Geometric growth and character
development in large metastable networks
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Sunto. — Cellular networks are ubiquitous in nature. They exhibit behavior on
many different length and time scales and are generally metastable. Most techno-
logically useful materials are polycrystalline microstructures composed of a myriad
of small monocrystalline grains separated by grain boundaries. The energetics and
connectivity of the grain boundary network plays a crucial role in determining the
properties of a material across a wide range of scales. A central problem in materials
science is to develop technologies capable of producing an arrangement of grains—a
texture—that provides for a desired set of material properties.

Here we discuss briefly the role of energy in texture development, measured by
a character distribution, and how this is different from the evolution of geometric
features, which we term geometric coarsening. For this purpose we present a critical
event model to deepen our understanding of the topological reconfigurations that
occur during the growth process.

1. — Introduction

Most technologically useful materials arise as polycrystalline microstructures,
composed of a myriad of small crystallites or grains, the cells, separated by interfaces
or grain boundaries. Coarsening consists in the growth and rearrangement of the
crystallites, which may be viewed as the anisotropic evolution of a large metastable
system. Two processes compete during coarsening in a cellular network. Energy
cost tends to reduce the amount of interface in the configuration, while, simulta-
neously, available space must be filled. As energy decreases, cells increase in size
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and small cells and interfaces tend to be eliminated in order to maintain the space
filling constraint. In a given material system, many other features may interfere
with these primary mechanisms, like second phase precipitates, impurities, and dis-
location arrays, but here we shall limit ourselves to discussion of the growth process
in two dimensions. Although the space filling constraint requires reduction of the
number of cells, how this transpires depends on properties of the energy itself. This
distinguishes one material from another. It is the main topic of our investigation
and here we wish to discuss some first thoughts.

In simulation [18] we are presented with thousands of coupled nonlinear partial
differential equations representing details of the evolution. Assorted statistics may
be harvested and suggested as material properties. But we lack a theory to predict
or to verify the reliability of such statistics. In general, these multiscale processes
require “upscaling” or “coarse graining” for interpretation and subsequent predictive
capability. Our approach here is to investigate some simulation statistics, which we
believe to be robust, in conjunction with some ideas of analysis, looking for insight
about mesocscale coarsening behavior.

The most straightforward way to measure coarsening is to maintain a record of
the average size of cells or the average sizes of cells with a given number of facets.
We refer to this aspect of the process as geometric growth.

Texture is characterized at the mesoscale level by geometry and crystallogra-
phy. This is connected to the preparation of arrangements of grains and boundaries
suitable for a dedicated application, a central issue of materials science: it is the
problem of microstructure [24]. A fundamental result is that this is an energy de-
pendent material property and not some random feature of a configuration. We
introduce the grain boundary character distribution, the GBCD, a basic texture
measure, [17], and outline a possible theory for it. For this, a simplified critical
event model is introduced. A detailed presentation of the theory appears in [2]. In
summary there are two aspects of coarsening, geometric growth and texture devel-
opment. The main objective of this note is to show that they may be decoupled
and characterized by different types of evolution processes, leading to statistically
different types of coarsening rates.

There are many coarsening systems, or models of physical systems which undergo
an evolution process where coarsening occurs. These run a gamut from Monte Carlo
and Potts models to kinetic theory. A number of these display behavior similar to
the one we present here and thus we suspect some interesting universal properties.
A different critical event model which originates in the Carnegie Mellon MRSEC is
found in [26]. We are pleased to acknowledge the collaboration of G. S. Rohrer, A.
D. Rollett, and R. Sharp.

2. — Recapitulation of mesoscale theory

There is a common denominator theory for the mesoscale description of mi-
crostructural evolution. This is growth by curvature, the Mullins Equation (2.2)
below, for the evolution of curves or arcs individually or in a network. Boundary
conditions must be imposed where the arcs meet. This condition is the Herring Con-
dition, (2.3), which is the natural boundary condition at equilibrium for the Mullins



Equation. Since their introduction by Mullins, [22], and Herring, [13], [14], a large
and distinguished body of work has grown about these equations. Most relevant
to here are [11], [8], [16], [23]. Let v denote the misorientation between two grains
separated by an arc T, as noted in Figure 1, with normal n = (cos#,sin ), tangent
direction b and curvature . Let 1 = ¥ (0, a) denote the energy density on I'. So

Fiz=¢(s,t), 0Ss< L, t>0, (2.1)
with
23
b= 5 (tangent) and n = Rb (normal)
s
73 : :
V=g (velocity) and v, = v - n (normal velocity)
where R is a positive rotation of 7/2. The Mullins Equation of evolution is

Uy = (g9 + )k on T, (2.2)

We assume that only triple junctions are stable and that the Herring Condition

Figure 1: An arc I' with normal n, tangent ¢, and lattice misorientation «, illustrating lattice
elements.

holds at triple junctions. This means that whenever three curves {I'), ' T®)}
meet at a point p the force balance, (2.3) below, holds:

> (Won + ) = 0. (2.3)
i=1,..,3

It is easy to check that the instantaneous rate of change of energy of I" is

%/Fw\blds = —/Fvids—irv - (o + Yb)|ar (2.4)

We turn now to a network of grains bounded by {I';} subject to some condition at
the border of the region they occupy, like fixed end points or periodicity, cf. Figure
2. The typical simulation consists in initializing a configuration of cells and their
boundary arcs, usually by a modified Voronoi tessellation, and solving the system
(2.2), (2.3), eliminating facets when they have negligible length and cells when they
have negligible area. The total energy of the system is given by

E(t) =) _|blds (2.5)

{I:}
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Figure 2: Example of a cellular network from simulation. This is from a small simulation with
constant energy density and periodic conditions at the border of the configuration.

Owing exactly to the Herring Condition (2.3), the instantaneous rate of change of

the energy
d Z 2 Z Z
%E(t) = — o /FZ ’Unds + - v - ('QDQTL + ¢b)

=— Z /Fl v2ds (2.6)

{T:}
<0,

rendering the network dissipative for the energy in any instant absent of critical
events. Indeed, in an interval (to, o + 7) where there are no critical events, we may
integrate (2.6) to obtain a local dissipation equation

to+71
3 / / W2dsdt + Eto +7) = Elto) 2.7)
{ryy 7o

which bears a strong resemblance to the simple dissipation relation for an ensemble
of inertia free springs with friction. In the simulation, the facet interchange and cell
deletion are arranged so that (2.6) is maintained. Suppose, for simplicity, that the
energy density is independent of the normal direction, so 1) = ¢)(a)). Then (2.2) and
(2.3) may be expressed

v, = Yronl

Z b = 0 at p, (2.9)
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Figure 3: The energy density ¢(a) =1+ esin? 2a, € = %, used for the examples in this note.

where p denotes a triple junction. (2.9) is the same as the Young wetting law. For
this situation we define the grain boundary character distribution, GBCD,

p(a, t) = relative length of arc of misorientation « at time ¢,

, (2.10)
normalized so that / pda = 1.

Q

For consistency, in this note all computational results are drawn from a single run
initially of 10? cells with cell orientations distributed normally.

3. — Geometric coarsening

In this note we attempt to explain properties of texture. In order to compare
with geometric growth, we here make a brief excursion. For an individual cell in
an ensemble with constant facet energy density, (2.2) and (2.3) lead to the well
known von Neumann-Mullins n — 6 rule, [28], [21]: the rate of change of area of an
n—faceted cell with constant surface energy and exterior angles meeting at 27/3 is
proportional to n — 6, i.e.,

A
ddtn = c¢(n — 6), where A, is the area of an n-faceted cell (3.1)

and ¢ > 0 is some material constant. It is often thought, on this basis, that the
average cell area A(t) should be an affine function of ¢. This is in fact true in our sim-
ulations, cf. Figure 4(a), but it depends in a complicated way on the initialization.
It sometimes holds in experiment. The essential property here is that geometric
growth tends to behave like transport, as indeed suggested by (3.1), and is highly
dependent on initial conditions. There are a number of papers which discuss this,
including two new works [9] and [12], and [6], where additional references may be
found. The very recent n-dimensional extension of (3.1) is given in [20].

An elementary argument suggests how total energy (2.5) decays. The energy of
coarsening should be proportional to the total length of arc L(¢) in the configuration



which is approximately the average perimeter = \/A(t) times the number of cells

N(t) = 1/A(t), or
L(t) ~ \/A{) - N(t)
1

A(t) (3.2)
1
VA + At

For this simple reason, there is a long tail distribution for energy decay.

4. — Simplified critical event model

Inspection of Figure 4 b shows that contrary to (3.1), the average area of five
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Figure 4: (a) Simulations tend to exhibit linear average growth in area. (b) Average area in nm?

of five sided grains in an Al columnar grain structure increases (time in minutes) in distinction to
the von Neumann-Mullins (3.1) rule valid for single cells.

sided grains during a growth experiment on an Al thin film increases several-fold
during coarsening. (3.1) does not fail but most of the grains observed at time ¢ = 2
hours, for example, had 6,7,8,... sides at some earlier time ¢ < 2 hours. Thus in the
network setting, the topological changes play a major role. Although we may be
reasonably confident that small cells with small numbers of facets will be deleted,
their effect on the configuration is essentially random.

A significant difficulty in developing a theory of the GBCD, and understanding
texture development in general, lies in the lack of understanding of the relationship
between these stochastic or critical events and the system energy. This leads us
to a reduced model, which is a critical event model. This is a system of cells
on a line segment. Each cell is an interval with a given misorientation parameter
subject to nearest neighbor interactions. We have used this system to develop a
statistical theory for critical events in [3], [4], [5]. Can it also be employed to
study the GBCD directly? We address this briefly here. Consider a partition of a
circle of circumference L > 0 by n randomly chosen points, equivalently a partition
of the interval [0,L] C R by points x;,7 = 1..n, where z; < x;41,i = l.n — 1
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and x,; identified with ;. For each interval [x;,x;11],7 = 1...,n select a random
misorientation number «; € R. The intervals [z;, z;11] correspond to cells and the
points x; represent the triple junctions. Choose an energy density 1 («) and define
the energy

E= Y ¥() (@i — ;). (4.1)

i=1...n

We impose gradient flow kinetics with respect to (4.1), which is the system of ordi-
nary differential equations

dx; dx,

e U(a;) — (1), = 2..n, and — = U(ag) —U(ay). (4.2)

The velocity v; of the i boundary is

Az dx;
v, = —
dt dt

The grain boundary velocities are constant until one of the boundaries collapses.
That segment is removed from the list of current grain boundaries and the velocities
of its two neighbors are changed due to the emergence of a new junction. Each such
deletion event rearranges the network and, therefore, affects its subsequent evolution
just as in the two dimensional cellular network.

There is also a dissipation inequality for this gradient flow. At any time ¢ between

deletion events,
dE
o Z¢(ai)vi

= () — ¥l0i1))? (4.4)

= (ai—1) — 29 () + Y(aig1). (4.3)

Moreover, if the segment [z, z.,1] is deleted at at time ¢y then v, < 0 for t < t.
This may be used to show that
E(to) < lim B(t),
t—to
as discussed in [3], [4], [5]. Likewise we may write a spring-like local dissipation

]
equation analogous to (2.7), thanks to (4.4). In an interval (¢y,to + 7) where there
are no critical events, (4.4) may be integrated to give

dl’iz
Ty o+ E(to+7) = Blto)
i=1...n

or

> /T Oz"zdt + E(to+ 1) = E(to) (4.5)

i=1...n

With the obvious use of Young’s Inequality, we have that

13 [ vt Bta+ ) < B (4.6

i=1...n
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The energy of the system at time ty 4 7 is determined by its state at time ty. Vice
versa, changing the sign on the right hand side of (4.2) allows us to begin with the
state at time ¢ty + 7 and return to the state of time ¢y: the system is reversible in
an interval of time absent of critical events. This is no longer the situation after a
critical event. At the later time, we have no knowledge about which interval, now
no longer in the inventory, was deleted.

We introduce a new ensemble based on the misorientation parameter o where
we take 1 =7 < o < 7, for later ease of comparison with the two dimensional
network for Wthh we are imposing “cubic” symmetry, i.e., “square” symmetry in
the plane. The GBCD or character distribution in this context is, as expected, the
histogram of lengths of intervals sorted by misorientation « scaled to be a probability
distribution on 2. To be precise, let

lia,t) = i (t) — (1)
= length of the i'" interval, where explicit note has been taken of

its misorientation parameter o

Now partition €2 into m subintervals of length i = 7-- and let

1
m

1
g . ! P i <
pla,t) E Li(a,t) h’ for (k —1)h < a = kh. (4.7)
o/ €((k—1)h,kh]

We may express (4.6) in terms of the character distribution (4.7). After some
manipulations, this amounts to

to+7
o / 2 %(dk,w?hdwZw<@k>p<dk,to+f>h = 2 v((@)p((Grs to)h, (48)
to k k k

or, at this point passing to a continuous limit for ease of discussion,

/‘t0+7/ (a, t) dadt—l—/¢ pla,ty + 7)da = /sz(oé)p(a,to)da’ (4.9)

where o > 0 is some constant. We now impose a modeling assumption. The
expression (4.9) is at a larger scale, the misorientation scale, than the original system
and, consistent with the lack of reversibility as critical events occur, an entropic term
will be added. We use the standard configurational entropy, although this is not the
only choice. It is

+/ plog pda, (4.10)
Q

which is minus the usual physical entropy. Minimizing (4.10) favors the uniform
state, which would be our situation were ¥ («) = constant.

Knowing that (4.9) holds in any interval where no critical events occur, we
assume that for any g, 7

to+T1 a
uo/ /(a—f)Qd&dt+/(wp+Aplogpﬂ@\mw = /(W+Aplogp)da!to
to Q
(4.11)



E(t) was analogous to an internal energy or the energy of a microcanonical ensemble
and now

F(t) = B(t) = E(t) + A /Q plog pda (4.12)

is a free energy. This type of reasoning differs from conventional thermodynamic
thinking in two respects. First, the ensembles are not molecules or idealized quan-
tities like spins, but segments and, in the case of the full two dimensional network,
curves. Second, this is not an equilibrium situation based on Hamiltonian systems
but a kinetic non-equilibrium process based on a dissipation principle. More expla-
nation is given in [2], as noted in the introduction.

Is there an optimal choice of the “temperature” parameter A and how would we
determine it? Is there one at all? We bring (4.11) to a different form by observing
that the first term on the left dominates, with a system dependent factor, the conven-
tional Wasserstein-2 metric, [25], [27], [1], or the square of the Wasserstein-1 metric.
(We thank Adrian Tudorascu for his help on these points.) Denote this metric by d;
a definition is given in the Appendix. Let p*(a) = p(a, to) and p(a) = p(a, to + 7).
We then have that

d(p.p")? + Falp) £ BA(p): (4.13)

which resembles the Wasserstein metric implicit scheme. Here is the scheme. Sup-
pose that u is the limit as 7 — 0 of a sequence of iterates {u(™®} that satisfy

1 1
(™, uF D 4 (u™) = min(s—d(e,u™ V)R + Fy (0),
. oo (4.14)
/vdazlandvg()infl.
Q
We then know that u is a solution of the Fokker-Planck Equation
ou 0, Ou ,
— = —(o— in () t 4.1
5 aa(aaa—l—wu)m , 0<t< oo (4.15)

with, in this situation, periodic boundary conditions, [15]. We do not know if our
p(a,t) is a solution of (4.15) but we may ask if characterizations of u may assist in
identifying the parameter ¢ and if there are desirable properties of u which are also
shared by p.

First note that a solution u of (4.15) tends to the stationary solution with ap-
propriate mass, in this case, the Boltzmann distribution for 1) with unit mass,

U — py ast — oo, (4.16)
where .
pala) = —e‘ﬁ, Zy = / e du. (4.17)
Z Q

Recall that the Kullback-Liebler relative entropy for the Fokker-Planck Equation is
given by

v
®\(v) = [ viog —da, and
v) /Q ®or (4.18)

(b)\<1)) = F/\('U) + )\log Z)\,

9



where v is a probability density on €2. By Jensen’s Inequaity,
dy\(v) 2 0. (4.19)
and thus according to (4.16),

®,(u) 2 0 and ®,(u) — 0 as t — 0 whereas

4.20
®,(u) — a positive function of a for A # o (4.20)

Our GBCD (4.7) always satisfies (4.19), se we may attempt to use (4.20) to iden-
tify the diffusion coefficient o, simply by inspection. An equivalent more colorful
approach is to compare the plots of { F\(p)} as functions of ¢ and ask for the largest
one which is decreasing. To check whether or not this makes any sense, we then
compare the empirical p with p,. Figure 5 shows that we may indeed identify the
solution by this procedure. Let us keep in mind here that we are not writing of
solutions of partial differential equations. We are seeking a property of a statistic
of a simulation. We thus interpret our result as validation of (4.11) and (4.13). For

1.20
1.18
1.16
1.14
1.12 A
1.10

1.08 ] ! I ]
T T T T T T
0 0.5 1 1.5 2 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 5: (a) The free energy (4.12) of the critical event model for a sequence of A\ with the
optimal choice o noted. (b) Comparison of the empirical distribution of the critical event model
at time ¢t = 1 with p, of (4.17)

solutions u of (4.15), the relative entropy decays exponentially, namely
®,(u)(t) < Ce™™, for some C' > 0,7 > 0, (4.21)

which can be checked by calculating the derivative of ®,(u)(¢) and then applying
the log-Sobolev inequality and the Gronwall Lemma. We may, additionally, verify
exponential convergence of the energy or free energy of u by application of the
Csizar-Kullback Inequality [19],

2
(/ lf — fUd:c) < 2/ flog %d:c, for probability densities f, 1. (4.22)
Q Q

Applying this in an obvious way to u, we obtain that
] / Yula, t)da — / Ypo(a)dal £ Coe™ 3t (4.23)
Q Q
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Now the application here of (4.22) depends only on the decay property (4.21) of the
relative entropy and not on the fact that u is a solution of (4.15), so we may apply
this to the statistic as well. Exponential decay of the free energy, and hence the
relative entropy, holds for p (not shown because of space limitations). Thus we may
deduce from (4.22) that

\/pr(a,t)da—/gwpa(a)d&\ < Cpe 2t (4.24)

We may summarize these considerations by writing that the GBCD for the reduced
critical event model is, in essence, the solution of a Fokker-Planck Equation for a
long intermediate period of its lifetime.

5. — Microstructural coarsening

The local dissipation equation (2.7) does not lead to an implicit scheme for the
GBCD of the two dimensional evolution system, at least not known to us at this point
of our development. We may, nonetheless, attempt to choose the correct variance
parameter o by the same method as above and to then validate it, if possible, by
comparison between the empirical GBCD and the associated p,. In Figure 6 we see

1.100
1.095 +
1.090

1.085

1.080 —

T T T T T T T T T T
0.0005 0.0010 0.0015 0.0020 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

Figure 6: The free energy (4.12) of the grain growth simulation for a sequence of A\ with the
optimal choice ¢ noted. (b) Comparison of the empirical distribution at time ¢ = 0.0015 with p,
of (4.17)

the result of this exercise. Indeed, the kinetics of the GBCD are indistinguishable
from those of the critical event model. Astonishingly, the parameter ¢ is identical
for our test 1, Figure 3. The quantity

o

is invariant of choice of € in the simulation. Although obvious for the reduced critical
event model, it is not clear why this property holds for the large scale simulation. In

11
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Figure 7: (a) Plot of —log(®,(p)(t)) vs. t of the GBCD showing that it increases to station-
arity approximately linearly. (b) Plots of the geometric coarsening L(t), illustrating its long tail
distribution (upper plot), and the relative entropy ®,(p)(t) of the GBCD, illustrating exponential
decay (lower plot), with time

Figure 7(a), we plot —log(®,(p)(t)) vs. t illustrating approximate linear growth to a
level where it remains stationary. Thus the relative entropy ®, decays exponentially.

Arguing as in the previous section, the Csizar-Kullback Inequality then gives,
analogous to (4.24), that

|/¢p(o¢,t)doz — / VYpo(a)dal £ Coe ™" for some s > 0, (5.1)
Q Q

where p(a, t) defined by (2.10) is the empirical GBCD determined by the simulation.
In Figure 7(b), we plot the total length of arc in the simulation L(t) and the relative
entropy ®,(p)(t) normalized by their values at ¢ = 0, namely,

L) ()0
L(0) ™ %,(p)(0)°

illustrating the long tail distribution associated to geometric coarsening and the
diffusive exponential decay associated to the GBCD. Not shown is the plot showing
that L(t)~? is a linear function, as suggested by (3.2) and Figure 4b.

6. — Appendix: the Monge-Kantorovich-Wasserstein metric

We briefly review the notion of Wasserstein metric used in to implement the
implicit scheme (4.13) and (4.14). There are many references for this [27], [1]. Let
D C R be an interval, perhaps infinite, and f*, f a pair of probability densities on
D (with finite variance). The Wasserstein metric or 2-Wasserstein metric is defined
to be

AL 1P =inf [ Jo—yPdply)
D
P = joint distributions for f, f* on D x D,

Le., the marginals of any p € P are f, f*. The metric induces the weak-* topology
on C(D). 1If f, f* are strictly positive, there is a transfer map which realizes p,

(6.1)

12



essentially the solution of the Monge-Kantorovich mass transfer problem for this
situation. This means that there is a strictly increasing

¢ : D — D such that

/g dy_/g 2)dz, ¢ € C(D), and 62
af. ) /D|x—¢<x>| fd

It turns out, as was known to Frechét, [10], that in this one dimensional situation,

o(x) = F*"Y(F(x)), * € D, where

/f ")z’ and F(z /f (6.3)

are the distribution functions of f*, f. In one dimension there is only one transfer
map. Finally, by a result of Benamou and Brenier [7],

—d (f, f*)? = inf / / 2 fdgdt

over deformation paths f(&,t) subject to (6.4)
fi + (vf)e =0, (continuity equation)
f(&,0) = f(&), f(&,7) = f(§) (initial and terminal conditions)

The conditions (6.4) are in ‘Eulerian’ form. Likewise there is the ‘Lagrangian’ form
which follows by rewriting (6.4) using the transfer function formulation in (6.2),

—dff mf//gbtfdm

over transfer paths ¢(x,t) from D to D with
Qﬁ(l‘,O) =7 and Qb(ZE,T) - gb(l‘)

We use the representation (6.3) in (6.5) to calculate that for some ¢y > 0,

1 o to+7
;d(p,p) <c¢ / / 5 (o, t)*dadt, (6.6)
p*(a) = pla, to) and p( ) = ploto+7)

A known property of the iteration procedure in (4.14) is that iterates remain positive,
indeed, bounded below, if the initial data is positive. Thus we are led to (4.13).

(6.5)
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