Liars

	M	T	W	H	F	S	SUN
A	L	L	L	T	T	T	T
B	T	T	T	L	L	L	T
A says: lied yest.	$*$			$*$			
B says lied yest.				$*$			$*$
A says truth yest.		$*$	$*$		$*$	$*$	$*$
B says truth yest.	$*$	$*$	$*$		$*$	$*$	

So, both will say they lied yesterday on Thursday only.
Both will say they told the truth yesterday on Tuesday, Wednesday, Friday, Saturday.

$\underline{\mathrm{ABC}} ; \quad \mathrm{ABC}-\mathrm{CBA}=\mathrm{CAB}$

A is not 0 because it is larger than B and C .
Since $\mathrm{B}-\mathrm{B}=\mathrm{A}$, it must be 0 or 9 , so A is 9 .
$C-9=B$, so $C+B=9$ and $C<B .4+5=9,3+6=9,2+7=9,1+8=9$
Try $C=4$ and it works.
$\mathrm{A}=9$
$B=5$
$\mathrm{C}=4$
Strategies, guess \& check, logic, write equations, change it to an addition problem.

Sam the snail

Sam starts at A which is one. To get to B there is still only one way. To get to C Sam can go from A to B then C or just from A to C . (2 Ways) To get to D Sam can go from A to B to D , A to B to C to D , or A to C to D . (3 Ways) To get to E Sam can go A to B to D to E, A to B to C to E, A to B to D to E, A to C to D to E, A to C to E . (5 ways). At this point you can see the Fibonacci sequence arising. You can thendetermine the $26^{\text {th }}$ entry in the sequence. You should get there are 121,393 ways Sam can traverse the path from A to Z .

