Math 431 Homework 7 Due 11/6

1. Prove the Crossbar theorem: If ray \overrightarrow{AD} is between rays \overrightarrow{AB} and \overrightarrow{AC} then \overrightarrow{AD} intersects segment BC.

Proof. Suppose the contrary, that BC does not meet ray \overrightarrow{AD} . Either BCmeets line AD or it does not. If it meets AD, by Proposition 3.4 (line separation property) it must meet the ray opposite to AD at a point $E \neq A$. According to Proposition 3.8(b), E is not in the interior of $\measuredangle CAB$. Point B does not lie on \overrightarrow{AD} ; this is because $D \in int \not\in CAB$, so D and C lie on the same side of \overrightarrow{AB} , so $D \notin \{\overrightarrow{AB}\}$, so $B \notin \{\overrightarrow{AD}\}$. Thus, since $E \in \{\overrightarrow{AD}\}$, we have $E \neq B$. By the same reasoning with C and B interchanged, we have $E \neq C$. Since $E \in BC$ and E is not an endpoint, we have B * E * C. Thus by Proposition 3.7, E is in the interior of $\measuredangle CAB$, a contradiction. Thus ADdoes not meet BC at all; that is, B and C are on the same side of $\dot{A}D$. By B-2, we have a point E such that C * A * E. By Lemma 3.2.2, C and E are on opposite sides of AD. Thus, by B-4(iii), E and B are on opposite sides of AD. But by Proposition 3.8(c), B is on the interior of $\triangleleft DAE$, so E and B are on the same side of $\dot{A}D$. This is a contradiction. Thus, AD meets BC. \square

2. Prove the best theorem you can come up with that roughly corresponds to Pasch's theorem where line that intersects one of the sides is replaced by a ray. Make sure to define all the terms you are using.

3. Prove Proposition 3.11: If A * B * C, D * E * F, $AB \cong DE$, and $AC \cong DF$, then $BC \cong EF$.

Assume to the contrary that BC is not congruent to EF.

By C-1 there exists a point G on \overrightarrow{EF} such that $BC \cong EG$. From here and our assumption that $BC \cong EF$, we have $G \neq F$. By C-3 we get $AC \cong DG$, and by hypothesis $AC \cong DF$, hence, by C-2, $DG \cong DF$. By the uniqueness part of C-1, G = F. But this is a contradiction to the above statement that $G \neq F$.