Math 431 Homework 7

Due 11/6

1. Prove the Crossbar theorem: If ray $\overrightarrow{A D}$ is between rays $\overrightarrow{A B}$ and $\overrightarrow{A C}$ then $\overrightarrow{A D}$ intersects segment $B C$.

Proof. Suppose the contrary, that $B C$ does not meet ray $\overrightarrow{A D}$. Either $B C$ meets line $\overleftrightarrow{A D}$ or it does not. If it meets $\overleftrightarrow{A D}$, by Proposition 3.4 (line separation property) it must meet the ray opposite to $\overrightarrow{A D}$ at a point $E \neq A$. According to Proposition 3.8(b), E is not in the interior of $\Varangle C A B$. Point B does not lie on $\overleftrightarrow{A D}$; this is because $D \in \operatorname{int} \Varangle C A B$, so D and C lie on the same side of $\overleftrightarrow{A B}$, so $D \notin\{\overleftrightarrow{A B}\}$, so $B \notin\{\overleftrightarrow{A D}\}$. Thus, since $E \in\{\overleftrightarrow{A D}\}$, we have $E \neq B$. By the same reasoning with C and B interchanged, we have $E \neq C$. Since $E \in B C$ and E is not an endpoint, we have $B * E * C$. Thus by Proposition 3.7, E is in the interior of $\Varangle C A B$, a contradiction. Thus $\overleftrightarrow{A D}$ does not meet $B C$ at all; that is, B and C are on the same side of $\overleftrightarrow{A D}$. By B-2, we have a point E such that $C * A * E$. By Lemma 3.2.2, C and E are on opposite sides of $\overleftrightarrow{A D}$. Thus, by B-4(iii), E and B are on opposite sides of $\overleftrightarrow{A D}$. But by Proposition 3.8(c), B is on the interior of $\Varangle D A E$, so E and B are on the same side of $\overleftrightarrow{A D}$. This is a contradiction. Thus, $\overrightarrow{A D}$ meets $B C$.
2. Prove the best theorem you can come up with that roughly corresponds to Pasch's theorem where line that intersects one of the sides is replaced by a ray. Make sure to define all the terms you are using.
3. Prove Proposition 3.11: If $A * B * C, D * E * F, A B \cong D E$, and $A C \cong D F$, then $B C \cong E F$.

Assume to the contrary that $B C$ is not congruent to $E F$.
By C-1 there exists a point G on $\overrightarrow{E F}$ such that $B C \cong E G$. From here and our assumption that $B C \not \equiv E F$, we have $G \neq F$. By C-3 we get $A C \cong D G$, and by hypothesis $A C \cong D F$, hence, by $\mathrm{C}-2, D G \cong D F$. By the uniqueness part of $\mathrm{C}-1, G=F$. But this is a contradiction to the above statement that $G \neq F$.

