Math 431 Homework 6 Due 10/30

1. Let *P* and *Q* be two points and *l* and *m* two lines. What can you say about these points and lines if you know that $side(P, l) \cap side(Q, m) = \emptyset$? In the event that there is a point $L \in \{l\}$ such that P * L * Q and $M \in \{m\}$ such that P * M * Q show that L * M * Q and P * L * M.

Solution: We have side $(P, l) \cap$ side $(Q, m) = \emptyset$. We first note that $P \notin \{l\}$ and $Q \notin \{m\}$. There are three possibilities:

- 1. l and m are distinct lines that share a point,
- 2. l and m are parallel, and
- 3. l = m

Let us consider each case in turn.

- 1. l and m are distinct lines that share a point. Then either
 - (a) P lies on m
 - i. Q lies on l: Let R be a point such that P * R * Q, which exists by axiom B-2. By Lemma 3.2.2 P and R are on the same side of l and R and Q are on the same side of m. Hence, $P \in \text{side}(P, l) \cap \text{side}(Q, m)$, which is a contradiction.
 - ii. Q does not lie on l. First note that P and Q have to be on opposite sides of l, for if they were not then Q would belong to side $(P, l) \cap$ side(Q, m), which contradicts the assumption. Since P and Q are on opposite sides of l the segment PQintersects l in a point, call it L, so that P * L * Q. By axiom B-2 there is a point R such that L * R * P. Using Proposition 3.3, we can conclude that Q * R * P, that is Q and P are on the same side of m. Further, since L * R * P we see that P and R are on the same side of l, hence $R \in side(P, l) \cap side(Q, m)$, contradicting our assumption.
 - (b) P does not lie on m
 - i. Q lies on l: proof follows the proof in case of $P \in \{m\}, Q \notin \{l\}$.

ii. Q does not lie on l. Take any point M on m so that P and M are on the same side of l (such point exist, because if it did not then m and l would be parallel, which contradicts our hypothesis), and take any point L on l so that Q and L are on the same side of m. By axiom B-2 there is a point R such that L * R * M. By Lemma 3.2.2 and axiom B-4 R and P are on the same side of l. Similarly, Q and R are on the same side of m, hence $R \in \text{side}(P, l) \cap \text{side}(Q, m)$, once again contradicting our assumption.

Hence, this case can not happen, given our hypothesis.

- 2. l||m. As in the previous case we have few possible configurations depending on where the given points lie with respect to the given lines.
 - (a) P lies on m
 - i. Q lies on l. Let R be a point such that P * R * Q. Using Lemma 3.2.2 we conclude that R and P are on the same side of l and R and Q are on the same side of m, that is $R \in \text{side}(P, l) \cap \text{side}(Q, m)$.
 - ii. Q does not lie on l. As we noted above P and Q must lie on opposite sides of l, so by Lemma 3.2.5 there is a point $L \in \{l\}$ such that P * L * Q. Let R be such that P * R * L (B-1). Then Lemma 3.2.2 and B-4 give us that $R \in \text{side}(P, l)$. Similarly, $R \in \text{side}(Q, m)$. Contradiction.
 - (b) P does not lie on m
 - i. Q lies on l. As 2(ii).
 - ii. Q does not lie on l. Using the arguments above we can show that P and Q must lie on opposite sides of both l and m. Let $L \in \{l\}$ such that P * L * Q and $M \in \{m\}$ such that P * M * Q. By B-3 one of the following happens:
 - P * M * L then P and M are on the same side of l (Lemma 3.2.5). Let S be such that M * S * L, so that M and S are on the same side of l. By B-4, P and S are on the same side of l. Also, P * M * L and P * L * Q give us M * L * Q bu Proposition 3.3, so L and Q are on the same side of m (Lemma 3.2.2). From M * S * L we conclude

that L and S are on the same side of m, so by B-4 we have that S and Q are on the same side of m. Hence, $S \in \text{side}(P, l) \cap \text{side}(Q, m)$.

- P * L * M together with P * M * Q gives, by Proposition 3.3 L * M * Q, hence our claim holds.
- M * P * L together with P * L * Q gives M * P * Q, so P and Q are on the same side of m, contradiciton.

Note: I could have done this whole argument without using Proposition 3.3, but that would have made it much longer than it already is, so I chose not to.

3. l = m. P and Q lie on opposite sides of l, for if they did not then side(P, l) = side(Q, m), so side(P, l) is their intersection, and that set is nonempty.

This exhaust all the possible cases.

- **2.** Prove Proposition 3.8: If D is in the interior of an $\measuredangle CAB$ then:
 - 1. so is every point on \overrightarrow{AD} except A,
 - 2. no point on the opposite ray to \overrightarrow{AD} is in the interior of $\triangleleft BAC$
 - 3. if C * A * E, then B is in the interior of $\triangleleft DAE$

Proof of (1). Suppose that $E \in \overrightarrow{AD}$ and $E \neq A$. Since D is in the interior of $\measuredangle CAB$, D and B are on the same side of \overrightarrow{AC} ; by Lemma 3.7.5, E and D are on the same side of \overrightarrow{AC} ; hence, by B-4 E and B are on the same side of \overrightarrow{AB} , we deduce from Lemma 3.7.5 and B-4 that E and C are on the same side of \overrightarrow{AB} . Thus E is in int $\measuredangle CAB$.

Proof of (2). Suppose that E is on the ray opposite to \overrightarrow{AD} . Then E = A or E * A * D by definition of the ray opposite to \overrightarrow{AD} (as discussed in class). If E = A, then E lies on \overrightarrow{AC} , so E and B are not on the same side of \overrightarrow{AC} , so E is not in the interior of $\measuredangle CAB$. Suppose that E * A * D. By Lemma 3.2.4, E and D are on opposite sides of \overrightarrow{AB} . Since $D \in \operatorname{int} \measuredangle CAB$, D and C are on the same side of \overrightarrow{AB} . Thus, by Corollary to B-4 E and C are on opposite sides of \overrightarrow{AB} . Thus, E is not in $\operatorname{int} \measuredangle CAB$.

Proof of (3). There are two things to show: first is B and D are on the same side of \overrightarrow{AE} , and second is B and E are on the same side of line \overrightarrow{AD} .

Since C * A * E, by *B-1* and *I-1* we have $\overleftrightarrow{AC} = \overleftrightarrow{AE}$. Since *D* is in the interior of $\triangleleft CAB$, *B* and *D* are on the same side of \overleftrightarrow{AC} , hence \overleftrightarrow{AE} .

To prove that B and E are on the same side of AD, suppose on the contrary that E and B not on the same side of \overline{AD} . Before we can say that B and E are on opposite sides of \overline{AD} , we must first check that neither B nor E is on \overline{AD} . Since $D \in \operatorname{int} \sphericalangle CAB$, D and C are on the same side of \overline{AB} , so D is not on \overline{AB} (definition of same sides), so A, B, D are not collinear, so B is not on \overline{AD} . Also, since $D \in \operatorname{int} \sphericalangle CAB$, D and B are on the same side of \overline{AB} , so $\overline{AC} = \overline{AE}$, so D is not on \overline{AE} , so A, D, E are not collinear, so E is not on \overline{AD} . Now that we know that B and E do not lie on \overline{AD} and are not on the same side of the same side of \overline{AD} .

By definition of opposite sides and segment, there is a point F lying on \overrightarrow{AD} such that E * F * B. By Proposition 3.7, F is in the interior of $\triangleleft BAE$. (Note that $\triangleleft BAE$ is an angle because B does not lie on \overrightarrow{AE} .) In particular F and B are on the same side of \overrightarrow{AE} . Since B and D are on the same side of $\overrightarrow{AC} = \overrightarrow{AE}$, by B-4 F and D are on the same side of \overrightarrow{AE} . Thus, either D = F, A * D * F or A * F * D by Lemma 3.2.3. In any case, D is on ray \overrightarrow{AF} . Thus, by Proposition 3.8(a) (applied to \overrightarrow{AF} and $\triangleleft BAE$) D is in the interior of $\triangleleft BAE$.

By definition of interior, D and E are on the same side of \overrightarrow{AB} . We also know that D and C are on the same side of \overrightarrow{AB} because D is in interior of $\measuredangle CAB$. Therefore, by B-4(i), C and E are on same side of \overrightarrow{AB} . But, since C * A * E, by Lemma 3.2.4 C and E are on opposite sides of \overleftarrow{AB} . This is a contradiction. Therefore, B and E are on the same side of \overleftarrow{AD} .

- **3.** If B and D are distinct points there exists a point C such that B * C * D.
- 1. There exists line BD through B and D by axiom I-1, since B and D are distinct points.
- 2. There exists a point F not lying on \overleftarrow{BD} by Proposition 2.3.

- 3. There exists a line \overrightarrow{BF} through B and F by axiom *I-1*, since F does not lie on \overrightarrow{BD} we must have $F \neq B$, and also $\overrightarrow{BD} \neq \overrightarrow{BF}$.
- 4. There exists a point G such that B * F * G by axiom B-2, since B and F are distinct points.
- 5. Points B, F, and G are collinear by axiom B-1 and step 4.
- 6. G and D are distinct points and D, B and G are not collinear G lies on BF, D lies on BD, and the intersection of those two lines is B. Since the lines are distinct (step 3), by Proposition 2.1 B is the only point they have in common, hence G and D are distinct points. If D, B and G were collinear, they would have to lie on a unique line BD (axiom I-1), so BD = BF which contradicts step 3.
- 7. There exists a point H such that G * D * H step 6 guarantees that we can apply axiom B-2 to points G and D.
- 8. There exists a line \overleftarrow{GH} by axiom *I-1*.
- 9. *H* and *F* are distinct points If they were the same then we would have B * F * G and G * D * F, so by axiom *B-1 B*, *G* and *D* are collinear points contradicting step 6.
- 10. There exists a line \overleftarrow{FH} previous step and axiom *I-1*.
- 11. D does not lie on $\overleftarrow{FH} F$ does not lie on \overleftarrow{GD} (step 9), so $\overleftarrow{GD} \neq \overleftarrow{FH}$. Since H lies on each of those lines, and since $H \neq D$ by step 7, by Proposition 2.1, D does not.
- 12. B does not lie on \overleftarrow{FH} If it did, then H would lie on the unique line \overrightarrow{BF} determined by B and F (axiom *I*-1). Lines \overrightarrow{BF} and \overrightarrow{GD} now have two points in common: G and H. By Proposition 2.1 they would have to be equal, which contradicts the previous step.
- 13. G does not lie on \overline{FH} if it did we would have: G, F, H collinear, G, D, H collinear, hence G, D, B collinear (using axiom I-1) which contradicts step 6.

14. Points D, B and G determine $\triangle DBG$ – step 6 and definition of a triangle,

and \overrightarrow{FH} intersects side BG in a point between B and G – steps 4, 12 and 13.

- 15. *H* is the only point lying on both \overleftarrow{FH} and \overleftarrow{GH} these two lines are distinct, eg. step 13, so by Proposition 2.1 they share exactly one point: *H*.
- 16. No point between G and D lies on \overleftarrow{FH} step 7 and axiom B-3.
- 17. Hence, \overleftarrow{FH} intersects side BD in a point C between D and B step 14, 16 and Pasch's theorem (note that it can't be point D since G * D * H).
- 18. Thus, there exists a point C between points B and D.