Thought experiment

Decide whether the following statements are true or false.

- **1.** The points (-1, 1), (2, -1), and (3, 0) all lie on the same line.
- **_____ 2.** If x is an integer, then $x^2 \ge x$.
- **_____ 3.** If x is an integer, then $x^3 \ge x$.
- **_____ 4.** For all real numbers $x, x^3 = x$.
- **_____5.** There exists a real number x such that $x^3 = x$.
- **_____ 6.** $\sqrt{2}$ is an irrational number.

_____ 7. If x + y is an odd number and y + z is an odd number, then x + z is an odd number.

- **_____8.** If x is an even integer, then x^2 is an even integer.
- **9.** If x is an integer, then x is even or x is odd.
- **_____ 10.** There are infinitely many primes.

_____ 11. For any positive real number x there is a positive real number y such that $y^2 = x$.

12. Every positive integer is the sum of distinct powers of 2.

13. In a right angled triangle whose sides are *a* and *b* and whose hypothenuse is *c*, we have $c^2 = a^2 + b^2$.

Justify each of your answers. Once you are done, decide into which category your justification falls:

- (i) I am confident that the justification I gave is conclusive.
- (ii) I am not confident that the justification I gave is conclusive.
- (iii) I am confident that the justification I gave is not conclusive.
- (iv) I could not decide whether the statement was true or false.