Proposition 2.0. In incidence geometry, there is a line.
Proposition 2.1. If l and m are distinct lines that are not parallel, then l and m have a unique point in common.

Proposition 2.2. There exist three distinct lines that are not concurrent.
Proposition 2.3. For every line there is at least one point not lying on it.
Proposition 2.4. For every point there is at least one line not passing through it.
Proposition 2.5. For every point P there exist at least two distinct lines throught P.

Proposition 3.0. For any two distinct points A, B the following holds:
(i) $A B=B A$
(ii) $A B \varsubsetneqq \overrightarrow{A B}$

Proposition 3.1. For any two distinct points A, B the following holds:
(i) $\overrightarrow{A B} \cap \overrightarrow{B A}=A B$
(ii) $\overrightarrow{A B} \cup \overrightarrow{B A}=\overleftrightarrow{A B}$

Lemma 3.1.5 Points A and B are on the same side of l iff $\operatorname{side}(A, l)=\operatorname{side}(B, l)$
Proposition 3.2. Every line has exactly two sides and they are disjoint.
Lemma 3.2.2. If $A * B * C$ and l is any line passing through C that is distinct from $\overleftrightarrow{A C}$, then A and B are on the same side of l.
Lemma 3.2.3. If A and B are distinct points on the same side of a line l and $\overleftrightarrow{A B}$ intersects l at a point C, then $A * B * C$ or $B * A * C$.
Lemma 3.2.4. If $A * B * C$ and l is a line passing through B that is distinct from $\overleftrightarrow{A C}$, then A and C are on opposite sides of l.

Lemma 3.2.5. If A and C are on opposite sides of a line l, then there exists a unique point B such that l passes through B and $A * B * C$.

Proposition 3.3. If $A * B * C$ and $A * C * D$ then $B * C * D$ and $A * B * D$.
Proposition 3.4. LSP: If $C * A * B$ and l is the line through A, B and C, then any point P lying on l lies either on $\overrightarrow{A B}$ or on $\overrightarrow{A C}$.

Pasch's Theorem If A, B, C are distinct, noncollinear points and l is any line intersecting $A B$ in a point between A and B, then l also intersects $A C$ or $B C$. If C does not lie on l, then l does not intersect both $A C$ and $B C$.

Proposition 3.5. If $A * B * C$, then $A C=A B \cup B C$ and B is the only point in common to segments $A B$ and $B C$.
Proposition 3.6. If $A * B * C$, then B is the only point in common to rays $\overrightarrow{B A}$ and $\overrightarrow{B C}$, and $\overrightarrow{A B}=\overrightarrow{A C}$.
Proposition 3.7. Let $\Varangle B A C$ be an angle and D a point lying on the line $\overleftrightarrow{B C}$. Then D is in the interior of $\Varangle B A C$ iff $B * D * C$.

Proposition 3.7.5 Let l be a line, A a point on l, and B a point not on l. Then every point on $\overrightarrow{A B}$, except A, lies on the same side of l as B.
Proposition 3.8 If D is in the interior of an $\Varangle C A B$ then:

1. so is every point on $\overrightarrow{A D}$ except A,
2. no point on the opposite ray to $\overrightarrow{A D}$ is in the interior of $\Varangle B A C$
3. if $C * A * E$, then B is in the interior of $\Varangle D A E$

Crossbar Theorem If $\overrightarrow{A D}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$, then $\overrightarrow{A D}$ intersects segment $B C$.
Proposition 3.10 If in a $\triangle A B C$ we have $A B \cong A C$ then $\Varangle B \cong \Varangle C$.
Proposition 3.11 - Segment subtraction If $A * B * C$ and $D * E * F$ and $A C \cong D F$ and $A B \cong D E$, then $B C \cong E F$.

Proposition 3.12 If $A C \cong D F$, then for any point B between A and C, there is a unique point E between D and F such that $A B \cong D E$.

Proposition 3.13 - Segment ordering

- Exactly one of the following holds: $A B<C D, A B \cong C D$, or $A B>C D$.
- If $A B<C D$ and $C D \cong E F$, then $A B<E F$.
- If $A B<C D$ and $A B \cong E F$, then $E F<C D$.
- If $A B<C D$ and $C D<E F$, then $A B<E F$.

Proposition 3.14 Supplements of congruent angles are congruent.

Proposition 3.15

- Vertical angles are congruent.
- An angle congruent to a right angle is a right angle.

Proposition 3.16 For every line l and every point P not on l there is a line through P perpendicular to l.
Proposition 3.17 - ASA If $\triangle A B C$ and $\triangle D E F$ are two triangles with $\Varangle A \cong \Varangle D, \Varangle C \cong \Varangle F$, and $A C \cong D F$, then $\triangle A B C \cong \triangle D E F$.
Proposition 3.18 If in a $\triangle A B C$ we have $\Varangle B \cong \Varangle C$, then $A B \cong A C$.
Proposition 3.19 - Angle addition If $\overrightarrow{B G}$ is between $\overrightarrow{B A}$ and $\overrightarrow{B C}, \overrightarrow{E H}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}, \Varangle C B G \cong$ $\Varangle F E H$, and $\Varangle G B A \cong \Varangle H E D$, then $\Varangle A B C \cong \Varangle D E F$.

Proposition 3.20 - Angle subtraction If $\overrightarrow{B G}$ is between $\overrightarrow{B A}$ and $\overrightarrow{B C}, \overrightarrow{E H}$ between $\overrightarrow{E D}$ and $\overrightarrow{E F}$, $\Varangle C B G \cong \Varangle F E H$, and $\Varangle A B C \cong \Varangle D E F$, then $\Varangle G B A \cong \Varangle H E D$.

Proposition 3.21 - Angle ordering

- Exactly one of the following holds: $\Varangle P<\Varangle Q, \Varangle P \cong \Varangle Q$, or $\Varangle P>\Varangle Q$.
- If $\Varangle P<\Varangle Q$ and $\Varangle Q \cong \Varangle R$, then $\Varangle P<\Varangle R$.
- If $\Varangle P<\Varangle Q$ and $\Varangle P \cong \Varangle R$, then $\Varangle R<\Varangle Q$.
- If $\Varangle P<\Varangle Q$ and $\Varangle Q<\Varangle R$, then $\Varangle P<\Varangle R$.

Proposition 3.21 - SSS If $\triangle A B C$ and $\triangle D E F$ are two triangles with $A B \cong D E, C A \cong F D$, and $B C \cong E F$, then $\triangle A B C \cong \triangle D E F$.

Proposition 3.22 All right angles are congruent.

Theorem 4.1 - AIA theorem - Alternate interior angle theorem If two lines cut by a transversal have a pair of congruent interior angles then the two lines are parallel.

Corollary 4.1.1 Two lines perpendicular to the same line are parallel.
Corollary 4.1.2 If l is any line and P is any point not on l, there exists at least one line m through P parallel to l.

Theorem 4.2-Exterior angle theorem An exterior angle of a triangle is greater than either remote interior angle.

Proposition 4.2.1 - AAS If $A C \cong D F, \Varangle A \cong \Varangle D$ and $\Varangle B \cong \Varangle C$, then $\triangle A B C \cong \triangle D E F$.
Proposition 4.2.2 Two right triangles are congruent if the hypothenuse and a leg of one are congruent respectively to the hypothenuse and a leg of the other.
Proposition 4.2.3 Every segment has a unique midpoint.
Theorem 4.3 There is a unique way of assigning a degree measurement to each angle so that 1)-7) hold. Further given a segment $O I$ called unit segment there is a unique way of assigning a length $l(A B)$ to each segment $A B$ so that 8$)-12$):

1. $m(\Varangle A)$ is a real number such that $0<m(\Varangle A)<180^{\circ}$
2. $m(\Varangle A)=90^{\circ}$ iff $\Varangle A$ is a right angle.
3. $m(\Varangle A)=m(\Varangle B)$ iff $\Varangle A \cong \Varangle B$.
4. If C is in the interior of $\Varangle D A B$ then $m(\Varangle D A B)=m(\Varangle D A C)+m(\Varangle C A B)$
5. For every real number x between 0 and 180 there is an angle $\Varangle A$ such that $m(\Varangle A)=x^{\circ}$
6. If $\Varangle B$ is supplementary to $\Varangle A$, then $m(\Varangle A)+m(\Varangle B)=180^{\circ}$
7. $m(\Varangle A)>m(\Varangle B)$ iff $\Varangle A>\Varangle B$
8. $l(A B)$ is a positive real number and $l(O I)=1$
9. $l(A B)=l(C D)$ iff $A B \cong C D$
10. $A * B * C$ iff $l(A C)=l(A B)+l(B C)$
11. $l(A B)<l(C D)$ iff $A B<C D$
12. For every positive real number x, there exists a segment $A B$ such that $l(A B)=x$.

Theorem 4.4.0 Every angle has a unique bisector.
Theorem 4.4 Angle bisectors of a triangle meet at a point.
Theorem 4.5 A point P lies on the angle bisector of $\Varangle B A C$ iff it is equidistant from the sides of $\Varangle B A C$.
In next five propositions $\triangle A B C$ is a triangle and D a point on line $\overleftrightarrow{A B}$
Proposition 4.5.1 If $A C \cong B C$ and $C D$ is a median then $\overrightarrow{C D}$ is the angle bisector of $\Varangle A C B$.
Proposition 4.5.2 If $A C \cong B C$ and $C D$ is a median then $C D$ is the altitude.
Proposition 4.5.3 If $A C \cong B C$ and $\overrightarrow{C D}$ is the angle bisector of $\Varangle A C B$ then $C D$ is the altitude.
Proposition 4.5.4 If $C D$ is a median and $\overrightarrow{C D}$ is the angle bisector of $\Varangle A C B$ then the triangle $\triangle A B C$ is isosceles.

Proposition 4.5.5 If $C D$ is a median and the altitude then the triangle $\triangle A B C$ is isosceles.
Theorem 4.5 Diagonals of a convex quadrilateral meet at a point.
Theorem 4.6 The angle bisectors of a square meet at a point.
Theorem 5.2: If there is a triangle whose angle sum is not 180° then no triangle has angle sum 180°.
Theorem 5.3: No triangle in neutral geometry can have angle sum greater than 180°.
Theorem 5.4: If there is a triangle with angle sum 180°, then all triangles have angle sum 180°.
Theorem 5.5: A rectangle exists iff EPP holds.
Theorem 5.6: If a rectangle does not exist, there is a triangle with angle sum less than 180°.
Theorem 5.7: If a rectangle exists, then there are arbitrarily large rectangles.
Theorem 5.8: If a rectangle exists, then for any right triangle $\triangle X Y Z$ (with right angle at X), there is a rectangle $\square D E F G$ such that $D E>X Y$ and $D G>X Z$.

Theorem 5.9: If a rectangle exists, then every right triangle has angle sum of 180°.
Theorem 5.10: If every right triangle has angle sum 180°, then every triangle has angle sum 180°.
Theorem 5.11: If there is a right triangle with angle sum 180°, then a rectangle exists.
Theorem 5.12: In hyperbolic geometry every triangle has angle sum less than 180°.
Theorem 5.13: In Euclidean geometry every triangle has angle sum of 180°.

