boundary equations with the projector PΓ constructed for the special second-order elliptic equation
under consideration.

f x1 x2,( )
0, x1 x2,( ) D+,∈
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⎨
⎧

=

u
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Note that the solution to the equation Lu = 0, (x1, x2) ∈ D that satisfies (3) if D = D– with any additional
condition luD|Γ = ψ specified on Γ is equivalent to the solution of the problem

on Γ with respect to the Cauchy data uΓ for the desired solution.

Remark. The potential uD = PDΓvΓ is a modification [13] of the Calderon potential [17]. In contrast to
the Calderon potential, uD admits a finite-dimensional constructive approximation by difference potentials
constructed for this purpose.

Difference Potentials and Difference Boundary Projectors

In the plane x1Ox2 , we introduce a square grid x1 = m1h, x2 = m2h (m1, m2 = 0, ±1, …) with a mesh size
h such that 1/h is an integer.

Suppose that D lies inside a square Q whose sides are parallel to the coordinate axes and lie on grid lines.
Each point (m1h, m2h) = m is assigned a set Nm that is a five-point finite-difference stencil:

The second-order differential equation Lu = f is associated with the difference equation

(7)

(which approximates the former to second-order accuracy in h) with the condition

(8)

where Qh is the set of grid points m lying strictly inside Q, and amn are the known coefficients. Obviously,

the solution uN ≡  = {un} to Eq. (7) is defined on the set  ≡ N = , m ∈ M. It is well known that

problem (7), (8) has a unique solution uN = {un}, n ∈ N for any right-hand side fM = {fm}, m ∈ M.

The grid analogues of D+ and D–, their closures  and , and the boundary Γ are defined as

Let  be an arbitrary grid function on Γh and vN be an arbitrary grid function satisfying condition (8)

and coinciding with  on Γh.

Consider problem (7), (8) with the right-hand side

(9)

The restriction of the solution  to problem (7)–(9) with N to , where  ⊂ N, is denoted by

(10)

Consider problem (7), (8) with the right-hand side

QΓuΓ uΓ PΓuΓ–≡ 0, l PDΓuΓ( ) ψ= =

n m1h m2h,( ), n m1 1±( )h m2h,( ), n m1h m2 1±( )h,( ).= = =

amnun

n Nm∈
∑ f m, m M Qh,≡∈=

un 0, n ∂Q,∈=

uQh
Qh Nm∪

D
+

D
–

Dh
+ m | m D+∈{ }, Dh

– m | m D–∈{ },==

Dh
+

Nm, m Dh
+, Dh

–∈∪ Nm, m Dh
–,∈∪= =

Γh Dh
+

Dh
–
.∩=

v Γh

v Γh
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0, m Dh
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amnv n∑ , m Dh
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+ Dh
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uDh

+ PDhΓh

+
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The restriction of the solution  to this problem with N to , where  ⊂ N, is denoted by

(11)

Define

(12)

which means (10) when Dh =  and (11) when Dh = .

Theorem 4. The functions defined by (10) and (11) depend only on  but are independent of the choice

of vN satisfying condition (8) and coinciding with  on Γh.

In view of this theorem, the following concept is well defined.

Definition 2. Grid functions (10) and (11) are called difference potentials with the density  on the

grid domains  and , respectively.

Let  denote the linear space of all grid functions  that are the restrictions of all the functions vN

satisfying (8) to Γh.

The boundary operators  :    and  :    are defined as

(13)

for every  ∈ . Here, the right-hand sides of (13) are the restrictions of difference potentials (10) and

(11) to Γh. We will also use the notation  :    assuming that  coincides with  or 

depending on the choice of  or  to be the grid domain Dh.

Theorem 5. The grid function  on Γh is the trace  =  of a solution  to the homogeneous

equation un = 0 (m ∈ Dh) that also satisfies condition (8) in the case Dh =  if and only if  sat-
isfies

In this case,  can be recovered from its boundary values  =  by formula (12).

This theorem allows us to reduce the problem of finding a solution to the equation

with some additional conditions l  = ψ to the equivalent problem of finding the density  of the differ-

ence potential  = , which is true by virtue of the following system of equations for :

2. ALGORITHM COMPOSITION SCHEME

2.1. Statement of the Problem in a Composite Domain

Suppose that D = D1 ∪ D2 in the plane (x1, x2) consists of two bounded disjoint domains D1 and D2 with
piecewise smooth boundaries Γj = ∂Dj, j = 1, 2.

uN
– Dh

–
Dh

–

uDh

– PDhΓh

–
v Γh

.=

uDh
PDhΓh

v Γh
,=

Dh
+ Dh

–
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v Γh
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Dh
+

Dh
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VΓh
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PΓh

+ VΓh
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PΓh
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+
v Γh

P
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+Γh

+
v Γh
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P
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The task is to find the function

(14)

where  satisfies the second-order linear elliptic equations

(15)

and matching and additional conditions on Γ1 and Γ2 of the form

(16)

Here, l( , ) is an expression that assigns to each pair , , where

an admissible element ϕ.
Assume that the coefficients of the differential expressions on the left-hand side of (15) are defined

everywhere in the plane.

It is assumed that (x1, x2) and (x1, x2) are smooth functions in the entire plane (x1, x2) rather than
only on D1 and D2.

Define the linear spaces , , , and Φ of sufficiently smooth functions , , Cauchy data

, and right-hand sides ϕ from conditions (16), respectively. Define the norms

(17)

and some norm

In (17c), α denotes a nonnegative numerical parameter.
Assume that the operator l in (16) and the space Φ with a Hilbert norm are specified so that problem (15),

(16) has the same solution uD for any  ∈  (j = 1, 2) and ϕ ∈ Φ, and it holds that

Additionally, assume that

where c1, c2, c3, and c4 are constants independent of , , ϕ, , or .

uD x1 x2,( )
uD1

x1 x2,( ), x1 x2,( ) D1,∈

uD2
x1 x2,( ), x1 x2,( ) D2,∈⎩

⎨
⎧

=

uD j

L juD j
f D j

, j 1 2,,= =

l uΓ1
uΓ2

,( ) ϕ.=
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uΓ j

uD j Γ j

∂uD j
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Γ j
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⎜ ⎟
⎜ ⎟
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f D2

UD j
FD j
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+ + x1 x2,dd
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f D j FD j
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uΓ j VΓ j
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sd
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2.2. Preliminary Composition Scheme

The preliminary scheme is based on the general solution to Eq. (15), i.e., on

(18)

which was written using the potential

with a density  subject to the only condition

(19)

The function  is any fixed particular solution to the inhomogeneous differential equation (15). Under
condition (19), any particular solution to Eq. (15) is derived from general solution (18) with a suitable choice
of .

Note that (18) and (19) imply

(20)

where  is the Cauchy data of the particular solution .

The desired solution to the original problem (14)–(16) is obtained in form (18) or (20) if  is deter-
mined by conditions (16) and (19). Here, (16) takes the form

(21)

and conditions (19) and (21) are jointly considered.
It is well known that Eq. (19) can be solved for the second component of the Cauchy data

(22)

Here, Aj is called the Poincaré–Steklov operator of the equation

Moreover,  =  and  = .

By using the Poincaré–Steklov operators Aj, j = 1, 2, we can replace system (19), (21) with the single
equation (21), in which expressions (22) are substituted for the second components of the desired Cauchy
data.

2.3. Discretization of Cauchy Data

We fix j = 1, 2 and, for each positive integer Kj, specify a set of basis functions

on Γj. For simplicity, assume that the basis functions are independent of Kj:

i.e., the set of basis functions is supplemented with increasing Kj.

For every sufficiently smooth single-valued periodic function f(s) on Γj, assume that the sequence

tends to zero with increasing Kj :  = 0 as Kj  ∞.

uD j
PD jΓ j

v Γ j
uD j
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v Γ j
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v Γ j

QΓ j
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To discretize the elements

(23)

from the space of Cauchy data, we use the approximate equalities

where

(24)

and ck and  (k = 1, 2, …, Kj) are the unknown numerical coefficients to be determined.

2.4. Discretization of the Potential

To discretize the potential

(25)

with the density given by (23), we use the difference potential

which was constructed above for the difference analogue of the differential equation Lj  = 0. As , we

use the function determined by the Cauchy data ν ∈ Γjh at each point  according to the following two-
(k = 0) or three-term (k = 1) Taylor formula:

(26)

Here, sν is the value of the arc length s at the point where Γj intersects the normal to Γj passing through the
point ν. The number ρν is the distance from ν to the intersection point of the normal with Γj taken with a

plus sign if ν ∈  and with a minus sign if ν ∉ Dj. The function v(2)(s) in (26) is uniquely defined by the
formula

where w(x1, x2) is an arbitrary smooth function on Γj and in its neighborhood that satisfies

Denote by  the operator that, to every  from the space of Cauchy data, assigns  according to
Taylor formula (26), so that

To approximate (25), we use the difference potential

In the numerical experiment described in Section 3, we compare the Taylor formulas with k = 0 and k = 1.
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2.5. Computation of a Particular Solution and Its Cauchy Data

A particular solution  to the inhomogeneous equation Lj  =  included in the general solution

 =  +  can be obtained as accurately as desired by numerically solving the Dirichlet problem
with zero conditions on the boundary in an arbitrary square domain containing Dj. This can be done using
a difference scheme on a square grid with a small mesh size. By virtue of the Thome estimates (see, e.g.,
[14]), the solution to the difference equation and its divided differences converge uniformly to the solution
of the differential problem as h  0. Obviously, this allows us to calculate the particular solution  and
its Cauchy data

as accurately as desired.

2.6. Discrete Norms

The space  of grid functions  is equipped by a norm similar to norm (17c) for Cauchy data :

(27)

Here, the sum is extended over all ν = (ν1, ν2) that belong to Γjh in the first term; over all ν = (ν1, ν2) that,
together with (ν1 + 1, ν2), belong to Γjh in the second term; and over all ν = (ν1, ν2) that, together with (ν1,
ν2 + 1), belong to Γjh in the third term over.

2.7. Composition of an Effective Algorithm

Recall that the first step in the algorithm composition scheme for the numerical solution to a problem in
a composite domain is to find a general solution to the equation Lj  = fj of the form

(28)

or

(29)

where  ranges over the solution set of the boundary pseudodifferential equation

(30)

Then, we determine a unique pair of Cauchy data

(31)

that satisfies Eqs. (30) and the conditions

(32)

After  was found, the desired solution

to the problem in the composite domain D = D1 ∪ D2 is given by formulas (29).
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This scheme is not constructive, since it indicates neither how to solve system (30)–(32) for  and 

nor how to compute the term  =  on the right-hand side of (29). (Recall that the particular solu-

tion  to the inhomogeneous equation Lj  = , as well as its Cauchy data  and , can be
regarded as known, since a method for their computation was described in Section 2.5.)

Now, we describe a constructive algorithm. The desired densities  (j = 1, 2) are represented approx-
imately as

(33)

For each j = 1, 2, Eq. (30) is replaced by the following equation for the 2Kj coefficients  and :

(34)

where

(35)

System (34) is a set of linear scalar equations whose order is equal to the number |Γjh| of points on the
grid boundary Γjh. The mesh size hj is assumed to be so small that |Γjh| � 2Kj.

Obviously, system (34), (35) can be written in the matrix form

(36)

Here, cj = (c1j, …, ),  = ( , …, ), and

where

are the columns of Bj and , so that the components of the vectors bjk and  are |Γj| values of the grid
functions

taken at points of Γjh indexed in an arbitrary order.

The weak solution ,  to system (30)–(32) is defined as Cauchy data of form (33) such that the

constants ckj and  minimize the expression

For  (j = 1, 2) equipped with Euclidean norms and for Φ equipped with a Hilbert norm, this varia-
tional problem is the well-known least squares problem.

After  and  were found, the functions  and  involved in (28) are replaced with approxi-
mate difference potentials:

By definition, these potentials are calculated by solving difference auxiliary problems of form (7)–(9).
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ũΓ1

+ ṽ Γ2
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For fixed Kj, j = 1, 2, the determined numbers ckj = ckj(Kj, hj) and  = (Kj, hj) converge, as hj  0,
to the limiting values

It can be shown (see [14, part 1]) that expressions (33) with ckj and  set equal to (Kj) and (Kj)
tend to the exact solutions of system (30)–(32) as Kj  ∞. Moreover, with the natural choice of the basis
functions ψkj, sufficient accuracy is usually achieved even for small K1 and K2. Note that an algorithm for
computing a solution in D = D1 ∪ D2 based on the general solutions in the constituent domains can be com-
posed by numerous methods, which produce somewhat different approximate solutions that, nevertheless,
converge to the exact one as hj  0 and Kj  ∞.

For example, we can proceed from overdetermined system (34) to

where  is defined as a matrix that, to each set of cj, assigns a set of  that minimize

(37)

As is known, this matrix  can be calculated by the least squares method. Now, the general solution in

each  is approximated by a difference potential whose density depends only on the set of numbers cj =
{c1j, …, }.

The operator  plays the role of a Poincaré–Steklov operator. To obtain an approximate solution to

the original problem in the composite domain, it remains to replace  in (32) by  and solve the result-
ing overdetermined system for cj (j = 1, 2) by the least squares method.

Note that the computation of the matrix of Gj(cj, ) is reduced to the computation of difference poten-

tials with the densities  and , k = 1, 2, …, Kj. For this purpose, we need to solve 2Kj

difference auxiliary problems with different right-hand sides, which is a task well suited for multiprocessor
computers. Moreover, the number 2Kj of basis functions that is sufficient for achieving the required accuracy
of the approximation is usually not very large.

The numbers cj and  (j = 1, 2) can be found by iterative algorithms involving repeated solutions of
difference auxiliary problems, whose number, however, can turn out to be less than 2(K1 + K2), i.e., less than
the number required for computing Bj and  in (36).

The scheme proposed can be generalized to the case where the equations Lj  = fj are considered in
spatial subdomains and are sets of equations not necessarily of the second order or of the elliptic type.

The possibility of these generalizations is based on that fact that the difference potentials are constructed
for general linear systems of difference equations on irregular grids (see [14]).

3. STATEMENT OF TEST PROBLEMS

Let D1 and D2 be two disjoint domains whose closures intersect along the curve Γ =  ∩  and the

union of whose closures is the square D0 = {(x1, x2) ∈ �
2
 | –2 ≤ x1, x2 ≤ 2} (see figure).

On the composite domain D0 =  ∪ , we consider the inhomogeneous boundary value problem

(38)

with the boundary condition
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and the additional conditions

(40)

on Γ, where  =  ≡ ∆ is the Laplacian, β is a function on Γ, Γ ≡ Γ1 ≡ Γ2,  is a given function on

∂D0 , and  and ϕ are given functions. Here,  denotes the inward (with respect to D2) normal derivative

on Γ.

To construct the general solution , we use the specific features of problem (38)–(40). The auxiliary

square Q1 is D0 , and the auxiliary problem is

As a particular solution , we use the restriction to D1 of the solution  to the problem

with inhomogeneous boundary condition (39). Here, f(x1, x2) is a smooth extension of (x1, x2) to the

entire square D0 .

According to the general scheme described in Sections 1 and 2, the computational scheme for the bound-
ary value problem in a composite domain consists of four steps.

Step 1. The subspace spanned by a given finite number of basis functions (24) is distinguished in the
space of Cauchy data , j = 1, 2. This subspace is associated with quadratic form (37):

Step 2. Find any particular solutions  to Eqs. (38), (39) and  to Eq. (38) and calculate their Cauchy
data on Γ1 and Γ2, respectively.
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Step 3. Solve the joint variational problem; i.e., find two pairs of Cauchy data  (j = 1, 2) that minimize
the expression

Step 4. Extend the Cauchy data determined to an approximate solution to the equation on a grid inside
the domain by using the difference potential  = , whose density  is constructed by Taylor

formula (26) according to the Cauchy data found.

Note that Steps 1 and 2 are entirely separated from each other. In particular, Gj( ) and  can be cal-
culated using different auxiliary problems with different mesh sizes.

On Γj (j = 1, 2), we choose the same system of basis functions:

In the numerical experiments, test problems were solved following the scheme described above. As tests,
we used problems with known analytical expressions for the exact solutions. This allowed us to analyze the
errors in approximate solutions depending on various parameters (mesh sizes, the number 4N + 2 of basis
functions in , etc.).

Define three auxiliary functions

where c1 and c2 are regarded as numerical parameters. Here, the Cartesian coordinates (x1, x2) of points are
related to their polar coordinates (r, θ) by the equality (x1, x2) = r(cosθ, sinθ).

The boundary Γ is parametrically defined in polar coordinates (r, θ) by the relation r(θ) = rΓ(θ) = 1 +
esin(3θ), where e is a parameter.

The function P5(x) is continuous; identically equal to 1 for x ≤ 0; vanishes identically for x ≥ 1; and, on
the interval 0 ≤ x ≤ 1, it is a unique ninth-degree polynomial whose derivatives up to the fourth order vanish
at the endpoints of 0 ≤ x ≤ 1. The function P5(x) can be written as

Note that, due to the multiplier P5(ρ/0.9), the function u(2) vanishes outside D2 and in a neighborhood of
Γ. At the same time, for large values of c2 , u(2) exhibits strong oscillations deep inside D2. This allowed us
to form test problems with widely different smoothness properties in different parts of D2.

As test problems, we used problems (38)–(40) whose solutions are given by

(41)
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values of  and  by the formulas

(42)

Thus, the test problems were to approximately recover u(x1, x2) defined by (41) from the functions  and
β(s) given by (42) and from the corresponding vector function ϕ. The normed space Φ was specified as the
space  =  of Cauchy data with norm (17c).

In the experiments, we monitored the relative error of the approximate solution ucalc found according to
the algorithm. The relative error was defined by the formula

We considered two test problems.
Problem 1. Let c3 = 0. Then, by the construction of u(2), β(s) ≡ 1.
Problem 2. Let c3 = 1. Then, β(s) is calculated by formula (42).

The algorithm was implemented with various difference auxiliary problems used for designing Gj( )

and , j = 1, 2.

To construct G1( ), we used the problem for the difference Poisson equation in the square –2 ≤ x, y ≤
2 with zero Dirichlet conditions. The sides of the square belonged to lines of a square grid. The mesh size
was characterized by the number n1 of grid intervals lying on the square side. The number n1 was a param-
eter of the algorithm.

To construct a particular solution , we also used the difference Dirichlet problem in the square 2 ≤ x,
y ≤ 2 with Dirichlet conditions coinciding with those in the original problem, but the mesh size was charac-
terized by another number m1 of grid intervals lying on the square side.

As an auxiliary problem for constructing G2( ), we used the difference Dirichlet problem in the square
domain

with zero Dirichlet data on a square grid whose mesh size was characterized by the number n2 of grid inter-
vals lying on the square side. Here, a2 and n2 are parameters.

The auxiliary problem for computing the particular solution  was of the same form, but a2 was
replaced with an a2-independent parameter a2f and the number m2 of grid intervals lying on the square side
was independent of n2.
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Table 1

Version N m1 m2 c1 c2 a2 a2f k e ε εu

1 18 256 256 1 1 1.6 1.7 1 0.0 5.3 × 10–5 4.6 × 10–5

2 " 1024 1024 " " " " " " 5.8 × 10–6 2.9 × 10–6

3 14 " " " " " " " " 4.2 × 10–3 "

4 18 128 " " 16 " " 0 " 6.1 × 10–4 1.2 × 10–4

5 " " " " " " " 1 " 1.6 × 10–4 "

6 42 256 512 4 " " " " " 5.6 × 10–4 5.5 × 10–4

7 30 " " " " " " " " 4.6 × 10–3 "

8 18 128 128 1 1 1.3 1.3 " " 1.6 × 10–4 1.1 × 10–4

9 30 " " " " 1.6 1.7 " 0.1 3.0 × 10–4 2.1 × 10–4

10 22 " " " " " " " " 3.7 × 10–4 "

11 " 1024 1024 " " " " " " 1.6 × 10–4 3.3 × 10–6
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For n1 = n2 = 512, the numerical results obtained for Problem 1 (with α = 0.2 and β = 1) are listed in
Table 1 and those obtained for Problem 2 (with c1 = c2 = 1, a2 = 1.6, a2f = 1.7, k = 1, α = 0.2, and β ≠ 1) are
given in Table 2.

The desired solution to Problem 1 is the classical solution to Poisson’s equation in the square –2 ≤ x, y ≤
2. Therefore, along with the known analytical expression for this solution, which was recovered using the
algorithm, this solution was approximately calculated by applying a five-point difference scheme. The mesh
size was the same as that used for finding the particular solution . Table 1 presents the relative error εu

in this solution, which shows the maximum accuracy that can be reached by any five-point difference algo-
rithm if its mesh size is no less than that used to calculate this solution.

Let us comment on the results given in the tables.

The basic result for Problem 1 is that, for a sufficient number of basis functions and for sufficiently fine
grids used in four auxiliary problems, the error in the resulting approximate solutions differs little from εu.
Consequently, these solutions cannot be improved considerably.

Furthermore, the accuracy of the results obtained for given mesh sizes is improved when the Taylor oper-

ator  is calculated by the three-term Taylor formula (k = 1) rather than the two-term one (k = 0). This
can be seen by comparing versions 4 and 5 in Table 1.

The number N of harmonics used in the approximate representations of  and  influences the

accuracy if the mesh sizes are rather small. For example, versions 6 and 7 in Table 1 show that the accuracy
is reduced by roughly 50 times when the algorithm switches from 42 to 30 harmonics. An analogous satu-
ration effect occurs in the auxiliary problems when the number of harmonics is fixed and the mesh sizes are
decreased. In this case, a further refinement of the grids does not improve the accuracy.

The norm  defined by (27) is a function of α. Nevertheless, in version 2, the accuracy of the

results hardly change when α = 0.2 is replaced by α = 0.02 or α = 2.

This can be explained by the low dimension of the spaces spanned by  and . An idea of
the number of basis vector functions that are sufficient for obtaining a fairly accurately approximation of
the desired Cauchy data is given by the following formulas for the Cauchy data of the desired solution,
which were designed in advance:

uD2

πΓ jhΓ j

k( )

u Γ j

∂u
∂n
------

Γ j

v Γ jh VΓ jh

πΓ jhΓ
1( ) Ψk πΓ jhΓ

1( ) Ψk'

uΓ

u Γ

∂u
∂n
------

Γ⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

, c1 1,= =

uΓ 71.57 1.2 4θ( )cos– 1.9 10 4– 8θ( ),cos×+≈

∂u
∂n
------

Γ
98.56– 4.6 4θ( )cos– 1.5 10 3– 8θ( ).cos×–≈

Table 2

N m1 m2 ε

42 128 128 3.0 × 10–4

" 256 256 7.6 × 10–5

22 128 128 3.0 × 10–4

" 256 256 7.4 × 10–5

14 128 128 4.5 × 10–3

" 256 256 4.3 × 10–3
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Therefore, the constants of norm equivalence on the corresponding finite-dimensional subspaces of  are

close to unity. Even for α = 0, the normal derivative  on Γjh is taken into account by using only the

terms  (ν ∈ Γjh) since the difference boundary is represented by two levels.

For β ≠ 1, Table 2 suggests conclusions similar to those drawn by inspecting Table 1.
To conclude, we note the following point. Because of the rapid oscillations in the solution inside D2, a

small mesh size is required in the computation of  in order to achieve good accuracy. However, a small
mesh size in D1 obviously leads to high computational costs.

Our approach makes it possible to pick both the auxiliary problems and the mesh size for determining
the particular solutions  and  and, then, for calculating , and Gj can be chosen independently.

Note that the difficulty associated with the inhomogeneous behavior of the solutions could be overcome
by applying an irregular grid and finite element equations. We used regular grids to cope with this difficulty.

In Problem 2, in addition to the necessity of using different mesh sizes in D1 and D2, we encountered
difficulties associated with the discretization of the conditions on Γ, which were also overcome by using our
approach.
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