
Theorems

Proposition 2.0. In incidence geometry, there is a line.

Proposition 2.1. If l and m are distinct lines that are not parallel, then l and m have a unique point in
common.

Proposition 2.2. There exist three distinct lines that are not concurrent.

Proposition 2.3. For every line there is at least one point not lying on it.

Proposition 2.4. For every point there is at least one line not passing through it.

Proposition 2.5. For every point P there exist at least two distinct lines throught P .

Proposition 3.0. For any two distinct points A,B the following holds:

(i) AB = BA

(ii) AB $
−−→
AB

Proposition 3.1. For any two distinct points A,B the following holds:

(i)
−−→
AB ∩

−−→
BA = AB

(ii)
−−→
AB ∪

−−→
BA =

←→
AB

Lemma 3.1.5 Points A and B are on the same side of l iff side(A, l) = side(B, l)

Proposition 3.2. Every line has exactly two sides and they are disjoint.

Lemma 3.2.2. If A ∗B ∗C and l is any line passing through C that is distinct from
←→
AC, then A and B are

on the same side of l.

Lemma 3.2.3. If A and B are distinct points on the same side of a line l and
←→
AB intersects l at a point C,

then A ∗B ∗ C or B ∗A ∗ C.

Lemma 3.2.4. If A ∗ B ∗ C and l is a line passing through B that is distinct from
←→
AC, then A and C are

on opposite sides of l.

Lemma 3.2.5. If A and C are on opposite sides of a line l, then there exists a unique point B such that l
passes through B and A ∗B ∗ C.

Proposition 3.3. If A ∗B ∗ C and A ∗ C ∗D then B ∗ C ∗D and A ∗B ∗D.

Proposition 3.4. LSP: If C ∗A ∗B and l is the line through A,B and C, then any point P lying on l lies
either on

−−→
AB or on

−→
AC.

Pasch’s Theorem If A,B,C are distinct, noncollinear points and l is any line intersecting AB in a point
between A and B, then l also intersects AC or BC. If C does not lie on l, then l does not intersect both
AC and BC.

Proposition 3.5. If A ∗B ∗ C, then AC = AB ∪BC and B is the only point in common to segments AB
and BC.

Proposition 3.6. If A ∗B ∗ C, then B is the only point in common to rays
−−→
BA and

−−→
BC, and

−−→
AB =

−→
AC.

Proposition 3.7. Let �BAC be an angle and D a point lying on the line
←→
BC. Then D is in the interior

of �BAC iff B ∗D ∗ C.

Proposition 3.7.5 Let l be a line, A a point on l, and B a point not on l. Then every point on
−−→
AB, except

A, lies on the same side of l as B.

Proposition 3.8 If D is in the interior of an �CAB then:

1. so is every point on
−−→
AD except A,

2. no point on the opposite ray to
−−→
AD is in the interior of �BAC

3. if C ∗A ∗ E, then B is in the interior of �DAE



Crossbar Theorem If
−−→
AD is between rays

−−→
AB and

−→
AC, then

−−→
AD intersects segment BC.

Proposition 3.10 If in a 4ABC we have AB ∼= AC then �B ∼= �C.

Proposition 3.11 – Segment subtraction If A ∗ B ∗ C and D ∗ E ∗ F and AC ∼= DF and AB ∼= DE,
then BC ∼= EF .

Proposition 3.12 If AC ∼= DF , then for any point B between A and C, there is a unique point E between
D and F such that AB ∼= DE.

Proposition 3.13 – Segment ordering

• Exactly one of the following holds: AB < CD, AB ∼= CD, or AB > CD.

• If AB < CD and CD ∼= EF , then AB < EF .

• If AB < CD and AB ∼= EF , then EF < CD.

• If AB < CD and CD < EF , then AB < EF .

Proposition 3.14 Supplements of congruent angles are congruent.

Proposition 3.15

• Vertical angles are congruent.

• An angle congruent to a right angle is a right angle.

Proposition 3.16 For every line l and every point P not on l there is a line through P perpendicular to l.

Proposition 3.17 – ASA If 4ABC and 4DEF are two triangles with �A ∼= �D, �C ∼= �F , and
AC ∼= DF , then 4ABC ∼= 4DEF .

Proposition 3.18 If in a 4ABC we have �B ∼= �C, then AB ∼= AC.

Proposition 3.19 – Angle addition If
−−→
BG is between

−−→
BA and

−−→
BC,

−−→
EH between

−−→
ED and

−−→
EF , �CBG ∼=

�FEH, and �GBA ∼= �HED, then �ABC ∼= �DEF .

Proposition 3.20 – Angle subtraction If
−−→
BG is between

−−→
BA and

−−→
BC,

−−→
EH between

−−→
ED and

−−→
EF ,

�CBG ∼= �FEH, and �ABC ∼= �DEF , then �GBA ∼= �HED.

Proposition 3.21 – Angle ordering

• Exactly one of the following holds: �P < �Q, �P ∼= �Q, or �P > �Q.

• If �P < �Q and �Q ∼= �R, then �P < �R.

• If �P < �Q and �P ∼= �R, then �R < �Q.

• If �P < �Q and �Q < �R, then �P < �R.

Proposition 3.21 – SSS If 4ABC and 4DEF are two triangles with AB ∼= DE, CA ∼= FD, and
BC ∼= EF , then 4ABC ∼= 4DEF .

Proposition 3.22 All right angles are congruent.

Theorem 4.1 – AIA theorem – Alternate interior angle theorem If two lines cut by a transversal
have a pair of congruent interior angles then the two lines are parallel.

Corollary 4.1.1 Two lines perpendicular to the same line are parallel.

Corollary 4.1.2 If l is any line and P is any point not on l, there exists at least one line m through P
parallel to l.

Theorem 4.2 – Exterior angle theorem An exterior angle of a triangle is greater than either remote
interior angle.



Proposition 4.2.1 – AAS If AC ∼= DF , �A ∼= �D and �B ∼= �C, then 4ABC ∼= 4DEF .

Proposition 4.2.2 Two right triangles are congruent if the hypothenuse and a leg of one are congruent
respectively to the hypothenuse and a leg of the other.

Proposition 4.2.3 Every segment has a unique midpoint.

Theorem 4.3 There is a unique way of assigning a degree measurement to each angle so that 1)-7) hold.
Further given a segment OI called unit segment there is a unique way of assigning a length l(AB) to each
segment AB so that 8)-12):

1. m(�A) is a real number such that 0 < m(�A) < 180◦

2. m(�A) = 90◦ iff �A is a right angle.

3. m(�A) = m(�B) iff �A ∼= �B.

4. If C is in the interior of �DAB then m(�DAB) = m(�DAC) + m(�CAB)

5. For every real number x between 0 and 180 there is an angle �A such that m(�A) = x◦

6. If �B is supplementary to �A, then m(�A) + m(�B) = 180◦

7. m(�A) > m(�B) iff �A > �B

8. l(AB) is a positive real number and l(OI) = 1

9. l(AB) = l(CD) iff AB ∼= CD

10. A ∗B ∗ C iff l(AC) = l(AB) + l(BC)

11. l(AB) < l(CD) iff AB < CD

12. For every positive real number x, there exists a segment AB such that l(AB) = x.

Theorem 4.4.0 Every angle has a unique bisector.

Theorem 4.4 Angle bisectors of a triangle meet at a point.

Theorem 4.5 A point P lies on the angle bisector of �BAC iff it is equidistant from the sides of �BAC.

In next five propositions 4ABC is a triangle and D a point on line
←→
AB.

Proposition 4.5.1 If AC ∼= BC and CD is a median then
−−→
CD is the angle bisector of �ACB.

Proposition 4.5.2 If AC ∼= BC and CD is a median then CD is the altitude.

Proposition 4.5.3 If AC ∼= BC and
−−→
CD is the angle bisector of �ACB then CD is the altitude.

Proposition 4.5.4 If CD is a median and
−−→
CD is the angle bisector of �ACB then the triangle 4ABC is

isosceles.

Proposition 4.5.5 If CD is a median and the altitude then the triangle 4ABC is isosceles.

Theorem 4.5 Diagonals of a convex quadrilateral meet at a point.

Theorem 4.6 The angle bisectors of a square meet at a point.

Theorem 5.2: If there is a triangle whose angle sum is not 180◦ then no triangle has angle sum 180◦.

Theorem 5.3: No triangle in neutral geometry can have angle sum greater than 180◦.

Theorem 5.4: If there is a triangle with angle sum 180◦, then all triangles have angle sum 180◦.

Theorem 5.5: A rectangle exists iff EPP holds.

Theorem 5.6: If a rectangle does not exist, there is a triangle with angle sum less than 180◦.

Theorem 5.7: If a rectangle exists, then there are arbitrarily large rectangles.

Theorem 5.8: If a rectangle exists, then for any right triangle 4XY Z (with right angle at X), there is a
rectangle 2DEFG such that DE > XY and DG > XZ.

Theorem 5.9: If a rectangle exists, then every right triangle has angle sum of 180◦.

Theorem 5.10: If every right triangle has angle sum 180◦, then every triangle has angle sum 180◦.

Theorem 5.11: If there is a right triangle with angle sum 180◦, then a rectangle exists.

Theorem 5.12: In hyperbolic geometry every triangle has angle sum less than 180◦.

Theorem 5.13: In Euclidean geometry every triangle has angle sum of 180◦.


