Decide whether the following statements are true or false.
\qquad 1. The points $(-1,1),(2,-1)$, and $(3,0)$ all lie on the same line.
2. If x is an integer, then $x^{2} \geq x$.
3. If x is an integer, then $x^{3} \geq x$.
\qquad 4. For all real numbers $x, x^{3}=x$.
\qquad 5. There exists a real number x such that $x^{3}=x$.
6. $\sqrt{2}$ is an irrational number.
7. If $x+y$ is an odd number and $y+z$ is an odd number, then $x+z$ is an odd number.
_ 8. If x is an even integer, then x^{2} is an even integer.

9. If x is an integer, then x is even or x is odd.
10. There are infinitely many primes.
\qquad 11. For any positive real number x there is a positive real number y such that $y^{2}=x$.
12. Every positive integer is the sum of distinct powers of 2 .
13. In a right angled triangle whose sides are a and b and whose hypothenuse is c, we have $c^{2}=a^{2}+b^{2}$.
Justify each of your answers. Once you are done, decide into which category your justification falls:
(i) I am confident that the justification I gave is conclusive.
(ii) I am not confident that the justification I gave is conclusive.
(iii) I am confident that the justification I gave is not conclusive.
(iv) I could not decide whether the statement was true or false.

