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HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE
POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS∗
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Abstract. Highly-accurate numerical methods that can efficiently handle problems with interfaces
and/or problems in domains with complex geometry are essential for the resolution of a wide range of
temporal and spatial scales in many partial differential equations based models from Biology, Materials
Science and Physics. In this paper we continue our work started in 1D, and we develop high-order
accurate methods based on the Difference Potentials for 2D parabolic interface/composite domain
problems. Extensive numerical experiments are provided to illustrate high-order accuracy and efficiency
of the developed schemes.
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1. Introduction

Designing numerical methods with high-order accuracy for problems with interfaces
(for example, models for composite materials or fluids, etc.), as well as models in domains
with complex geometry is crucial for modeling of problems from Biology, Materials
Science and Physics. Furthermore, interface problems result in non-smooth solutions
(or even discontinuous solutions) at the interfaces, and therefore standard numerical
methods (finite-difference, finite-element methods, etc.) in any dimension will very
often fail to produce accurate approximations of the solutions to the interface problems,
and thus special numerical algorithms have to be developed for the approximation of
such problems.

There is extensive literature that addresses problems in domains with irregular ge-
ometries and interface problems. For example, among finite-difference/finite-volume
based methods for such problems are the Immersed Boundary Method (IB) ( [33, 34],
etc.), the Immersed Interface Method (IIM) ( [1, 20, 23–25], etc.), the Ghost Fluid
Method (GFM) ( [15,27,28], etc.), the Matched Interface and Boundary Method (MIB)
( [46,48], etc.), the method based on the Integral Equations approach, ( [30], etc.) and
among the most recent methods are Cartesian Grid Embedded Boundary Method ( [9]),
Multigrid Method for Elliptic Problems with Discontinuous Coefficients on an Arbitrary
Interface ( [8]), the Virtual Node Method in [18] and the Voronoi Interface Method
in [17]. Among the finite-element methods for interface problems are ( [5, 7, 43, 45, 47],
etc.). These methods are robust interface methods that have been applied to solve many
problems in science and engineering. For a detailed review of the subject the reader
can consult, for example, [25]. However, in spite of great advances in the numerical
methods for interface problems and problems in domains with complex geometry, it is
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still a challenge (especially for time-dependent problems) to design high-order accurate
and efficient methods for such problems.

We develop in this work numerical algorithms based on the Difference Potentials
Method (DPM). DPM was originally proposed by V.S. Ryaben’kii in 1969 in his Doctor
of Science Habilitation Thesis, see [37,38,41]. DPM on its own, or in combination with
other numerical methods, is an efficient technique for the numerical solution, as well as
for the discrete modeling of interior and exterior boundary value problems in domains
with arbitrary geometry. The main idea behind DPM is to reduce uniquely solvable
and well-posed boundary value problems to pseudo-differential boundary equations with
projections. Methods based on Difference Potentials introduce computationally simple
auxiliary domains. After that, the original domains are embedded into auxiliary do-
mains (and the auxiliary domains are discretized using regular structured grids). Next,
DPM defines a Difference Potentials operator and constructs discrete pseudo-differential
Boundary Equations with Projections to obtain the value of the solution at the points
near the continuous boundary of the original domain (at the points of the discrete grid
boundary which straddles the continuous boundary from the inside and outside of the
domain). Using the reconstructed values of the solution at the discrete grid boundary,
the approximation to the solution in the domain is obtained through the discrete gener-
alized Green’s formula (see about DPM, for example in, [14,16,38,41] and about recent
developments on DPM in [2, 3, 6, 10,12,13,19,29,31,32,39,40,42,44], etc.).

In this paper, we start by extending the work on high-order accurate Difference
Potentials methods started in 1D in [3] to 2D linear parabolic interface models (with
fixed smooth curvilinear interfaces) and we construct both second-order (DPM2) and
fourth-order (DPM4) accurate methods (in time and space) for such problems. At this
point we are not aware of any other fourth-order method for such 2D parabolic interface
problems. Moreover, numerical experiments in Section 6 indicate that the developed
methods preserve high-order accuracy on the interface problems not only in the solution,
but also in the discrete gradient of the solution.

The main complexity of the high-order methods based on Difference Potentials de-
veloped in this work reduces to several solutions of simple auxiliary problems on struc-
tured Cartesian grids. The proposed numerical methods are not restricted by the type of
the boundary or interface conditions (as long as the continuous problems are well-posed),
and are also computationally efficient since any change of the boundary/interface con-
ditions affects only a particular component of the overall algorithm, and does not affect
most of the numerical algorithm. Furthermore, the construction of the Boundary Equa-
tions with Projections on the discrete grid boundaries makes it possible to reconstruct
the solution near the interface (from both sides) with high-order accuracy. Finally,
the developed methods based on Difference Potentials approach handle non-matching
interfaces/(and/or) grids with ease and are well-suited for the development of parallel
algorithms.

The paper is organized as follows. In Section 2, we introduce the formulation of the
problem. Next, to illustrate the unified approach behind the construction of DPM with
different orders of accuracy, we construct methods based on Difference Potentials with
second- and with fourth-order accuracy in space and time in Section 3.1 and in Appendix
Section 7 for single domain 2D parabolic models. In Section 4, we extend the developed
methods to 2D parabolic interface/composite domain model problems. For the reader’s
convenience, we give a brief summary of the main steps of the presented numerical
algorithms in Section 5. Finally, we illustrate the performance of the proposed Difference
Potentials Methods, DPM2 and DPM4 in several challenging numerical experiments in
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Section 6. Some concluding remarks are given in Section 7.

2. Parabolic interface and composite domain models
In this work we are concerned with the numerical solution of the parabolic inter-

face/composite domain problems on Ω defined inside some bounded auxiliary domain
Ω0⊂R2 :

∂uΩ1

∂t
−L1uΩ1

=fΩ1
(x,y,t), (x,y)∈Ω1 and t∈ (0,T ] (2.1)

∂uΩ2

∂t
−L2uΩ2

=fΩ2
(x,y,t), (x,y)∈Ω2 and t∈ (0,T ] (2.2)

subject to the appropriate interface/matching conditions on Γ:

α1uΩ1−β1uΩ2 =µ1(x,y,t), (x,y)∈Γ and t∈ (0,T ] (2.3)

α2
∂uΩ1

∂n
−β2

∂uΩ2

∂n
=µ2(x,y,t), (x,y)∈Γ and t∈ (0,T ], (2.4)

boundary condition on the exterior boundary ∂Ω1:

l(uΩ1) =ψ1(x,y,t), (x,y)∈∂Ω1 and t∈ (0,T ], (2.5)

and initial conditions:

uΩ1
(x,y,0) =u0

Ω1
(x,y), (x,y)∈Ω1 (2.6)

uΩ2
(x,y,0) =u0

Ω2
(x,y), (x,y)∈Ω2 (2.7)

Here, for brevity of notation, we use uΩ1
:=uΩ1

(x,y,t) to denote the solution to
(2.1)-(2.7) in domain Ω1 and uΩ2

:=uΩ2
(x,y,t) to denote the solution to (2.1)-(2.7)

in domain Ω2. Operator l in (2.5) is the boundary operator that defines boundary
conditions on the exterior boundary ∂Ω1 (for example, Dirichlet or Neumann, etc.). We
consider, here, the composite domain Ω =Ω1∪Ω2 separated by an interface curve Γ,
which is a closed smooth curve (we assume in this work that the interface curve Γ is at
least in C2) and Ω⊆Ω0, see Figure 2.1. We assume in this work that Ls , s∈{1,2} are
second-order linear elliptic differential operators of the form

LsuΩs ≡∇·(λs∇uΩs), s∈{1,2}. (2.8)

Here, λs>0 are positive piecewise-constant coefficients defined in larger auxiliary sub-
domains Ω0

s⊃Ωs. The sources fΩs(x,y,t) are sufficiently smooth functions defined in
each subdomain Ωs, the functions µs(x,y,t) are sufficiently smooth functions defined on
Γ and the function ψ1(x,y,t) is a sufficiently smooth function defined on ∂Ω1. For the
sake of simplicity, we assume that α1,α2,β1,β2 are constant coefficients in this work.
We assume that the continuous problem (2.1)–(2.7) is well-posed (see for example, [21]
and [22] for some existence, uniqueness and regularity results). Furthermore, we con-
sider operators on the left-hand side of (2.1)–(2.2) that are well-defined on some larger
auxiliary domain Ω0

s: we assume that for sufficiently smooth functions fΩ0
s
(x,y,t) on Ω0

s,
the Equations (2.1)–(2.2) defined on domains Ω0

s have unique solutions uΩ0
s

on Ω0
s that

satisfy the given initial, interface and boundary conditions on ∂Ω0
s. Here and below,

the index s∈{1,2} is introduced to distinguish between the subdomains.
Remark 2.1.

(1) The introduction of the auxiliary domains Ω0
s will play an important role in the

construction of the proposed methods based on Difference Potentials in Sections
3.1-4 (note that, on Figure 2.1, the auxiliary domains Ω0

1 = Ω0
2≡Ω0).



988 HIGH-ORDER DPM FOR 2D PARABOLIC INTERFACE MODELS

γ1Γ

Ω2

Ω1

∂Ω1

Fig. 2.1. An example of a bounded composite domain Ω: sub-domains Ω1 and Ω2 are separated
by an interface defined by a smooth closed curve Γ, and an example of the points in the discrete grid
boundary γ1 for the 9-point stencil of the fourth-order method (the discrete grid boundary straddles
the interior boundary Γ of the exterior domain Ω1). Auxiliary domains Ω0

1 = Ω0
2≡Ω0 can be selected

here to coincide with the domain Ω (square), see Sections 3.1-4 for the details of the construction.

(2) Note, that methods developed in this paper are well-suited for variable coef-
ficient problems and models in heterogenous media [11, 12, 41], as well as for
nonlinear parabolic models, and these will be a part of the future study [4].

3. Single domain
To simplify the construction of the high-order methods for parabolic interface prob-

lems, we first develop high-order methods for parabolic models in a single domain.
In Section 4 we generalize this approach to parabolic interface and composite domain
problems (2.1)–(2.7).

Consider a linear second-order parabolic equation defined in a domain Ω⊂R2:

∂u

∂t
−Lu=f(x,y,t), (x,y)∈Ω and t∈ (0,T ] (3.1)

subject to the appropriate boundary conditions:

l(u) =ψ(x,y,t), (x,y)∈Γ and t∈ (0,T ], (3.2)

and initial conditions:

u(x,y,0) =u0(x,y), (x,y)∈Ω. (3.3)

where Ω⊂Ω0 and Γ :=∂Ω, see Figure 3.1. Here, again, we use u :=u(x,y,t) to denote
the solution to (3.1)-(3.3) in the domain Ω and the operator l in (3.2) is the boundary
operator that defines boundary conditions on the exterior boundary ∂Ω.

Similar to the interface problem (2.1)–(2.7) we assume that L in (3.1) is the second-
order linear elliptic differential operator of the form

Lu≡∇·(λ∇u), (3.4)

where λ>0 is a positive constant on Ω⊂Ω0. The source function f(x,y,t) is a suffi-
ciently smooth function defined in domain Ω and the function ψ(x,y,t) is a sufficiently
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γΓ

Ω

Ω0

γΓ

Ω

Ω0

Fig. 3.1. An example of an auxiliary domain Ω0, the original domain Ω⊂Ω0, a smooth
closed boundary curve Γ (we assume in this work that the curve Γ is at least in C2), and an
example of the points in the discrete grid boundary set γ for the 5-point stencil of the second-
order method (left figure), and an example of the points in the discrete grid boundary set γ for
the 9-point stencil of the fourth-order method (right figure).

smooth function defined on Γ. We assume that the continuous problem (3.1)–(3.3) is
well-posed. Moreover, we consider here the operator on the left-hand side of the Equa-
tion (3.1) that is well-defined on some larger auxiliary domain: we assume that for
any sufficiently smooth function f(x,y,t) on Ω0, the Equation (3.1) defined on a larger
domain Ω0 has a unique solution u on Ω0 satisfying the given initial conditions and
boundary conditions on ∂Ω0.

3.1. High-order accurate methods based on difference potentials for
parabolic problems. The current work is an extension of the work started in 1D
settings in [3] to the 2D parabolic models. For the time being we restrict our atten-
tion here to problems with piecewise-constant coefficients. However, the construction
of the methods given below allows for the direct extension to parabolic problems in
heterogeneous media, which will be a part of our near future research. In this work, the
choices of the underlying second-order or the fourth-order in space and time approxi-
mation, (3.9)–(3.10) combined with (3.13), or (3.9)–(3.10) combined with (3.15) were
employed with the goal of efficient illustration and implementation of the ideas, as well
as for the ease of the future extension to models in heterogeneous media. Note, that
the approach presented here based on Difference Potentials can be similarly used with
any other suitable underlying high-order discretization of the given continuous model.

Similar to [3], we will illustrate our ideas below by constructing the second and the
fourth-order schemes together, and will only comment on the differences between them.

Introduction of the Auxiliary Domain: Place the original domain Ω in the compu-
tationally simple auxiliary domain Ω0⊂R2 that we will choose to be a square. Next,
introduce a Cartesian mesh for Ω0, with points xj = j∆x,yk =k∆y,(k,j= 0,1,...). Let
us assume for simplicity that h := ∆x= ∆y. Define a finite-difference stencil Nκ

j,k :=N5
j,k

or Nκ
j,k :=N9

j,k with its center placed at (xj ,yk), to be a 5-point central finite-difference
stencil of the second-order method, or a 9-point central finite-difference stencil of the
fourth-order method, respectively, see Figure 3.2:

Nκ
j,k :={(xj ,yk),(xj±1,yk),(xj ,yk±1)} , κ= 5, or (3.5)
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Fig. 3.2. Example (a sketch) of the 5-point stencil for the second-order scheme (3.5) (left
figure) and example (a sketch) of the 9-point stencil for the fourth-order scheme (3.6) (right
figure), [2].

Nκ
j,k :={(xj ,yk),(xj±1,yk),(xj ,yk±1),(xj±2,yk),(xj ,yk±2)}, κ= 9. (3.6)

Next, introduce the point sets M0 (the set of all mesh nodes (xj ,yk) that belong to
the interior of the auxiliary domain Ω0), M+ :=M0∩Ω (the set of all the mesh nodes
(xj ,yk) that belong to the interior of the original domain Ω), and M− :=M0\M+ (the
set of all the mesh nodes (xj ,yk) that are inside of the auxiliary domain Ω0 but belong to
the exterior of the original domain Ω). Define N+ :={⋃j,kNκ

j,k|(xj ,yk)∈M+} (the set
of all points covered by the stencil Nκ

j,k when the center point (xj ,yk) of the stencil goes

through all the points of the set M+⊂Ω). Similarly define N− :={⋃j,kNκ
j,k|(xj ,yk)∈

M−} (the set of all points covered by the stencil Nκ
j,k when center point (xj ,yk) of the

stencil goes through all the points of the set M−).

Now, we can introduce γ :=N+∩N−. The set γ is called the discrete grid bound-
ary. The mesh nodes from set γ straddle the boundary Γ≡∂Ω. Finally, define
N0 :={⋃j,kNκ

j,k|(xj ,yk)∈M0}.
Remark 3.1. From here on, κ either takes the value 5 (if the 5-point stencil is used
to construct the second-order method), or 9 (if the 9-point stencil is used to construct
the fourth-order method).

The sets N0, M0, N+, N−, M+, M−, γ will be used to develop high-order methods
in 2D based on the Difference Potentials idea.

Construction of the System of the Discrete Equations: We first discretize Equation
(3.1) in time, which yields a time-discrete reformulation of the parabolic Equation (3.1)
of the form:

Given numerical solutions un, n≤ i at previous time levels, find ui+1 such that

L∆t[u
i+1] =F i+1 (3.7)

Here, the operator L∆t[u
i+1] denotes the linear elliptic operator applied to ui+1≈

u(·,ti+1) and F i+1 is the right-hand side obtained after time-discretization of (3.1)
(see Appendix Section 7 for details). Note, in this paper, we consider the second-order
trapezoidal scheme or the second-order backward difference scheme (BDF2) as the time
discretization for the construction of the second-order accurate in space Difference Po-
tentials Method (DPM2). The fourth-order backward difference discretization in time
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(BDF4) is considered for the construction of the fourth-order accurate in space Differ-
ence Potentials Method (DPM4). Therefore, the linear operator L∆t[u

i+1] in (3.7) in
this work takes the general form:

L∆t[u
i+1]≡

(
∆−σ2I

)
ui+1, (3.8)

with I being the identity operator and constant coefficient σ2 defined for each time
discretization as follows. For the trapezoidal scheme in time the coefficient is σ2 := 2

λ∆t ,
for BDF2 it is σ2 := 3

2λ∆t and for BDF4 the coefficient is σ2 := 25
12λ∆t .

Next, the fully discrete version of (3.1) is: find ui+1
j,k , (xj ,yk)∈N+, ti+1∈ (0,T ] such

that

L∆t,h[ui+1
j,k ] =F i+1

j,k , (xj ,yk)∈M+. (3.9)

The fully discrete system of the Equations (3.9) is obtained here by discretizing
(3.7) with either the second-order centered finite difference in space (3.13) or with the
fourth-order “direction by direction” approximation in space (3.15). Hence, similar to a
time-discrete linear operator L∆t[u

i+1] in (3.7)–(3.8), the fully discrete linear operator
L∆t,h[ui+1

j,k ] in (3.9) in this work takes the general form:

L∆t,h[ui+1
j,k ]≡

(
∆h−σ2I

)
ui+1
j,k , (3.10)

with coefficient σ2 defined as above for each time discretization. The fully discrete right-
hand side in (3.9) takes a form as given below for each time and space discretization:

(1) Second-order discretization in space with trapezoidal time discretization:

F i+1
j,k :=− 1

λ

(
f(xj ,yk,t

i+1)+f(xj ,yk,t
i)
)
−
(

∆h+σ2I
)
uij,k. (3.11)

(2) Second-order discretization in space with BDF2 time discretization:

F i+1
j,k :=− 1

λ
f(xj ,yk,t

i+1)− σ
2

3
(4uij,k−ui−1

j,k ). (3.12)

The operator ∆h in the above discretization schemes (3.10) and (3.11), and in (3.10) and
(3.12) is approximated with second-order accuracy in space using the centered 5-point
stencil (3.5):

∆hu
i+1
j,k :=

1

h2

(
ui+1
j−1,k+ui+1

j+1,k+ui+1
j,k−1 +ui+1

j,k+1−4ui+1
j,k

)
, κ= 5. (3.13)

(3) Fourth-order discretization in space with BDF4 time discretization:

F i+1
j,k :=− 1

λ
f(xj ,yk,t

i+1)− σ
2

25
(48uij,k−36ui−1

j,k +16ui−2
j,k −3ui−3

j,k ). (3.14)

The Laplace operator in the above discretization scheme (3.10) and (3.14) is approxi-
mated with fourth-order accuracy using the 9-point direction-by-direction stencil (3.15):

∆hu
i+1
j,k :=

1

12h2

(
−ui+1

j−2,k+16ui+1
j−1,k+16ui+1

j+1,k−ui+1
j+2,k−ui+1

j,k−2

+16ui+1
j,k−1 +16ui+1

j,k+1−ui+1
j,k+2−60ui+1

j,k

)
, κ= 9. (3.15)
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Remark 3.2. The choice of the time discretization made here has several appealing
numerical advantages in terms of stability for diffusion-type operators of the form in
(3.1). However, the framework based on Difference Potentials developed in this work is
not restricted to these particular choices and the main ideas can be extended directly
to other suitable time discretizations.

In general, the linear system of the discrete Equations (3.9) will have multiple solu-
tions. Once we close the discrete system (3.9) with the appropriate discrete boundary
conditions, the method will result in an approximation of the continuous model (3.1)–
(3.3) in domain Ω. To do so very accurately and efficiently, we will construct numerical
algorithms based on the idea of the Difference Potentials.

General Discrete Auxiliary Problem: Some of the important steps of the DPM
are the introduction of the auxiliary problem, which we will denote as (AP), as well
as definitions of the particular solution and Difference Potentials. Let us recall these
definitions below (see also [2, 3, 41], etc.).

Definition 3.1. The problem of solving (3.16)–(3.17) is referred to as the discrete
auxiliary problem (AP): at each time level ti+1 for the given grid function qi+1 defined
on M0, find the solution vi+1 defined on N0 of the discrete (AP) such that it satisfies
the following system of equations:

L∆t,h[vi+1
j,k ] = qi+1

j,k , (xj ,yk)∈M0, (3.16)

vi+1
j,k = 0, (xj ,yk)∈N0\M0. (3.17)

Here, L∆t,h is the same linear discrete operator as in (3.9), but now it is defined

on the larger auxiliary domain Ω0. It is applied in (3.16) to the function vi+1 defined
on N0. We remark that under the above assumptions on the continuous model, the
(AP) (3.16)–(3.17) is well-defined for any right-hand side function qi+1 on M0: it has
a unique solution vi+1 defined on N0. In this work we supplemented the discrete (AP)
(3.16) by the zero boundary conditions (3.17). In general, the boundary conditions for
(AP) are selected to guarantee that the discrete system L∆t,h[vi+1

j,k ] = qi+1
j,k has a unique

solution vi+1
j,k , (xj ,yk)∈N0 for any discrete right-hand side function qi+1

j,k , (xj ,yk)∈M0.

Remark 3.3. The solution of the (AP) (3.16)–(3.17) defines a discrete Green’s
operator Gh∆t. Although the choice of boundary conditions (3.17) will affect the operator
Gh∆t, and thus the difference potentials and the projections defined below, it will not
affect the resulting approximate solution to (3.1)–(3.3), as long as the (AP) is uniquely
solvable and well-posed.

Construction of a Particular Solution: Let us denote by ui+1
j,k :=Gh∆tF

i+1
j,k , (xj ,yk)∈

N+ the particular solution of the discrete problem (3.9), which we will construct as
the solution (restricted to set N+) of the auxiliary problem (AP) (3.16)–(3.17) of the
following form:

L∆t,h[ui+1
j,k ] =

{
F i+1
j,k , (xj ,yk)∈M+,

0, (xj ,yk)∈M−, (3.18)

ui+1
j,k = 0, (xj ,yk)∈N0\M0 (3.19)

The Difference Potential: We now introduce a linear space Vγ of all the grid func-
tions denoted by vi+1

γ defined on γ, similar to [3,41], etc. We will extend the value vi+1
γ

by zero to other points of the grid N0.
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Definition 3.2. The Difference Potential with any given density vi+1
γ ∈Vγ is the

grid function ui+1
j,k :=PN+γv

i+1
γ , defined on N+, and coincides on N+ with the solution

ui+1
j,k of the auxiliary problem (AP) (3.16)–(3.17) of the following form:

L∆t,h[ui+1
j,k ] =

{
0, (xj ,yk)∈M+,
L∆t,h[vi+1

γ ], (xj ,yk)∈M−, (3.20)

ui+1
j,k = 0, (xj ,yk)∈N0\M0 (3.21)

Here, PN+γ denotes the operator which constructs the difference potential ui+1
j,k =

PN+γv
i+1
γ from the given density vi+1

γ ∈Vγ . The operator PN+γ is the linear operator

of the density vi+1
γ : ui+1

m =
∑
l∈γAlmv

i+1
l , where m≡ (j,k) is the index of the grid point

in the set N+ and l is the index of the grid point in the set γ. Here, value ui+1
m is

the value of the difference potential PN+γv
i+1
γ at time ti+1 at the grid point with an

index m :um=PN+γv
i+1
γ |m and coefficients {Alm} are the coefficients of the difference

potentials operator. The coefficients {Alm} can be computed by solving simple auxiliary
problems (AP) (3.20)–(3.21) (or by constructing a difference potential operator) with
the appropriate density vi+1

γ defined at the points (xj ,yk)∈γ.
Next, similarly to [3,41], etc., we can define another operator Pγ :Vγ→Vγ that is

defined as the trace (or restriction/projection) of the difference potential PN+γv
i+1
γ on

the grid boundary γ:

Pγv
i+1
γ :=Trγ(PN+γv

i+1
γ ) = (PN+γv

i+1
γ )|γ (3.22)

We will now formulate the crucial theorem of DPM (see, for example [3, 41], etc.).

Theorem 3.1. At each time level ti+1, density ui+1
γ is the trace of some solution ui+1

to the Difference Equations (3.9): ui+1
γ ≡Trγui+1, if and only if, the following equality

holds

ui+1
γ =Pγu

i+1
γ +Gh∆tF

i+1
γ , (3.23)

where Gh∆tF
i+1
γ :=Trγ(Gh∆tF

i+1) is the trace of the particular solution Gh∆tF
i+1 con-

structed in (3.18)–(3.19) on the grid boundary γ.

Proof. The proof follows closely the general argument from [41] and can be found,
for example, in [3] (the extension to higher-dimensions is straightforward).

Remark 3.4.
(1) Note that at each time level ti+1, the difference potential PN+γu

i+1
γ is the

solution to the homogeneous difference equation L∆t,h[ui+1
j,k ] = 0,(xj ,yk)∈M+, and is

uniquely defined once we know the value of the density ui+1
γ at the points of the discrete

grid boundary γ.

(2) Note that at each time level ti+1 the density ui+1
γ has to satisfy the Discrete

Boundary Equations with Projection, ui+1
γ −Pγu

i+1
γ =Gh∆tF

i+1
γ in order to be a trace

of the solution to the difference equation L∆t,h[ui+1
j,k ] =F i+1

j,k ,(xj ,yk)∈M+.

Coupling of the Boundary Equations with Boundary Conditions: At each time level
ti+1, the discrete Boundary Equations with Projections (3.23) can be rewritten in a
slightly different form as:

(I−Pγ)ui+1
γ =Gh∆tF

i+1
γ , (3.24)
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and is the linear system of equations for the unknown density ui+1
γ . Here, I is the identity

operator, Pγ is the projection operator, and the known right-hand side Gh∆tF
i+1
γ is the

trace of the particular solution (3.18) on the discrete grid boundary γ.
The above system of discrete Boundary Equations with Projection (3.24) will have

multiple solutions without boundary conditions (3.2), since it is equivalent to the dif-
ference equations L∆t,h[ui+1

j,k ] =F i+1
j,k ,(xj ,yk)∈M+. At each time level ti+1, we need

to supplement it by the boundary conditions (3.2) to construct the unique density
ui+1
γ (x,y)≈u(x,y,ti+1), where u(x,y,ti+1) is the solution at (x,y)∈γ at time ti+1 to

the continuous model (3.1)–(3.3) and ui+1
γ (x,y) is the corresponding value of the discrete

density.
Thus, we will consider the following approach to solve for the unknown density

ui+1
γ from the discrete Boundary Equations with Projections (3.24). At each time level

ti+1, one can represent the unknown densities ui+1
γ through the values of the continuous

solution and its gradients at the boundary of the domain with the desired accuracy: in
other words, one can define a smooth extension operator for the solution of (3.1) from
the continuous boundary Γ =∂Ω to the discrete boundary γ. Note that the extension
operator (the way it is constructed in this work) depends only on the properties of the
given model and only uses the Cauchy data of the solution at the continuous boundary
Γ.

For example, the extension operator of ui+1
Γ from Γ to γ at time ti+1 can be defined

according to the following 3-term Taylor formula:

πγΓ[ui+1
Γ ]|(xj ,yk)≡ui+1

j,k :=u|Γ +d
∂u

∂n

∣∣∣
Γ

+
d2

2!

∂2u

∂n2

∣∣∣
Γ
, (xj ,yk)∈γ, (3.25)

where πγΓ[ui+1
Γ ] defines the smooth extension operator of Cauchy data ui+1

Γ :=(
u(x,y,ti+1)

∣∣∣
Γ
, ∂u∂n (x,y,ti+1)

∣∣∣
Γ

)
at ti+1 from the continuous boundary Γ to the discrete

boundary γ, and d denotes the signed distance from the point (xj ,yk)∈γ to the nearest
boundary point on the continuous boundary Γ of the domain Ω (the signed length of
the shortest normal from the point (xj ,yk)∈γ to the point on the continuous boundary
Γ of the domain Ω). We take the signed distance either with sign “+” (if the point
(xj ,yk)∈γ is outside of the domain Ω), or with sign “−” (if the point (xj ,yk)∈γ is
inside the domain Ω). The choice of a 3–term extension operator (3.25) is sufficient for
the second-order method based on Difference Potentials (see numerical tests in Section
6).

For example, the extension operator of ui+1
Γ from Γ to γ at time ti+1 can also be

defined according to the following 5-term Taylor formula:

πγΓ[ui+1
Γ ]|(xj ,yk)≡ui+1

j,k :=u|Γ +d
∂u

∂n

∣∣∣
Γ

+
d2

2!

∂2u

∂n2

∣∣∣
Γ

+
d3

3!

∂3u

∂n3

∣∣∣
Γ

+
d4

4!

∂4u

∂n4

∣∣∣
Γ
, (xj ,yk)∈γ,

(3.26)
again, as in (3.25), πγΓ[ui+1

Γ ] defines the smooth extension operator of the Cauchy data

ui+1
Γ :=

(
u(x,y,ti+1)

∣∣∣
Γ
, ∂u∂n (x,y,ti+1)

∣∣∣
Γ

)
at ti+1 from the continuous boundary Γ to the

discrete boundary γ, d denotes the signed distance from the point (xj ,yk)∈γ to the
nearest boundary point on the continuous boundary Γ of the domain Ω. As before, we
take it either with sign “+” (if the point (xj ,yk)∈γ is outside of the domain Ω), or
with sign “−” (if the point (xj ,yk)∈γ is inside the domain Ω). The choice of a 5–term
extension operator (3.26) is sufficient for the fourth-order method based on Difference
Potentials, see Section 6. To simplify the formulas in (3.25) and (3.26), we employed
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the following notations:

u|Γ :=u(x,y,ti+1)|Γ,
∂u

∂n

∣∣∣
Γ

:=
∂u

∂n
(x,y,ti+1)

∣∣∣
Γ
,

∂2u

∂n2

∣∣∣
Γ

:=
∂2u

∂n2
(x,y,ti+1)

∣∣∣
Γ
,

∂3u

∂n3

∣∣∣
Γ

:=
∂3u

∂n3
(x,y,ti+1)

∣∣∣
Γ
,

∂4u

∂n4

∣∣∣
Γ

:=
∂4u

∂n4
(x,y,ti+1)

∣∣∣
Γ
,

where (x,y)∈Γ denotes the nearest point to (xj ,yk)∈γ.
Next, at the fixed time level ti+1, for any sufficiently smooth single-valued periodic

function g(ϑ,ti+1) on Γ with a period |Γ|, assume that the sequence denoted by εN 0,N 1

and defined as

εN 0,N 1 = min
c0,i+1
ν ,c1,i+1

ν

∫
Γ

(
|g(ϑ, ·)−

N 0∑
ν=0

c0,i+1
ν φ0

ν(ϑ)|2 + |g′(ϑ, ·)−
N 1∑
ν=0

c1,i+1
ν φ1

ν(ϑ)|2
)

dϑ

(3.27)
tends to zero with increasing number N 0 and N 1 of basis functions: limεN 0,N 1 =
0 as N 0→∞, N 1→∞. Here, functions (φ0

ν(ϑ),φ1
ν(ϑ)) are the selected set of basis

functions defined on the boundary of the domain Γ and real numbers (c0,i+1
ν ,c1,i+1

ν ), (ν=
0,1,...,N 0,ν= 0,1,...,N 1) are the expansion coefficients in front of the basis functions
at time level ti+1. The parameter ϑ can be thought of as the arc length along Γ, and |Γ|
is the length of the boundary. We selected arc length ϑ at this point only for the sake
of definiteness. Other parametrizations along Γ are used in the numerical examples (Γ
is defined using polar coordinates for the circular domain and is defined using elliptical
coordinates for the elliptical domain), see Section 6 and the brief discussion in the
Appendix Section 7. In particular, in the Appendix Section 7 we give details of the
construction of the extension operators (3.25) and (3.26) using the continuous PDE
model (3.1) and the knowledge of the Cauchy data ui+1

Γ .
Therefore, at every time level ti+1, to discretize the elements ui+1

Γ ≡(
u(ϑ,ti+1), ∂u∂n (ϑ,ti+1)

)
, ϑ∈Γ from the space of Cauchy data, one can use the ap-

proximate equalities:

ũi+1
Γ =

N 0∑
ν=0

c0,i+1
ν Φ0

ν(ϑ)+

N 1∑
ν=0

c1,i+1
ν Φ1

ν(ϑ), ũi+1
Γ ≈ui+1

Γ (3.28)

where Φ0
ν = (φ0

ν ,0) and Φ1
ν = (0,φ1

ν) are the set of basis functions used to rep-
resent the Cauchy data on the boundary of the domain Γ, and real numbers
(c0,i+1
ν ,c1,i+1

ν ) with (ν= 0,1,...,N 0,ν= 0,1,...,N 1) are the unknown numerical coeffi-
cients to be determined at every time level ti+1.

Remark 3.5. For smooth Cauchy data, it is expected that a relatively small number
(N 0,N 1) of basis functions are required to approximate the Cauchy data of the unknown
solution at time level ti+1, due to the rapid convergence of the expansions (3.28). Hence,
in practice, we use a relatively small number of basis functions in (3.28), which leads
to a very efficient numerical algorithm based on the Difference Potentials approach, see
Section 6.

In the case of the Dirichlet boundary condition in (3.1)–(3.3), u(ϑ,ti+1),ϑ∈Γ is
known. Hence, at every time level ti+1 the coefficients c0,i+1

ν in (3.28) are given as the

data that can be determined as the minimization of
∫

Γ
|u(ϑ,ti+1)−∑N 0

ν=0 c
0,i+1
ν φ0

ν |2dϑ.
For other boundary value problems (3.1), the procedure is similar to the case presented
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for Dirichlet data. For example, in the case of Neumann boundary condition in (3.2), at
every ti+1 the coefficients c1,i+1

ν in (3.28) are known and again found as the minimization

of
∫

Γ
| ∂u∂n (ϑ,ti+1)−∑N 1

ν=0 c
1,i+1
ν φ1

ν |2dϑ.

After the selection of the parametrization ϑ of Γ and construction of the ex-
tension operator, we use spectral approximation (3.28) in the extension operator
ui+1
γ =πγΓ[ũi+1

Γ ] :

ui+1
γ =

N 0∑
ν=0

c0,i+1
ν πγΓ[Φ0

ν(ϑ)]+

N 1∑
ν=0

c1,i+1
ν πγΓ[Φ1

ν(ϑ)]. (3.29)

Therefore, at every time level ti+1, boundary equations (BEP) (3.24) becomes an overde-
termined linear system of dimension |γ|×(N 0 +N 1) for the unknowns (c0,i+1

ν ,c1,i+1
ν )

(note that in general it is assumed that |γ|>> (N 0 +N 1)). This system (3.24) for
(c0,i+1
ν ,c1,i+1

ν ) is solved using the least-squares method, and hence one obtains the un-
known density ui+1

γ .

The final step of the DPM is to use the computed density ui+1
γ to construct the

approximation to the solution (3.1)–(3.3) inside the physical domain Ω.
Generalized Green’s Formula:

Statement 3.1. The discrete solution ui+1
j,k :=PN+γu

i+1
γ +Gh∆tF

i+1,(xj ,yk)∈N+ at

each time ti+1 is the approximation to the exact solution u(xj ,yk,t
i+1), (xj ,yk)∈N+∩

Ω̄, ti+1∈ (0,T ] of the continuous problem (3.1)–(3.3).

Discussion: Note, as the first step of the developed high-order accurate methods
based on Difference Potentials, we reformulate the original continuous models (3.1) in
the time-discrete form (3.7)–(3.8) using accurate and stable schemes. Hence, we de-
velop high-order accurate Difference Potentials methods for (3.1)–(3.3) by employing
the elliptic structure of the continuous models. Furthermore, note that once density
ui+1
γ ∈Vγ is obtained with high-order accuracy from the Boundary Equations with Pro-

jection (3.24): (I−Pγ)ui+1
γ =Gh∆tF

i+1
γ ,(xj ,yk)∈γ, the problem of finding accurate ap-

proximation ui+1
j,k ≡PN+γu

i+1
γ +Gh∆tF

i+1,(xj ,yk)∈N+ at each time ti+1 to the solution

u(xj ,yk,t
i+1) of the continuous problem (3.1)–(3.3) reduces to the solution of a simple

auxiliary problem on a computationally simple auxiliary domain Ω0 (for example, Ω0

can be a square):
The approximate solution ui+1

j,k ≡PN+γu
i+1
γ +Gh∆tF

i+1,(xj ,yk)∈N+ at time ti+1

coincides on N+ with the solution of the following simple auxiliary problem:

L∆t,h[ui+1
j,k ] =


F i+1
j,k , ∀(xj ,yk)∈M+,

L∆t,h[ui+1
γ ], ∀(xj ,yk)∈M−,

(3.30)

subject to the boundary conditions:

ui+1
j,k = 0, ∀(xj ,yk)∈N0\M0.

Thus, the result of the above Statement 3.1 is the consequence of the sufficient
regularity of the exact solution (and domain), Theorem 3.1, the result of the extension
operator (3.25) or (3.26), as well as the second-order and the fourth-order accuracy of
the underlying discretization (3.9) and the established convergence results and error
estimates for the Difference Potentials Method for general linear elliptic boundary value
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problems in arbitrary domains with sufficiently smooth boundaries [16, 35, 36, 41]. In
particular, we can recall, that in [35,36] it was shown (under sufficient regularity of the
exact solution and considered domain), that the Difference Potentials approximate sur-
face potentials of the elliptic operators (and, therefore DPM approximates the solution
to the elliptic boundary value problem) with the accuracy of O(hP−ε) in the discrete
Hölder norm of order Q+ε. Here, 0<ε<1 is an arbitrary number, Q is the order of
the considered elliptic operator (in the current work, Q= 2), and P is the order of the
scheme used for the approximation of the elliptic operator (in this work, we have P= 2,
if the second-order scheme is considered for the approximation of the elliptic operator, or
P= 4, if the fourth-order scheme is used for the approximation of the elliptic operator).
Readers can consult [35,36] or [41] for the details and proof of the general result.

Therefore, in this work, for sufficiently small enough h and ∆t, we expect that at
every time level ti+1 the constructed discrete solution ui+1

j,k =PN+γu
i+1
γ +Gh∆tF

i+1 will

approximate the exact solution, ui+1
j,k ≈u(xj ,yk,t

i+1), (xj ,yk)∈N+∩ Ω̄, ti+1∈ (0,T ] of

the continuous problem (3.1)–(3.3), with O(h2 +∆t2) for DPM2 and with O(h4 +∆t4)
for DPM4 in the maximum norm.

Remark 3.6.
(1) The formula PN+γu

i+1
γ +Gh∆tF

i+1 is the discrete generalized Green’s formula.

(2) Note that, at each time level ti+1, after the density ui+1
γ is reconstructed from the

Boundary Equations with Projection (3.24), the Difference Potential is easily obtained
as the solution of a simple (AP) using Def. 3.2.

4. Schemes based on difference potentials for interface and composite
domains problems

In Section 3.1 we constructed second and fourth-order schemes based on Difference
Potentials for problems in the single domain Ω. In this section, we will show how to
extend these methods to interface/composite domains problems (2.1)–(2.7).

First, as we have done in Section 3.1 for the single domain Ω, we will introduce
the auxiliary domains. We will place each of the original subdomains Ωs in the auxil-
iary domains Ω0

s⊂R2,(s= 1,2) and will state the auxiliary difference problems in each
subdomain Ωs,(s= 1,2). The choice of the auxiliary domains Ω0

1 and Ω0
2, as well as the

auxiliary difference problems, may be made independently of each other. After that,
for each subdomain, we will proceed in a similar way as we did in Section 3.1. Also, for
each auxiliary domain Ω0

s we will consider, for example a Cartesian mesh (the choice
of the grids for the auxiliary problems will be independent of each other and the grids
do not need to conform/align with the boundaries of the subdomains/interfaces). After
that, all the definitions, notations, and properties introduced in Section 3.1 extend to
each subdomain Ωs in a direct way. As before, index s,(s= 1,2) is used to distinguish
between each subdomain. Let us denote the discrete version of the problem (2.1)–(2.7)
for each subdomain as:

Ls∆t,h[ui+1
j,k ] =Fs

i+1
j,k , (xj ,yk)∈M+

s , (4.1)

The difference problem (4.1) is obtained using either the second-order or the fourth-order
underlying discretization (3.9). The main theorem of the method for the composite
domains/interface problems is given below.

Statement 4.1.
At each time level ti+1, density ui+1

γ := (ui+1
γ1 ,ui+1

γ2 ) is the trace of some solution

ui+1 on Ω1∪Ω2 to the Difference Equations (4.1): ui+1
γ ≡Trγui+1, if and only if, the
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following equalities hold

ui+1
γ1 =Pγ1u

i+1
γ1 +Gh∆tF

i+1
γ1 ,(xj ,yk)∈γ1 (4.2)

ui+1
γ2 =Pγ2u

i+1
γ2 +Gh∆tF

i+1
γ2 ,(xj ,yk)∈γ2 (4.3)

The obtained discrete solution ui+1
j,k :=PsN+

s γs
ui+1
γs +Ghs∆tF

i+1
s ,(xj ,yk)∈N+

s at

each ti+1 is the approximation to the exact solution u(xj ,yk,t
i+1), (xj ,yk)∈N+

s ∩ Ω̄s,
ti+1∈ (0,T ] of the continuous model problem (2.1)–(2.7). Here, index s= 1,2.

Discussion: The result is a consequence of the results in Section 3.1. We expect
that at every time level ti+1, the solution ui+1

j,k =PsN+
s γs

ui+1
γs +Ghs∆tF

i+1
s ,(xj ,yk)∈N+

s

will approximate the exact solution u(xj ,yk,t
i+1), (xj ,yk)∈N+

s ∩ Ω̄s, t
i+1∈ (0,T ], (s=

1,2), with the accuracy O(h2 +∆t2) for the second-order method DPM2, and with
the accuracy O(h4 +∆t4) for the fourth-order method DPM4 in the maximum norm.
Moreover, as we observed in the numerical experiments in Section 6 (see also [2,3,12]),
the same high-order accuracy is preserved in the approximate gradient of the solution.
See Section 6 for the extensive numerical results.

Remark 4.1. Similar to the discussion in Section 3.1, at each time ti+1, the Boundary
Equations (4.2)–(4.3) are coupled with boundary (2.5) and interface/matching condi-
tions (2.3)–(2.4) to obtain the unique densities ui+1

γ1 and ui+1
γ2 . We consider the same

extension formula (3.25) (for the second-order method) or (3.26) (for the fourth-order
method) to construct ui+1

γs ,s= 1,2 in each subdomain/domain.

5. Numerical algorithm
In this section we will briefly summarize the main steps of the algorithm for the

reader’s convenience:

Step 1: Introduce a computationally simple auxiliary domain and formulate the
auxiliary problem (AP).

Step 2: At each time ti+1 compute a Particular Solution, ui+1
j,k =Gh∆tF

i+1
j,k ,(xj ,yk)∈

N+, as the solution of the (AP). For the single domain method, see (3.18)–(3.19) in
Section 3.1 (DPM2 and DPM4). For the direct extension of the algorithms to interface
and composite domains problems, see Section 4.

Step 3: Next, at each time level ti+1 compute the unknown boundary values or
densities, ui+1

γ ∈Vγ at the points of the discrete grid boundary γ by solving the system
of linear equations derived from the system of Boundary Equations with Projection
combined with the extension operator for the density: see (3.24) and (3.29) in Section
3.1, and extension to interface and composite domain problems (4.2)–(4.3) in Section 4.

Remark 5.1. Note, that the computation of the matrix for the system of Boundary
Equations with Projection (3.24) is the key contribution to the overall computational
complexity of the algorithm. However, if the time step ∆t is kept constant, then the
matrix associated with the system of Boundary Equations with Projection (3.24) can
be computed only once at initial time step and stored. Thus, only the right-hand side
will be updated at each time level ti+1 in the linear system of Boundary Equations with
Projection (3.24). Therefore, the computations at each time level ti+1 will be performed
very efficiently.

Step 4: Using the definition of the Difference Potential, Def. 3.2, Section 3.1, and
Section 4 (algorithm for interface/composite domain problems), construct the Difference
Potential, PN+γu

i+1
γ from the obtained density, ui+1

γ .
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Step 5: Finally, at each time ti+1, reconstruct the approximation to the con-
tinuous solution from ui+1

γ using the generalized Green’s formula, u(xj ,yk,t
i+1)≈

PN+γu
i+1
γ +Gh∆tF

i+1,(xj ,yk)∈N+, see Statement 3.1 in Section 3.1, and see State-
ment 4.1 in Section 4 (algorithm for interface/composite domain problems).

6. Numerical tests
In this section, we present several numerical experiments for interface/composite

domain problems that illustrate the high-order accuracy and efficiency of the methods
based on Difference Potentials presented in Sections 3.1–5.

In all the numerical tests below, similar to our work in 1D [3], the error in the
approximation to the exact solution of the model is determined by the size of the
maximum error up to the interface in both subdomains Ω1 and Ω2, Figure 2.1:

E := max
ti∈[0,T ]

max
(xj ,yk)∈M+

1 ∪M
+
2

|u(xj ,yk,t
i)−uij,k|, (6.1)

where u(xj ,yk,t
i) denotes the exact solution to the continuous model (2.1)–(2.7), uij,k

denotes the numerical approximation at time ti at mesh node (xj ,yk), and M+
1 and

M+
2 are the sets of the interior mesh nodes for the subdomain Ω1 and Ω2, respectively.

Moreover, similar to [3] we also compute the maximum error of the components of
the discrete gradient up to the interface in both subdomains Ω1 and Ω2, which are
determined by the following centered difference formulas:

E∇x := max
ti∈[0,T ]

max
(xj ,yk)∈M+

1 ∪M
+
2

|∇xui−∇xuij,k|, (6.2)

E∇y := max
ti∈[0,T ]

max
(xj ,yk)∈M+

1 ∪M
+
2

|∇yui−∇yuij,k|, (6.3)

where

∇xui−∇xuij,k :=
u(xj+h,yk,t

i)−u(xj−h,yk,ti)
2h

−
uij+1,k−uij−1,k

2h
,

and

∇yui−∇yuij,k :=
u(xj ,yk+h,ti)−u(xj ,yk−h,ti)

2h
−
uij,k+1−uij,k−1

2h
.

Remark 6.1.
(1) Similar to [2], below in Section 6.1 we consider interface/composite domain

problems defined in domains similar to the example of the domains Ω1 and Ω2 illus-
trated on Figure 2.1, Section 2. Thus, for the exterior domain Ω1 we select auxiliary
domain Ω0

1 to be a rectangle with the boundary ∂Ω0
1, which coincides with the exterior

boundary ∂Ω1 of the domain Ω1. After that, we construct methods based on Difference
Potentials as presented in Sections 3.1–5. To take advantage of the given boundary con-
ditions, for example, Dirichlet boundary conditions and specifics of the exterior domain
Ω1/auxiliary domain Ω0

1, for the fourth-order method DPM4 we construct the particular
solution (3.18) and Difference Potential (3.20) for the exterior auxiliary problem in Ω0

1

using the discrete operator L1
∆t,h[ui+1

j,k ] (see (3.9)–(3.10) and (3.15)) with a modified

stencil near the boundary of the auxiliary domain Ω0
1 as follows (example of the point

at “southwest” corner of the grid):

L1
∆t,h[ui+1

1,1 ] :=
10ui+1

0,1 −15ui+1
1,1 −4ui+1

2,1 +14ui+1
3,1 −6ui+1

4,1 +ui+1
5,1

12h2
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+
10ui+1

1,0 −15ui+1
1,1 −4ui+1

1,2 +14ui+1
1,3 −6ui+1

1,4 +ui+1
1,5

12h2
−σ2

1u
i+1
1,1 , in Ω0

1.

(6.4)

Other near-boundary nodes in Ω0
1 are handled in a similar way in L1

∆t,h[ui+1
j,k ] in (3.15)

(fourth-order scheme). Similarly, one can incorporate, mixed boundary conditions
(Dirichlet and Neumann boundary conditions as in Table 6.5) into the particular solu-
tion (3.18) and Difference Potential (3.20) of the exterior auxiliary problem in Ω0

1 for
DPM4.

Note, that to construct a particular solution (3.18) and Difference Potential (3.20)
for the interior problem stated in auxiliary domain Ω0

2, we do not modify the stencil in
Lh[ui+1

j,k ] in (3.15) (fourth-order scheme) near the boundary ∂Ω0
2 of the interior auxiliary

domain Ω0
2. For the second-order method DPM2 (see (3.9)–(3.10) and (3.13)), we also

take advantage of the given boundary conditions and specifics of the exterior domain
Ω1/auxiliary domain Ω0

1 in the construction of the the particular solution (3.18) and
the Difference Potential (3.20) for the exterior auxiliary problem in Ω0

1. However, there
is no need for the modification of the stencil (we just replace zero boundary conditions
in (3.18)–(3.19) and in (3.20)–(3.21) by the given boundary conditions on the boundary
of ∂Ω1≡∂Ω0

1.)

(2) In all numerical tests in Section 6.1, we select a standard trigonometric system of
basis functions for the spectral approximation in (3.28), Section 3.1: φ0(ϑ) = 1, φ1(ϑ) =

sin
(

2π
|Γ|ϑ

)
, φ2(ϑ) = cos

(
2π
|Γ|ϑ

)
, .. ., φ2ν(ϑ) = cos

(
2πν
|Γ| ϑ

)
and φ2ν+1(ϑ) = sin

(
2πν
|Γ| ϑ

)
,ν=

0,1,2,.... Here, φν ≡φ0
ν ≡φ1

ν . Also, note that, in the tests in Section 6.1, we denote by
N 0

1 +N 1
1 the total number of harmonics that is used to approximate the Cauchy data

in (3.28) if we consider unknowns from subdomain Ω1 as the independent unknowns, or
we denote by N 0

2 +N 1
2 the total number of harmonics that is used to approximate the

Cauchy data in (3.28) if we consider unknowns from subdomain Ω2 as the independent
unknowns in (3.28) (see interface conditions (2.3)–(2.4)).

6.1. Second-order DPM2 and fourth-order DPM4: numerical results.
In this section we consider parabolic composite domain/interface models of the form
(2.1)–(2.2). On several challenging tests below, we numerically verify expected conver-
gence rates O(∆t2 +h2) for DPM2 and O(∆t4 +h4) for DPM4.

In particular, we consider here the following example of the parabolic inter-
face/composite domains models:

∂uΩs

∂t
−∇·(λs∇uΩs) =fs(x,y,t), s= 1,2 (6.5)

subject to the interface and boundary conditions in the form of (2.3)–(2.5), and initial
conditions of the form (2.6)–(2.7). Interface conditions for the numerical tests are
computed using the exact solutions u(x,y,t), and the boundary condition on ∂Ω1 is
obtained from the Dirichlet boundary condition of the exact solution u(x,y,t) on the
boundary of the exterior domain ∂Ω1 for all the tests except for the test in Table
6.5. To illustrate the performance of the proposed methods on different boundary
conditions, in Table 6.5 we consider the mixed boundary conditions (Dirichlet and
Neumann boundary conditions) on the boundary of the exterior domain ∂Ω1. Again,
these boundary conditions are obtained from the Dirichlet and Neumann boundary
conditions of the exact solution u(x,y,t). Finally, the initial conditions are obtained
using the exact solution u(x,y,0) at time t= 0.
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Fig. 6.1. Example of the solution (6.7) with interface defined by Γ :x2/(π2/16)+y2/(π2/36) =1
(left figure) and example of the solution (6.8) with interface defined by Γ :x2/(π2/16)+y2/(π2/36) =1
(right figure). The solutions are obtained by BDF4-DPM4 on grid 1280×1280 at a final time T = 0.1.
Model (6.5) with λ1 = 10,λ2 = 1 is used for both figures.

Fig. 6.2. Example of the solution (6.9) with interface defined by Γ :x2 +4y2 = 1 (left figure) and
example of the solution (6.10) with interface defined by Γ :x2 +4y2 = 1 (right figure). The solutions
are obtained by BDF4-DPM4 on grid 1280×1280 at a final time T = 0.1. Model (6.5) with λ1 =λ2 = 1
is used for both figures.

Fig. 6.3. Example of the solution (6.11) with interface defined by Γ :x2 +4y2 = 1 (left figure) and
example of the solution (6.12) with interface defined by Γ :x2 +4y2 = 1. The solutions are obtained by
BDF4-DPM4 on grid 1280×1280 at a final time T = 0.1. Model (6.5) with λ1 =λ2 = 1 is used for the
left figure and model (6.5) with λ1 = 1,λ2 = 1000 is used for the right figure.
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Grid E: DPM2 Rate E: DPM4 Rate

80×80 3.0147 E−3 — 9.6646 E−6 —
160×160 7.6599 E−4 1.98 2.4457 E−7 5.30
320×320 1.9352 E−4 1.98 1.7783 E−8 3.78
640×640 4.8455 E−5 2.00 1.2139 E−9 3.87

1280×1280 1.2096 E−5 2.00 9.4707 E−11 3.68

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 1.8629 E−2 — 6.3170 E−5 —
160×160 5.3143 E−3 1.81 4.3396 E−6 3.86
320×320 1.2337 E−3 2.11 3.0004 E−7 3.85
640×640 3.1648 E−4 1.96 2.4113 E−8 3.64

1280×1280 8.7970 E−5 1.85 1.7743 E−9 3.76

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 2.5495 E−2 — 8.5030 E−5 —
160×160 6.0501 E−3 2.08 4.3380 E−6 4.29
320×320 2.1026 E−3 1.52 4.0019 E−7 3.44
640×640 5.1200 E−4 2.04 2.5572 E−8 3.97

1280×1280 1.2032 E−4 2.09 1.7881 E−9 3.84

Table 6.1. Grid convergence in the approximate solution and components of the discrete gradi-
ent for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a=π/4,b=π/6
centered at the origin, and the exterior domain is Ω1 = [−1,1]× [−1,1]\Ω2. Test problem (6.5), (6.7)
with continuous solution and continuous flux and material coefficients λ1 = 10,λ2 = 1. The dimension
of the set of basis functions is N 0

1 +N 1
1 = 3.

Grid E: DPM2 Rate E: DPM4 Rate

80×80 2.0619 E−2 — 3.3646 E−5 —
160×160 4.7572 E−3 2.12 2.0364 E−6 4.05
320×320 1.1292 E−3 2.07 1.1834 E−7 4.11
640×640 2.7477 E−4 2.04 7.2672 E−9 4.03

1280×1280 6.9163 E−5 1.99 5.5669 E−10 3.71

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 5.2046 E−2 — 1.2772 E−4 —
160×160 1.4393 E−2 1.85 1.0497 E−5 3.60
320×320 4.0794 E−3 1.82 7.9414 E−7 3.72
640×640 1.0870 E−3 1.91 5.9797 E−8 3.73

1280×1280 2.8509 E−4 1.93 4.2368 E−9 3.82

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 6.9755 E−2 — 1.4278 E−4 —
160×160 1.9215 E−2 1.86 1.2204 E−5 3.55
320×320 5.1537 E−3 1.90 9.6832 E−7 3.66
640×640 1.3364 E−3 1.95 6.4240 E−8 3.91

1280×1280 3.5170 E−4 1.93 4.4682 E−9 3.85

Table 6.2. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a=π/4,b=π/6 cen-
tered at the origin, and the exterior domain is Ω1 = [−1,1]× [−1,1]\Ω2. Test problem (6.5), (6.8) with
continuous solution and discontinuous flux and material coefficients λ1 = 10,λ2 = 1. The dimension of
the set of basis functions is N 0

1 +N 1
1 = 3.
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Grid E: DPM2 Rate E: DPM4 Rate

80×80 1.4960 E−5 — 7.6437 E−9 —
160×160 3.3252 E−6 2.17 2.6351 E−10 4.86
320×320 8.0747 E−7 2.04 1.5220 E−11 4.11
640×640 2.0550 E−7 1.97 1.0545 E−12 3.85

1280×1280 5.2287 E−8 1.97 5.0193 E−13 1.07

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 9.6755 E−5 — 2.3023 E−8 —
160×160 2.7633 E−5 1.81 1.0647 E−9 4.43
320×320 7.3440 E−6 1.91 7.2529 E−11 3.88
640×640 1.9116 E−6 1.94 5.5156 E−12 3.72

1280×1280 4.8873 E−7 1.97 2.3093 E−12 1.26

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 5.0079 E−5 — 1.7467 E−8 —
160×160 1.2601 E−5 1.99 7.8108 E−10 4.48
320×320 2.9763 E−6 2.08 3.6291 E−11 4.43
640×640 7.5893 E−7 1.97 2.7711 E−12 3.71

1280×1280 1.7966 E−7 2.08 9.2371 E−13 1.58

Table 6.3. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain is the circle with R= 1 centered at the
origin and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.9) with material
coefficients λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

1 +N 1
1 = 15.

Grid E: DPM2 Rate E: DPM4 Rate

80×80 7.6881 E−4 — 3.6981 E−6 —
160×160 1.3587 E−4 2.50 1.3966 E−7 4.73
320×320 3.0556 E−5 2.15 6.9116 E−9 4.34
640×640 7.0384 E−6 2.12 4.7680 E−10 3.86

1280×1280 1.4834 E−6 2.25 2.9068 E−11 4.04

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 3.5415 E−3 — 1.8532 E−5 —
160×160 8.4177 E−4 2.07 1.1510 E−6 4.01
320×320 2.5576 E−4 1.72 5.9865 E−8 4.27
640×640 9.1801 E−5 1.48 4.1454 E−9 3.85

1280×1280 2.4652 E−5 1.90 3.0029 E−10 3.79

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 1.1226 E−3 — 1.4928 E−5 —
160×160 4.4288 E−4 1.34 8.7078 E−7 4.10
320×320 1.1094 E−4 2.00 2.9190 E−8 4.90
640×640 2.9997 E−5 1.89 1.6709 E−9 4.13

1280×1280 8.1752 E−6 1.88 1.0353 E−10 4.01

Table 6.4. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.9) with
material coefficients λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

1 +N 1
1 = 14.
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Grid E: DPM2 Rate E: DPM4 Rate

80×80 7.6881 E−4 — 3.6981 E−6 —
160×160 1.3563 E−4 2.50 1.3966 E−7 4.73
320×320 3.0555 E−5 2.15 6.9115 E−9 4.34
640×640 7.0382 E−6 2.12 4.7555 E−10 3.86

1280×1280 1.4823 E−6 2.25 2.6223 E−11 4.18

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 6.2981 E−3 — 2.7304 E−5 —
160×160 1.2811 E−3 2.30 1.6395 E−6 4.06
320×320 3.4898 E−4 1.88 7.1143 E−8 4.53
640×640 1.1413 E−4 1.61 6.4634 E−9 3.46

1280×1280 2.8904 E−5 1.98 4.4645 E−10 3.86

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 1.3998 E−3 — 1.5733 E−5 —
160×160 4.4540 E−4 1.65 9.3488 E−7 4.07
320×320 1.1094 E−4 2.01 3.4802 E−8 4.75
640×640 2.9998 E−5 1.89 2.0272 E−9 4.10

1280×1280 8.1753 E−6 1.88 1.3403 E−10 3.92

Table 6.5. Grid Convergence in the approximate solution and components of the discrete gra-
dient for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1,b= 0.5
centered at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.9)
with material coefficients λ1 =λ2 = 1 and mixed boundary conditions at the boundary ∂Ω1 (Dirichlet
boundary condition on x=±2 and Neumann boundary condition on y=±2). The dimension of the
set of basis functions is N 0

1 +N 1
1 = 14.

Grid E: DPM2 Rate E: DPM4 Rate

80×80 7.9812 E−4 — 2.9898 E−6 —
160×160 1.4009 E−4 2.51 2.0200 E−7 3.89
320×320 3.1875 E−5 2.14 1.1593 E−8 4.12
640×640 7.3395 E−6 2.12 7.1578 E−10 4.02

1280×1280 1.5469 E−6 2.25 4.2984 E−11 4.06

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 3.7071 E−3 — 1.1915 E−5 —
160×160 8.7074 E−4 2.09 1.1238 E−6 3.41
320×320 2.7019 E−4 1.69 8.1536 E−8 3.78
640×640 9.7094 E−5 1.48 6.4286 E−9 3.66

1280×1280 2.6201 E−5 1.89 4.5029 E−10 3.84

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 1.1155 E−3 — 1.4438 E−5 —
160×160 4.4213 E−4 1.34 8.0955 E−7 4.16
320×320 1.1064 E−4 2.00 2.9929 E−8 4.76
640×640 2.9948 E−5 1.89 1.8004 E−9 4.06

1280×1280 8.1714 E−6 1.87 1.0894 E−10 4.05

Table 6.6. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.9) with
material coefficients λ1 = 1000,λ2 = 1. The dimension of the set of basis functions is N 0

1 +N 1
1 = 14.
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Grid E: DPM2 Rate E: DPM4 Rate

80×80 1.4217 E−3 — 7.4403 E−6 —
160×160 2.9665 E−4 2.26 4.0478 E−7 4.20
320×320 7.3169 E−5 2.02 1.9894 E−8 4.35
640×640 1.7889 E−5 2.03 1.2509 E−9 3.99

1280×1280 4.1268 E−6 2.12 7.5583 E−11 4.05

Grid E∇x: DPM2 Rate E∇x: DPM2 Rate

80×80 3.8663 E−3 — 1.9899 E−5 —
160×160 1.0083 E−3 1.94 1.4353 E−6 3.79
320×320 2.8264 E−4 1.83 7.2317 E−8 4.31
640×640 8.7710 E−5 1.69 4.8302 E−9 3.90

1280×1280 2.2856 E−5 1.94 3.2323 E−10 3.90

Grid E∇y : DPM2 Rate E∇y : DPM2 Rate

80×80 1.4592 E−3 — 1.5954 E−5 —
160×160 5.4385 E−4 1.42 1.0272 E−6 3.96
320×320 1.3660 E−4 1.99 3.9502 E−8 4.70
640×640 3.5267 E−5 1.95 2.4817 E−9 3.99

1280×1280 9.3338 E−6 1.92 1.6533 E−10 3.91

Table 6.7. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.9) with
material coefficients λ1 = 1,λ2 = 1000. The dimension of the set of basis functions is N 0

1 +N 1
1 = 14.

Grid E: DPM2 Rate E∇x: DPM2 Rate E∇y : DPM2 Rate

80×80 7.4073 E−4 — 3.4746 E−3 — 1.1400 E−3 —
160×160 1.2603 E−4 2.56 8.3667 E−4 2.05 4.4737 E−4 1.35
320×320 2.8324 E−5 2.15 2.4533 E−4 1.77 1.0918 E−4 2.03
640×640 6.5472 E−6 2.11 9.0596 E−5 1.44 2.9761 E−5 1.88

1280×1280 1.3770 E−6 2.25 2.4439 E−5 1.89 8.1312 E−6 1.87

Table 6.8. Grid convergence in the approximate solution and components of the discrete gradient
for TR-DPM2. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered at the origin, and
the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.9) with material coefficients
λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

1 +N 1
1 = 14.

The interior and exterior domains for all the tests below are selected as:

Ω2 =
x2

a2
+
y2

b2
<1,

Ω1 = [−1,1]× [−1,1]\Ω2 in Tables 6.1-6.2 and,

Ω1 = [−2,2]× [−2,2]\Ω2 in Tables 6.3-6.19.

Hence, the interface between the two subdomains Ω1 and Ω2 is defined as:

Γ :
x2

a2
+
y2

b2
= 1 (6.6)

Also, in the tests in Tables 6.1-6.2 we employ for DPM2 and DPM4 the following
auxiliary domains:

Ω0
2 = [−1,1]× [−1,1],

Ω0
1 = [−1,1]× [−1,1], and
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Grid E: DPM2 Rate E: DPM4 Rate

80×80 1.0135 E−3 — 7.4246 E−6 —
160×160 3.5331 E−4 1.52 6.6548 E−7 3.48
320×320 6.6191 E−5 2.42 1.1037 E−7 2.59
640×640 1.5269 E−5 2.12 4.0942 E−9 4.75

1280×1280 3.3138 E−6 2.20 2.3671 E−10 4.11

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 5.9560 E−3 — 5.6133 E−5 —
160×160 3.0166 E−3 0.98 7.4232 E−6 2.92
320×320 8.0478 E−4 1.91 1.9217 E−6 1.95
640×640 2.9206 E−4 1.46 5.6177 E−8 5.10

1280×1280 8.3292 E−5 1.81 4.2715 E−9 3.72

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 8.8393 E−4 — 1.0822 E−5 —
160×160 1.8939 E−3 −1.10 6.4538 E−6 0.75
320×320 4.1076 E−4 2.20 1.6162 E−6 2.00
640×640 1.0743 E−4 1.93 3.9642 E−8 5.35

1280×1280 2.9308 E−5 1.87 2.0309 E−9 4.29

Table 6.9. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.25 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.9) with
material coefficients λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

1 +N 1
1 = 14.

Grid E: DPM2 Rate E: DPM4 Rate

80×80 1.1025 E−1 — 4.8459 E−2 —
160×160 2.6875 E−2 2.04 1.4713 E−3 5.04
320×320 6.8304 E−3 1.98 8.0078 E−5 4.20
640×640 1.6937 E−3 2.01 4.3420 E−6 4.20

1280×1280 4.2290 E−4 2.00 2.6202 E−7 4.05

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 1.0007 — 2.1336 E−1 —
160×160 2.5093 E−1 2.00 1.3739 E−2 3.96
320×320 6.4225 E−2 1.97 7.5298 E−4 4.19
640×640 1.5953 E−2 2.01 4.0899 E−5 4.20

1280×1280 3.9995 E−3 2.00 2.5927 E−6 3.98

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 1.6609 — 4.1642 E−1 —
160×160 4.7529 E−1 1.81 2.1383 E−2 4.28
320×320 1.2658 E−1 1.91 1.3405 E−3 4.00
640×640 3.1638 E−2 2.00 8.1454 E−5 4.04

1280×1280 7.8696 E−3 2.01 4.8436 E−6 4.07

Table 6.10. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain is the circle with R= 1 centered at the
origin and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.10) with material
coefficients λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

2 +N 1
2 = 2.

in all the tests in Tables 6.3–6.19 we employ for DPM2 and DPM4 the following auxiliary
domains:

Ω0
2 = [−2,2]× [−2,2],

Ω0
1 = [−2,2]× [−2,2].
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Grid E: DPM2 Rate E: DPM4 Rate

80×80 1.1021 E−1 — 4.8460 E−2 —
160×160 2.6941 E−2 2.03 1.4713 E−3 5.04
320×320 6.8303 E−3 1.98 8.0078 E−5 4.20
640×640 1.7103 E−3 2.00 4.4226 E−6 4.18

1280×1280 4.3016 E−4 1.99 2.7469 E−7 4.01

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 1.0007 — 2.1335 E−1 —
160×160 2.5093 E−1 2.00 1.3739 E−2 3.96
320×320 6.4225 E−2 1.97 7.5298 E−4 4.19
640×640 1.5953 E−2 2.01 4.0899 E−5 4.20

1280×1280 3.9851 E−3 2.00 2.4691 E−6 4.05

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 1.6609 — 4.1640 E−1 —
160×160 4.7403 E−1 1.81 2.1383 E−2 4.28
320×320 1.2658 E−1 1.90 1.3405 E−3 4.00
640×640 3.5818 E−2 1.82 8.1454 E−5 4.04

1280×1280 8.9701 E−3 2.00 4.8436 E−6 4.07

Table 6.11. Grid convergence in the approximate solution and components of the discrete
gradient for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5
centered at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.10)
with material coefficients λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

2 +N 1
2 = 3.

Grid I Grid II E: DPM2 Rate E: DPM4 Rate

160×160 40×40 2.7142 E−2 — 1.4713 E−3 —
320×320 80×80 6.8358 E−3 1.99 8.0078 E−5 4.20
640×640 160×160 1.7250 E−3 1.99 4.4570 E−6 4.17

1280×1280 320×320 4.3347 E−4 1.99 2.7579 E−7 4.01

Grid I Grid II E∇x: DPM2 Rate E∇x: DPM4 Rate

160×160 40×40 2.5093 E−1 — 1.3739 E−2 —
320×320 80×80 6.4225 E−2 1.97 7.5298 E−4 4.19
640×640 160×160 1.5953 E−2 2.01 4.0899 E−5 4.20

1280×1280 320×320 3.9851 E−3 2.00 2.4691 E−6 4.05

Grid I Grid II E∇y : DPM2 Rate E∇y : DPM4 Rate

160×160 40×40 4.7450 E−1 — 2.1383 E−2 —
320×320 80×80 1.2658 E−1 1.91 1.3405 E−3 4.00
640×640 160×160 3.6066 E−2 1.81 8.1454 E−5 4.04

1280×1280 320×320 9.0284 E−3 2.00 4.8436 E−6 4.07

Table 6.12. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.10) with
material coefficients λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

2 +N 1
2 = 3. Non-

matching meshes for Ω1 (Grid I) and Ω2 (Grid II).

We consider time interval [0,T ] with T = 0.1 as the final time. The time step was set as
∆t= 0.5h for the methods.

For the test in Table 6.1, the exact solution is defined as (see Figure 6.1, left plot):

u(x,y,t) =


u1(x,y,t) =et(

(
16x2/π2 +36y2/π2

)5/2
/10−1/10+1), (x,y)∈Ω1,

u2(x,y,t) =et
(
16x2/π2 +36y2/π2

)5/2
, (x,y)∈Ω2.

(6.7)
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Grid E: DPM2 Rate E: DPM4 Rate

80×80 1.1247 E−1 — 4.5922 E−2 —
160×160 2.7736 E−2 2.02 1.4668 E−3 4.97
320×320 7.2126 E−3 1.94 9.7493 E−5 3.91
640×640 1.8600 E−3 1.96 6.1556 E−6 3.99

1280×1280 4.6821 E−4 1.99 3.8729 E−7 3.99

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 1.0142 — 1.9462 E−1 —
160×160 2.5334 E−1 2.00 1.3300 E−2 3.87
320×320 6.5334 E−2 1.96 7.3914 E−4 4.17
640×640 1.6360 E−2 2.00 4.2018 E−5 4.14

1280×1280 4.1011 E−3 2.00 2.5568 E−6 4.04

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 1.6682 — 3.9898 E−1 —
160×160 4.7259 E−1 1.82 1.9675 E−2 4.34
320×320 1.2611 E−1 1.91 1.2806 E−3 3.94
640×640 3.7275 E−2 1.76 7.9745 E−5 4.01

1280×1280 9.4443 E−3 1.98 5.0201 E−6 3.99

Table 6.13. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.10) with
material coefficients λ1 = 1000,λ2 = 1. The dimension of the set of basis functions is N 0

2 +N 1
2 = 3.

Grid E: DPM2 Rate E: DPM4 Rate

80×80 1.1021 E−1 — 4.8460 E−2 —
160×160 2.6938 E−2 2.03 1.4713 E−3 5.04
320×320 6.8303 E−3 1.98 8.0078 E−5 4.20
640×640 1.7116 E−3 2.00 4.4229 E−6 4.18

1280×1280 4.3106 E−4 1.99 2.7473 E−7 4.01

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 1.0007 — 2.1335 E−1 —
160×160 2.5093 E−1 2.00 1.3739 E−2 3.96
320×320 6.4225 E−2 1.97 7.5298 E−4 4.19
640×640 1.5953 E−2 2.01 4.0899 E−5 4.20

1280×1280 3.9851 E−3 2.00 2.4691 E−6 4.05

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 1.6609 — 4.1640 E−1 —
160×160 4.7402 E−1 1.81 2.1383 E−2 4.28
320×320 1.2658 E−1 1.90 1.3405 E−3 4.00
640×640 3.5813 E−2 1.82 8.1454 E−5 4.04

1280×1280 8.9737 E−3 2.00 4.8436 E−6 4.07

Table 6.14. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.10) with
material coefficients λ1 = 1,λ2 = 1000. The dimension of the set of basis functions is N 0

2 +N 1
2 = 3.

For the test in Table 6.2, the exact solution is defined (see Figure 6.1, right plot)

u(x,y,t) =


u1(x,y,t) =et

(
16x2/π2 +36y2/π2

)5/2
, (x,y)∈Ω1,

u2(x,y,t) =et
(
16x2/π2 +36y2/π2

)5/2
. (x,y)∈Ω2.

(6.8)



J. ALBRIGHT, Y. EPSHTEYN, AND Q. XIA 1009

Grid E: DPM2 Rate E: DPM4 Rate

80×80 1.1021 E−1 — 4.8460 E−2 —
160×160 2.6873 E−2 2.04 1.4713 E−3 5.04
320×320 6.8303 E−3 1.98 8.0078 E−5 4.20
640×640 1.6937 E−3 2.01 4.3420 E−6 4.20

1280×1280 4.2290 E−4 2.00 2.6887 E−7 4.01

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

80×80 1.0007 — 2.1335 E−1 —
160×160 2.5093 E−1 2.00 1.3739 E−2 3.96
320×320 6.4225 E−2 1.97 7.5298 E−4 4.19
640×640 1.5953 E−2 2.01 4.0899 E−5 4.20

1280×1280 3.9851 E−3 2.00 2.4691 E−6 4.05

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

80×80 1.6754 — 4.1640 E−1 —
160×160 4.7478 E−1 1.82 2.1383 E−2 4.28
320×320 1.2658 E−1 1.91 1.3405 E−3 4.00
640×640 3.4376 E−2 1.88 8.1454 E−5 4.04

1280×1280 9.3278 E−3 1.88 4.8436 E−6 4.07

Table 6.15. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.25 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.10) with
material coefficients λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

2 +N 1
2 = 3.

The exact solution (6.7) for the problem (6.5) with λ1 = 10 and λ2 = 1 is continuous
across the interface Γ :x2/(π2/16)+y2/(π2/36) = 1, and also has continuous flux across
the interface (the exact solution (6.7) is a modified version of the solution for the
parabolic interface problem from [26]). The exact solution (6.8) for the problem (6.5)
with λ1 = 10 and λ2 = 1 is continuous across the interface Γ, but has the discontinu-
ous flux across the interface. The reader can consult [21, 22] for the analytical results
for the parabolic interface problems under continuity assumption on the solution at
the interface boundary. As one can see from Tables 6.1–6.2, DPM2 and DPM4 recon-
struct solutions and gradient of the solutions to (6.5)-(6.7) and to (6.5)-(6.8) with the
second-order and fourth-order accuracy, respectively.

For the next several tests in Tables 6.3–6.9, the exact solution is defined as (see
Figure 6.2):

u(x,y,t) =

u1(x,y,t) =e−t sinxcosy, (x,y)∈Ω1,

u2(x,y,t) =e−t(x2−y2), (x,y)∈Ω2.
(6.9)

(the exact solution (6.9) is a modified version of the exact solution for the elliptic
interface problem from [25]). Next, the exact solution for the test problem in Tables
6.10–6.15 below is similar to the exact solution (6.9) but has a much higher frequency
(oscillations) in the exterior subdomain Ω1, and is defined as (see also Figure 6.2):

u(x,y,t) =

u1(x,y,t) =e−t sin(3πx)cos(7πy), (x,y)∈Ω1,

u2(x,y,t) =e−t(x2−y2), (x,y)∈Ω2.
(6.10)

Next, in Tables 6.16–6.17, we consider additional tests with the exact solution
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Fig. 6.4. Grid convergence using BDF2-DPM2 (blue) and BDF4-DPM4 (black) is compared
for several different interfaces Γ :x2/a2 +y2/b2 = 1 with increasing aspect ratios a/b. The results are
presented for the test problem (6.5), (6.9) with material coefficients λ1 =λ2 = 1 (left figure) and for
the test problem (6.5), (6.10) with material coefficients λ1 =λ2 = 1 (right figure). Similar results
are produced by DPM for the same test problems but with different material coefficients in different
subdomains, as well as for error in the gradient of the solution.

Grid E: DPM2 Rate E: DPM4 Rate

160×160 1.9789 E−4 — 2.7787 E−7 —
320×320 4.7654 E−5 2.05 1.6946 E−8 4.04
640×640 1.2033 E−5 1.99 1.0478 E−9 4.02

1280×1280 3.0447 E−6 1.98 6.6320 E−11 3.98

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

160×160 4.0263 E−4 — 8.3030 E−7 —
320×320 9.8635 E−5 2.03 5.1278 E−8 4.02
640×640 2.4795 E−5 1.99 3.2037 E−9 4.00

1280×1280 6.2404 E−6 1.99 2.0147 E−10 3.99

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

160×160 4.5444 E−4 — 7.8078 E−7 —
320×320 1.0952 E−4 2.05 4.9491 E−8 3.98
640×640 2.7244 E−5 2.01 3.1439 E−9 3.98

1280×1280 6.9267 E−6 1.98 1.9934 E−10 3.98

Table 6.16. Grid convergence in the approximate solution and components of the discrete
gradient for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5
centered at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.11)
with material coefficients λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

1 +N 1
1 = 30.

defined as (see also Figure 6.3):

u(x,y,t) =


u1(x,y,t) = 1

1+t2
1

1+x2+y2 , (x,y)∈Ω1,

u2(x,y,t) = 2
1+t2

1
1+x2+y2 , (x,y)∈Ω2.

(6.11)

Finally, the exact solution u(x,y,t) for the test problem in Tables 6.18–6.19 has jump
conditions at the interface that oscillate in time and u(x,y,t) is described below (see
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Grid E: DPM2 Rate E: DPM4 Rate

160×160 2.8136 E−4 — 3.5928 E−7 —
320×320 7.0314 E−5 2.00 2.3179 E−8 3.95
640×640 1.7684 E−5 1.99 1.4809 E−9 3.97

1280×1280 4.4399 E−6 1.99 9.5923 E−11 3.95

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

160×160 4.7849 E−4 — 8.8373 E−7 —
320×320 1.2038 E−4 1.99 5.5880 E−8 3.98
640×640 3.0157 E−5 2.00 3.5157 E−9 3.99

1280×1280 7.5442 E−6 2.00 2.2297 E−10 3.98

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

160×160 6.0641 E−4 — 9.4720 E−7 —
320×320 1.5331 E−4 1.98 5.9268 E−8 4.00
640×640 4.0266 E−5 1.93 3.7796 E−9 3.97

1280×1280 1.0680 E−5 1.91 2.4475 E−10 3.95

Table 6.17. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.11) with
material coefficients λ1 = 1,λ2 = 1000 (example of the different material coefficients). The dimension
of the set of basis functions is N 0

1 +N 1
1 = 30.

Grid E: DPM2 Rate E: DPM4 Rate

160×160 9.9762 E−3 — 6.7679 E−4 —
320×320 1.8988 E−3 2.39 3.3825 E−5 4.32
640×640 3.5081 E−4 2.44 1.7882 E−6 4.24

1280×1280 8.3125 E−5 2.08 1.0675 E−7 4.07

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

160×160 3.8474 E−2 — 2.6405 E−3 —
320×320 9.2627 E−3 2.05 1.9427 E−4 3.76
640×640 3.0389 E−3 1.61 1.3134 E−5 3.89

1280×1280 8.4412 E−4 1.85 8.9533 E−7 3.87

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

160×160 4.8148 E−2 — 2.8102 E−3 —
320×320 1.8412 E−2 1.39 2.6349 E−4 3.41
640×640 4.9064 E−3 1.91 2.1896 E−5 3.59

1280×1280 1.3661 E−3 1.84 1.6539 E−6 3.73

Table 6.18. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.12) with
material coefficients λ1 =λ2 = 1. The dimension of the set of basis functions is N 0

1 +N 1
1 = 2.

also Figure 6.3):

u(x,y,t) =

u1(x,y,t) = 0, (x,y)∈Ω1,

u2(x,y,t) = 1000sin(10πt)x4y5, (x,y)∈Ω2.
(6.12)

In the tests in Tables 6.1–6.7 and Tables 6.9–6.19 we consider BDF2 as the time
discretization for DPM2, and BDF4 as the time discretization for DPM4. Similar to [3],
we also tested the proposed high-order methods in space using the trapezoidal scheme
(TR) as the time discretization. We obtained very similar results between BDF2-DPM2
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Grid E: DPM2 Rate E: DPM4 Rate

160×160 1.2679 E−2 — 1.7861 E−4 —
320×320 3.2972 E−3 1.94 1.1429 E−5 3.97
640×640 7.5776 E−4 2.12 7.0576 E−7 4.02

1280×1280 1.7516 E−4 2.11 4.2724 E−8 4.05

Grid E∇x: DPM2 Rate E∇x: DPM4 Rate

160×160 4.6315 E−2 — 3.2243 E−4 —
320×320 1.3103 E−2 1.82 2.1652 E−5 3.90
640×640 3.3175 E−3 1.98 1.4078 E−6 3.94

1280×1280 7.9967 E−4 2.05 9.4477 E−8 3.90

Grid E∇y : DPM2 Rate E∇y : DPM4 Rate

160×160 8.3000 E−2 — 6.0763 E−4 —
320×320 2.7938 E−2 1.57 4.0041 E−5 3.92
640×640 6.8421 E−3 2.03 2.5456 E−6 3.98

1280×1280 1.6947 E−3 2.01 1.5769 E−7 4.01

Table 6.19. Grid convergence in the approximate solution and components of the discrete gradient
for BDF2-DPM2 and BDF4-DPM4. The interior domain Ω2 is the ellipse with a= 1, b= 0.5 centered
at the origin, and the exterior domain is Ω1 = [−2,2]× [−2,2]\Ω2. Test problem (6.5), (6.12) with
material coefficients λ1 = 1,λ2 = 1000 (example of the different material coefficients). The dimension
of the set of basis functions is N 0

1 +N 1
1 = 2.

and TR-DPM2, as well as between BDF4-DPM4 and TR-DPM4. To illustrate this with
an example, we give Table 6.8 for TR-DPM2 that can be compared with results in Table
6.4 for BDF2-DPM2 on the same test problem. Note that similarly, the accuracy of
BDF4-DPM4 and TR-DPM4 was in very close agreement on all the tests we considered.
However, TR-DPM4 is much more computationally expensive since it is only second-
order accurate in time, and the required time step ∆t=O(h2) is much smaller than
the time step ∆t=O(h) needed for BDF4-DPM4 to maintain fourth-order accuracy in
space.

In all the numerical experiments presented in Tables 6.3–6.19, we consider curves
Γ (6.6) with different aspect ratios a/b as the interface between subdomains. Note,
that we also performed the same tests using a circle (a= b) as the interface curve, and
obtained a similar convergence rate: second-order and fourth-order convergence rate in
the maximum error in the solution, as well as in the maximum error in the discrete
gradient of the solution for DPM2 and DPM4, respectively. In Table 6.3, the slow down
in the convergence rate for DPM4 on finer meshes is due to the loss of significant digits,
as the absolute level of error gets close to machine zero, and in Table 6.9, the mesh has
to be fine enough to obtain the expected convergence rates due to already relatively
high aspect ratio of the interface curve (Γ :x2 +16y2 = 1) for the test problem in the
table. Furthermore, the results presented in Figure 6.4 show that the convergence rate
in DPM (DPM2 and DPM4) on parabolic interface models is not affected by the size
of the aspect ratio of the considered circular/elliptical domains (we obtained overall
second- and fourth-order accuracy on the tests considered). Moreover, the accuracy of
DPM2 and DPM4 is not affected by the size of the jump ratio in the diffusion coefficients
as can be seen from the Tables 6.4–6.7, Tables 6.11, 6.13–6.14 and Tables 6.16–6.19 or
by the considered boundary conditions, see Tables 6.4-6.5. Moreover, as shown in Tables
6.11–6.12, the method is well-suited for domain decomposition approaches or adaptive
simulations. In particular, in Tables 6.11–6.12, we show that when we use a much
coarser mesh in the domain Ω2 with the less oscillatory solution, we obtain an accuracy
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which is very close to the accuracy we achieved while using the same fine mesh in both
domains. All these features demonstrate great robustness and high-order accuracy of
the designed numerical schemes for the interface problems (similar properties of DPM2
and DPM4 were shown for the elliptic interface problems [2, 11,12,40]).

Results in Tables 6.1–6.19 for DPM2 and DPM4 illustrate overall second-order and
fourth-order rate of convergence, respectively, in the maximum error in the solution and
in the maximum error in the discrete gradient of the solution to the parabolic interface
problems. This high-order accuracy of DPM2, and in particular of DPM4, and the
efficiency of numerical algorithms based on Difference Potentials are crucial for time-
dependent problems where lower-order methods can fail to resolve delicate features of
the solutions to model problems [3, 4, 13].

7. Conclusion

In this paper, we developed efficient high-order accurate methods in time and space
based on Difference Potentials for 2D parabolic interface/composite domain models. We
gave the construction of high-order accurate methods based on Difference Potentials for
single domain, and for the interface/composite domain problems with non-matching
interface conditions. The constructed numerical algorithms are not restricted by the
choice of boundary or interface conditions, and the main computational complexity of
the designed algorithms reduces to the several solutions of simple auxiliary problems on
regular structured grids. The methods can handle with ease non-matching grids for the
subdomains/domains and are well-suited for parallel computations. Moreover, similar
to [2,3,12], 2D numerical tests clearly confirm the capability of the Difference Potentials
approach to resolve discontinuities with high-order accuracy at the material interfaces.

At this point the developed methods are constructed for problems in 2D domains
with smooth fixed curvilinear interfaces represented by closed curves. For near future
and future research, we plan to develop h-adaptive algorithms based on the Difference
Potentials approach and extend methods to models that have possible geometric sin-
gularities at the interface boundaries as well as to moving/evolving boundary/interface
problems. We also plan to extend developed methods to nonlinear models in 2D and
3D.

Appendix.

A.1. Details of the time discretization.. For the reader’s convenience we
present below details of the time-discrete scheme (3.7). The coefficient σ2 below is the
same as on the left-handside of (3.7):

(1) Trapezoidal scheme in time:
In case of the trapezoidal scheme in time, the linear operator L∆t[u

i+1] is defined in
(3.8), and the right-hand side F i+1 in (3.7) takes the form:

F i+1 :=− 1

λ

(
f(x,y,ti+1)+f(x,y,ti)

)
−
(

∆+σ2I
)
ui. (7.1)

(2) The second-order backward difference scheme (BDF2) in time:
In case of the second-order backward difference scheme (BDF2) in time, the linear
operator L∆t[u

i+1] is defined in (3.8) (similarly to the Trapezoidal scheme in time), and
the right-hand side F i+1 in (3.7) for BDF2 takes the form:

F i+1 :=− 1

λ
f(x,y,ti+1)− σ

2

3
(4ui−ui−1). (7.2)
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(3) The fourth-order backward difference scheme (BDF4) in time:
In case of the fourth-order backward difference scheme (BDF4) in time, the linear op-
erator L∆t[u

i+1] is defined in (3.8) (similarly to the Trapezoidal and BDF2 schemes in
time), and the right-hand side F i+1 in (3.7) for BDF4 takes the form:

F i+1 :=− 1

λ
f(x,y,ti+1)− σ

2

25
(48ui−36ui−1 +16ui−2−3ui−3). (7.3)

A.2. Details of the construction of the extension operators.. Here, we
give details of the construction of the extension operators (3.25) and (3.26) for the case
of the circular and elliptical domains. The idea of the construction is based on the
knowledge of the continuous PDE model (3.1) and the use of Cauchy data ui+1

Γ at time
ti+1. Very similar construction extends to domains with general curvilinear boundaries
(the difference will be in the choice of the parametrization/local coordinates).

(1) Example of the construction of the extension operator in the case of circular do-
mains, and polar coordinates (r,θ) as the parametrization of Γ: The parabolic equation
in (3.1) can be rewritten in standard polar coordinates (r,θ) as:

∂u

∂t
−λ
(
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
=f. (7.4)

The coordinate r corresponds to the distance from the origin along the normal direction
n to the circular interface Γ. Hence, extension operators (3.25)–(3.26) are equivalent
to:

πγΓ[ui+1
Γ ]|(xj ,yk)≡ui+1

j,k (r0,θ) =u
∣∣∣
Γ

+d
∂u

∂r

∣∣∣
Γ

+
d2

2

∂2u

∂r2

∣∣∣
Γ
, (xj ,yk)∈γ (7.5)

and

πγΓ[ui+1
Γ ]|(xj ,yk)≡ui+1

j,k (r0,θ) =u
∣∣∣
Γ

+d
∂u

∂r

∣∣∣
Γ

+
d2

2!

∂2u

∂r2

∣∣∣
Γ

+
d3

3!

∂3u

∂r3

∣∣∣
Γ

+
d4

4!

∂4u

∂r4

∣∣∣
Γ
, (xj ,yk)∈γ, (7.6)

where, as before, d= r−r0 denotes the signed distance from a grid point (xj ,yk)∈γ
on the radius r, to the nearest point (x,y)∈Γ on the original circle corresponding
to the radius r0. The higher-order derivatives ∂eu

∂re , e= 2,3,... on Γ at time ti+1 in

(7.5)–(7.6) can be obtained through the Cauchy data (u(θ,ti+1)|Γ, ∂u∂r (θ,ti+1)|Γ), and
the consecutive differentiation of the governing differential Equation (7.4) with respect
to r as illustrated below:

∂2u

∂r2
=

1

λ

(∂u
∂t
−f
)
− 1

r2

∂2u

∂θ2
− 1

r

∂u

∂r
. (7.7)

The expression (7.7) for ∂2u
∂r2 is used in the 3–term extension operator (7.5) in the second-

order method, and is used in the 5–term extension operator (7.6) in the fourth-order
method.

Similarly, in the 5–term extension operator (7.6), terms ∂3u
∂r3 and ∂4u

∂r4 are replaced
by the following expressions:

∂3u

∂r3
=

1

λ

(
∂2u

∂r∂t
− ∂f
∂r

)
+

2

r2

∂u

∂r
− 1

r2

∂3u

∂r∂θ2
− 1

rλ

(
∂u

∂t
−f
)

+
3

r3

∂2u

∂θ2
(7.8)
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ρ

η = η0

θ = θ0

−ρ

Fig. 7.1. Sketch of the elliptical coordinate system: distance from the center of the ellipse
to either foci - ρ; isoline - η; elliptical angle - θ, [2].

∂4u

∂r4
=

1

λ

(
∂3u

∂r2∂t
− ∂

2f

∂r2

)
− 4

r3

∂u

∂r
+

2

r2

∂2u

∂r2
+

1

r2λ

(
∂u

∂t
−f
)

− 1

rλ

(
∂2u

∂r∂t
− ∂f
∂r

)
− 9

r4

∂2u

∂θ2
+

5

r3

∂3u

∂r∂θ2
− 1

r2

∂4u

∂r2∂θ2
(7.9)

where ∂4u
∂r2∂θ2 is given by

∂4u

∂r2∂θ2
=

1

λ

(
∂3u

∂θ2∂t
− ∂

2f

∂θ2

)
− 1

r

∂3u

∂r∂θ2
+

1

r2

∂4u

∂θ4
. (7.10)

(2) Example of the construction of the extension operator in the case of elliptical
domains, and elliptical coordinates (η,θ) as the parametrization of Γ: Analogously to the
above case of a circular domain, for the case of the domain where boundary Γ is defined
by an ellipse x2/a2 +y2/b2 = 1, one possible convenient choice is to employ elliptical
coordinates as the parametrization, and represent the extension operators (3.25)–(3.26)
using such parametrization (see also [2, 31]).

Recall, that an elliptical coordinate system with coordinates (η,θ) is given by the
standard transformation:

x=ρcoshηcosθ (7.11)

y=ρsinhη sinθ (7.12)

where η≥0 and 0≤θ<2π, see Figure 7.1. Also, recall that the distance from the center
of the ellipse to either foci is defined as ρ=

√
a2−b2.

In elliptical coordinates, the constant η=η0≡ 1
2 ln a+b

a−b , the coordinate line (isoline), is
given by the ellipse:

x2

ρ2 cosh2η0

+
y2

ρ2 sinh2η0

= 1.

Similarly, for constant θ=θ0, the coordinate line is defined by the hyperbola:

x2

ρ2 cos2θ0
− y2

ρ2 sin2θ0

= cosh2η−sinh2η= 1.
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Now, let us recall that for the choice of elliptical coordinates the basis vectors are
defined as:

η̂=(ρsinhηcosθ,ρcoshη sinθ) (7.13)

θ̂=(−ρcoshη sinθ,ρsinhηcosθ). (7.14)

The corresponding Lame coefficients in both directions are equivalent to H=

ρ
√

sinh2η+sin2θ. Consequently, the elliptic operator in (3.1) can be rewritten in the
standard elliptical coordinates (η,θ) as:

∆η,θ =
1

H2

(
∂2

∂η2
+
∂2

∂θ2

)
. (7.15)

Hence, the parabolic Equation (3.1) in elliptical coordinates become:

∂u

∂t
− λ

H2

(
∂2u

∂η2
+
∂2u

∂θ2

)
=f. (7.16)

Similarly to the above example of a circular domain, the smooth extension operators
(3.25)–(3.26) are equivalent to:

πγΓ[ui+1
Γ ]|(xj ,yk)≡ui+1

j,k (η0,θ) =u
∣∣∣
Γ

+d
∂u

∂η

∣∣∣
Γ

+
d2

2

∂2u

∂η2

∣∣∣
Γ
, (xj ,yk)∈γ (7.17)

and

πγΓ[ui+1
Γ ]|(xj ,yk)≡ui+1

j,k (η0,θ) =u
∣∣∣
Γ

+d
∂u

∂η

∣∣∣
Γ

+
d2

2!

∂2u

∂η2

∣∣∣
Γ

+
d3

3!

∂3u

∂η3

∣∣∣
Γ

+
d4

4!

∂4u

∂η4

∣∣∣
Γ
, (xj ,yk)∈γ (7.18)

where, again as before, d=η−η0 denotes the signed distance from a grid point
(xj ,yk)∈γ on the coordinate line η, to the nearest point (x,y)∈Γ on the original ellipse
corresponding to the contour line η0.

At time ti+1, the higher-order derivatives ∂eu
∂ηe , e= 2,3,... on Γ in (7.17)–(7.18)

can be obtained through the Cauchy data (u(θ,ti+1)|Γ, ∂u∂η (θ,ti+1)|Γ), and the consec-

utive differentiation of the governing differential Equation (7.16) with respect to η as
illustrated below (note that in polar coordinates we had that ∂u

∂n = ∂u
∂r , but in elliptical

coordinates we have ∂u
∂n = 1

H
∂u
∂η ):

∂2u

∂η2
=
H2

λ

(
∂u

∂t
−f
)
− ∂

2u

∂θ2
. (7.19)

The higher order terms, ∂
3u
∂η3 and ∂4u

∂η4 are obtained by consecutive differentiation of

(7.19).

∂3u

∂η3
=2

H

λ

∂H

∂η
(
∂u

∂t
−f)+

H2

λ

(
∂2u

∂η∂t
− ∂f
∂η

)
− ∂3u

∂η∂θ2
(7.20)

∂4u

∂η4
=

2

λ

((
∂H

∂η

)2

+H
∂2H

∂η2

)(
∂u

∂t
−f
)

+4
H

λ

∂H

∂η

(
∂2u

∂η∂t
− ∂f
∂η

)
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+
H2

λ

(
∂3u

∂η2∂t
− ∂

2f

∂η2

)
− ∂4u

∂η2∂θ2
(7.21)

where ∂4u
∂η2∂θ2 is given by:

∂4u

∂η2∂θ2
=

2

λ

((∂H
∂θ

)2

+H
∂2H

∂θ2

)(
∂u

∂t
−f
)

+
4

λ
H
∂H

∂θ

(
∂2u

∂θ∂t
− ∂f
∂θ

)
+
H2

λ

(
∂3u

∂θ2∂t
− ∂

2f

∂θ2

)
− ∂

4u

∂θ4
. (7.22)

Note, that in formula (7.21) terms that include second-order partial derivation with
respect to η are replaced by the expressions given in (7.19) and in (7.22).

To approximate the time derivatives and mixed time-space derivatives appearing
in (7.7)–(7.9) and (7.19)–(7.21) in terms of the Cauchy data, we use the following

backward-in-time finite difference approximations (note that terms ∂3u
∂r2∂t in (7.9) and

∂3u
∂η2∂t in (7.21) are determined in our algorithm by differentiating in time (7.7) and (7.19)

respectively, but finite-differences can be employed too). The formulas (7.23)–(7.24) are
employed if we consider second-order discretization in time for (3.1)–(3.3):

∂u

∂t
(xj ,yk,t

i+1)≈
3ui+1

j,k −4uij,k+ui−1
j,k

2∆t
(7.23)

∂2u

∂t2
(xj ,yk,t

i+1)≈
2ui+1

j,k −5uij,k+4ui−1
j,k −ui−2

j,k

(∆t)2
. (7.24)

In the case of the fourth-order discretization in time for (3.1)–(3.3), we use the
corresponding higher-order backward difference formulas:

∂u

∂t
(xj ,yk,t

i+1)≈
25ui+1

j,k −48uij,k+36ui−1
j,k −16ui−2

j,k +3ui−3
j,k

12∆t
(7.25)

∂2u

∂t2
(xj ,yk,t

i+1)≈ 1

∆t2

(
15

4
ui+1
j,k −

77

6
uij,k+

107

6
ui−1
j,k

−13ui−2
j,k +

61

12
ui−3
j,k −

5

6
ui−3
j,k

)
. (7.26)
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[19] D.S. Kamenetskĭı and V.S. Ryaben′kĭı, Solution of boundary value problems for the Laplace
equation in a domain with a cut by the method of difference potentials, Akad. Nauk SSSR
Inst. Prikl. Mat. preprint, (33):24, 1990. 1

[20] Juri D. Kandilarov and Lubin G. Vulkov, The immersed interface method for two-dimensional
heat-diffusion equations with singular own sources, Appl. Numer. Math., 57(5-7):486–497,
2007. 1
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