1. Let P and Q be two points and l and m two lines. What can you say about these points and lines if you know that $\operatorname{side}(P, l) \cap \operatorname{side}(Q, m)=\emptyset$? In the event that there is a point $L \in\{l\}$ such that $P * L * Q$ and $M \in\{m\}$ such that $P * M * Q$ show that $L * M * Q$ and $P * L * M$.

Solution: We have side $(P, l) \cap \operatorname{side}(Q, m)=\emptyset$. We first note that $P \notin\{l\}$ and $Q \notin\{m\}$. There are three possibilities:

1. l and m are distinct lines that share a point,
2. l and m are parallel, and
3. $l=m$

Let us consider each case in turn.

1. l and m are distinct lines that share a point. Then either
(a) P lies on m
i. Q lies on l : Let R be a point such that $P * R * Q$, which exists by axiom $B-2$. By Lemma 3.2.2 P and R are on the same side of l and R and Q are on the same side of m. Hence, $P \in \operatorname{side}(P, l) \cap \operatorname{side}(Q, m)$, which is a contradiction.
ii. Q does not lie on l. First note that P and Q have to be on opposite sides of l, for if they were not then Q would belong to $\operatorname{side}(P, l) \cap \operatorname{side}(Q, m)$, which contradicts the assumption. Since P and Q are on opposite sides of l the segment $P Q$ intersects l in a point, call it L, so that $P * L * Q$. By axiom B-2 there is a point R such that $L * R * P$. Using Proposition 3.3, we can conclude that $Q * R * P$, that is Q and P are on the same side of m. Further, since $L * R * P$ we see that P and R are on the same side of l, hence $R \in \operatorname{side}(P, l) \cap \operatorname{side}(Q, m)$, contradicting our assumption.
(b) P does not lie on m
i. Q lies on l : proof follows the proof in case of $P \in\{m\}, Q \notin$ $\{l\}$.
ii. Q does not lie on l. Take any point M on m so that P and M are on the same side of l (such point exist, because if it did not then m and l would be parallel, which contradicts our hypothesis), and take any point L on l so that Q and L are on the same side of m. By axiom B-2 there is a point R such that $L * R * M$. By Lemma 3.2.2 and axiom $B-4 R$ and P are on the same side of l. Similarly, Q and R are on the same side of m, hence $R \in \operatorname{side}(P, l) \cap \operatorname{side}(Q, m)$, once again contradicting our assumption.

Hence, this case can not happen, given our hypothesis.
2. $l \| m$. As in the previous case we have few possible configurations depending on where the given points lie with respect to the given lines.
(a) P lies on m
i. Q lies on l. Let R be a point such that $P * R * Q$. Using Lemma 3.2 .2 we conclude that R and P are on the same side of l and R and Q are on the same side of m, that is $R \in \operatorname{side}(P, l) \cap \operatorname{side}(Q, m)$.
ii. Q does not lie on l. As we noted above P and Q must lie on opposite sides of l, so by Lemma 3.2.5 there is a point $L \in\{l\}$ such that $P * L * Q$. Let R be such that $P * R * L(B-1)$. Then Lemma 3.2.2 and $B-4$ give us that $R \in \operatorname{side}(P, l)$. Similarly, $R \in \operatorname{side}(Q, m)$. Contradiction.
(b) P does not lie on m
i. Q lies on l. As 2(ii).
ii. Q does not lie on l. Using the arguments above we can show that P and Q must lie on opposite sides of both l and m. Let $L \in\{l\}$ such that $P * L * Q$ and $M \in\{m\}$ such that $P * M * Q$. By B-3 one of the following happens:

- $P * M * L$ - then P and M are on the same side of l (Lemma 3.2.5). Let S be such that $M * S * L$, so that M and S are on the same side of l. By $B-4, P$ and S are on the same side of l. Also, $P * M * L$ and $P * L * Q$ give us $M * L * Q$ bu Proposition 3.3, so L and Q are on the same side of m (Lemma 3.2.2). From $M * S * L$ we conclude
that L and S are on the same side of m, so by $B-4$ we have that S and Q are on the same side of m. Hence, $S \in \operatorname{side}(P, l) \cap \operatorname{side}(Q, m)$.
- $P * L * M$ together with $P * M * Q$ gives, by Proposition $3.3 L * M * Q$, hence our claim holds.
- $M * P * L$ together with $P * L * Q$ gives $M * P * Q$, so P and Q are on the same side of m, contradiciton.
Note: I could have done this whole argument without using Proposition 3.3, but that would have made it much longer than it already is, so I chose not to.

3. $l=m$. P and Q lie on opposite sides of l, for if they did not then $\operatorname{side}(P, l)=\operatorname{side}(Q, m)$, so $\operatorname{side}(P, l)$ is their intersection, and that set is nonempty.

This exhaust all the possible cases.
2. Prove Proposition 3.8: If D is in the interior of an $\Varangle C A B$ then:

1. so is every point on $\overrightarrow{A D}$ except A,
2. no point on the opposite ray to $\overrightarrow{A D}$ is in the interior of $\Varangle B A C$
3. if $C * A * E$, then B is in the interior of $\Varangle D A E$

Proof of (1). Suppose that $E \in \overrightarrow{A D}$ and $E \neq A$. Since D is in the interior of $\Varangle C A B, D$ and B are on the same side of $\overleftrightarrow{A C}$; by Lemma 3.7.5, E and D are on the same side of $\overleftrightarrow{A C}$; hence, by $B-4 E$ and B are on the same side of $\overleftrightarrow{A C}$. By the same reasoning, since D and C are on the same side of $\overleftrightarrow{A B}$, we deduce from Lemma 3.7.5 and $B-4$ that E and C are on the same side of $\overleftrightarrow{A B}$. Thus E is in int $\Varangle C A B$

Proof of (2). Suppose that E is on the ray opposite to $\overrightarrow{A D}$. Then $E=A$ or $E * A * D$ by definition of the ray opposite to $\overrightarrow{A D}$ (as discussed in class). If $E=A$, then E lies on $\overleftrightarrow{A C}$, so E and B are not on the same side of $\overleftrightarrow{A C}$, so E is not in the interior of $\Varangle C A B$. Suppose that $E * A * D$. By Lemma 3.2.4, E and D are on opposite sides of $\overleftrightarrow{A B}$. Since $D \in \operatorname{int} \Varangle C A B, D$ and C are on the same side of $\overleftrightarrow{A B}$. Thus, by Corollary to $B-4 E$ and C are on opposite sides of $\overleftrightarrow{A B}$. Thus, E is not in int $\Varangle C A B$.

Proof of (3). There are two things to show: first is B and D are on the same side of $\overleftrightarrow{A E}$, and second is B and E are on the same side of line $\overleftrightarrow{A D}$.

Since $C * A * E$, by $B-1$ and $I-1$ we have $\overleftrightarrow{A C}=\overleftrightarrow{A E}$. Since D is in the interior of $\Varangle C A B, B$ and D are on the same side of $\overleftrightarrow{A C}$, hence $\overleftrightarrow{A E}$.

To prove that B and E are on the same side of $\overleftrightarrow{A D}$, suppose on the contrary that E and B not on the same side of $\overleftrightarrow{A D}$. Before we can say that B and E are on opposite sides of $\overleftrightarrow{A D}$, we must first check that neither B nor E is on $\overleftrightarrow{A D}$. Since $D \in \operatorname{int} \Varangle C A B, D$ and C are on the same side of $\overleftrightarrow{A B}$, so D is not on $\overleftrightarrow{A B}$ (definition of same sides), so A, B, D are not collinear, so B is not on $\overleftrightarrow{A D}$. Also, since $D \in \operatorname{int} \Varangle C A B, D$ and B are on the same side of $\overleftrightarrow{A C}=\overleftrightarrow{A E}$, so D is not on $\overleftrightarrow{A E}$, so A, D, E are not collinear, so E is not on $\overleftrightarrow{A D}$. Now that we know that B and E do not lie on $\overleftrightarrow{A D}$ and are not on the same side of $\overleftarrow{A D}$, they must be on opposite sides of $\overleftrightarrow{A D}$.

By definition of opposite sides and segment, there is a point F lying on $\overleftrightarrow{A D}$ such that $E * F * B$. By Proposition 3.7, F is in the interior of $\Varangle B A E$. (Note that $\Varangle B A E$ is an angle because B does not lie on $\overleftrightarrow{A E}$.) In particular F and B are on the same side of $\overleftrightarrow{A E}$. Since B and D are on the same side of $\overleftrightarrow{A C}=\overleftrightarrow{A E}$, by $B-4 F$ and D are on the same side of $\overleftrightarrow{A E}$. Thus, either $D=F, A * D * F$ or $A * F * D$ by Lemma 3.2.3. In any case, D is on ray $\overrightarrow{A F}$. Thus, by Proposition 3.8(a) (applied to $\overrightarrow{A F}$ and $\Varangle B A E) D$ is in the interior of $\Varangle B A E$.

By definition of interior, D and E are on the same side of $\overleftrightarrow{A B}$. We also know that D and C are on the same side of $\overleftrightarrow{A B}$ because D is in interior of $\Varangle C A B$. Therefore, by B-4(i), C and E are on same side of $\overleftrightarrow{A B}$. But, since $C * A * E$, by Lemma 3.2.4 C and E are on opposite sides of $\overleftrightarrow{A B}$. This is a contradiction. Therefore, B and E are on the same side of $\overleftrightarrow{A D}$.
3. If B and D are distinct points there exists a point C such that $B * C * D$.

1. There exists line $\overleftrightarrow{B D}$ through B and D - by axiom $I-1$, since B and D are distinct points.
2. There exists a point F not lying on $\overleftrightarrow{B D}$ - by Proposition 2.3.
3. There exists a line $\overleftrightarrow{B F}$ through B and F - by axiom $I-1$, since F does not lie on $\overleftrightarrow{B D}$ we must have $F \neq B$, and also $\overleftrightarrow{B D} \neq \overleftrightarrow{B F}$.
4. There exists a point G such that $B * F * G$ - by axiom B - 2 , since B and F are distinct points.
5. Points B, F, and G are collinear - by axiom $B-1$ and step 4 .
6. G and D are distinct points and D, B and G are not collinear - G lies on $\overleftrightarrow{B F}, D$ lies on $\overleftrightarrow{B D}$, and the intersection of those two lines is B. Since the lines are distinct (step 3), by Proposition $2.1 B$ is the only point they have in common, hence G and D are distinct points. If D, B and G were collinear, they would have to lie on a unique line $\overleftrightarrow{B D}$ (axiom $I-1$), so $\overleftrightarrow{B D}=\overleftrightarrow{B F}$ which contradicts step 3 .
7. There exists a point H such that $G * D * H$ - step 6 guarantees that we can apply axiom B-2 to points G and D.
8. There exists a line $\overleftrightarrow{G H}$ - by axiom I-1.
9. H and F are distinct points - If they were the same then we would have $B * F * G$ and $G * D * F$, so by axiom $B-1 B, G$ and D are collinear points contradicting step 6 .
10. There exists a line $\overleftrightarrow{F H}$ - previous step and axiom $I-1$.
11. D does not lie on $\overleftrightarrow{F H}-F$ does not lie on $\overleftrightarrow{G D}$ (step 9), so $\overleftrightarrow{G D} \neq \overleftrightarrow{F H}$. Since H lies on each of those lines, and since $H \neq D$ by step 7 , by Proposition 2.1, D does not.
12. B does not lie on $\overleftrightarrow{F H}$ - If it did, then H would lie on the unique line $\overleftrightarrow{B F}$ determined by B and F (axiom $I-1$). Lines $\overleftrightarrow{B F}$ and $\overleftrightarrow{G D}$ now have two points in common: G and H. By Proposition 2.1 they would have to be equal, which contradicts the previous step.
13. G does not lie on $\overleftrightarrow{F H}$ - if it did we would have: G, F, H collinear, G, D, H collinear, hence G, D, B collinear (usinga axiom $I-1$) which contradicts step 6.
14. Points D, B and G determine $\triangle D B G$ - step 6 and definition of a triangle,
and $\overleftrightarrow{F H}$ intersects side $B G$ in a point between B and G - steps 4,12 and 13.
15. H is the only point lying on both $\overleftrightarrow{F H}$ and $\overleftrightarrow{G H}$ - these two lines are distinct, eg. step 13, so by Proposition 2.1 they share exactly one point: H.
16. No point between G and D lies on $\overleftrightarrow{F H}$ - step 7 and axiom B-3.
17. Hence, $\overleftrightarrow{F H}$ intersects side $B D$ in a point C between D and B - step 14, 16 and Pasch's theorem (note that it can't be point D since $G * D * H$).
18. Thus, there exists a point C between points B and D.
