Homework 4

Due: Friday, 3/12/2004

- 1. Determine the Euclidean center and Euclidean radius of the image of the Euclidean circle A given by the equation $\alpha z\bar{z} + \beta z + \bar{\beta}\bar{z} + \gamma = 0$ under f(z) = az + b, $f(\infty) = \infty$, where $a, b \in \mathbb{C}, a \neq 0$.
- 2. Let A be Euclidean circle in $\mathbb C$ given by equation $|z-z_0|=r^2$. Determine conditions on z_0 and r st J(A) is a Euclidean line in $\mathbb C$.
- 3) Consider the unoredered triple $T=\{0,1,\infty\}$ of points in $\mathbb C$. Determine all Möbius transformations m satisfying m(T)=T.
- 4) Give an explicit Möbius transformation taking $D = \{z \in \mathbb{C} | |z| < 1\}$ to \mathbb{H} .
- 5) Normalize each of the following Möbius transformations and determine their types (elliptic, parabolic, loxodromic):

$$m(z) = \frac{-z - 3}{z + 1}$$

$$m(z) = \frac{iz+1}{z+3i}$$

$$m(z) = iz + 1$$