
Math 431 Homework 6
Due 10/30

1. Let P and Q be two points and l and m two lines. What can you say
about these points and lines if you know that side(P, l)∩ side(Q,m) = ∅? In
the event that there is a point L ∈ {l} such that P ∗ L ∗ Q and M ∈ {m}
such that P ∗M ∗Q show that L ∗M ∗Q and P ∗ L ∗M .

Solution: We have side(P, l)∩ side(Q,m) = ∅. We first note that P /∈ {l}
and Q /∈ {m}. There are three possibilities:

1. l and m are distinct lines that share a point,

2. l and m are parallel, and

3. l = m

Let us consider each case in turn.

1. l and m are distinct lines that share a point. Then either

(a) P lies on m

i. Q lies on l: Let R be a point such that P ∗ R ∗ Q, which
exists by axiom B-2. By Lemma 3.2.2 P and R are on the
same side of l and R and Q are on the same side of m. Hence,
P ∈side(P, l) ∩ side(Q, m), which is a contradiction.

ii. Q does not lie on l. First note that P and Q have to be on
opposite sides of l, for if they were not then Q would belong
to side(P, l) ∩ side(Q,m), which contradicts the assumption.
Since P and Q are on opposite sides of l the segment PQ
intersects l in a point, call it L, so that P ∗ L ∗Q. By axiom
B-2 there is a point R such that L ∗R ∗P . Using Proposition
3.3, we can conclude that Q ∗ R ∗ P , that is Q and P are on
the same side of m. Further, since L∗R∗P we see that P and
R are on the same side of l, hence R ∈side(P, l)∩ side(Q,m),
contradicting our assumption.

(b) P does not lie on m

i. Q lies on l: proof follows the proof in case of P ∈ {m}, Q /∈
{l}.
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ii. Q does not lie on l. Take any point M on m so that P and
M are on the same side of l (such point exist, because if it
did not then m and l would be parallel, which contradicts
our hypothesis), and take any point L on l so that Q and L
are on the same side of m. By axiom B-2 there is a point R
such that L ∗R ∗M . By Lemma 3.2.2 and axiom B-4 R and
P are on the same side of l. Similarly, Q and R are on the
same side of m, hence R ∈side(P, l) ∩ side(Q, m), once again
contradicting our assumption.

Hence, this case can not happen, given our hypothesis.

2. l||m. As in the previous case we have few possible configurations de-
pending on where the given points lie with respect to the given lines.

(a) P lies on m

i. Q lies on l. Let R be a point such that P ∗ R ∗ Q. Using
Lemma 3.2.2 we conclude that R and P are on the same
side of l and R and Q are on the same side of m, that is
R ∈side(P, l) ∩ side(Q,m).

ii. Q does not lie on l. As we noted above P and Q must lie on
opposite sides of l, so by Lemma 3.2.5 there is a point L ∈ {l}
such that P ∗L∗Q. Let R be such that P ∗R∗L (B-1). Then
Lemma 3.2.2 and B-4 give us that R ∈ side(P, l). Similarly,
R ∈ side(Q,m). Contradiction.

(b) P does not lie on m

i. Q lies on l. As 2(ii).

ii. Q does not lie on l. Using the arguments above we can show
that P and Q must lie on opposite sides of both l and m. Let
L ∈ {l} such that P ∗L∗Q and M ∈ {m} such that P ∗M ∗Q.
By B-3 one of the following happens:

• P ∗ M ∗ L – then P and M are on the same side of l
(Lemma 3.2.5). Let S be such that M ∗ S ∗L, so that M
and S are on the same side of l. By B-4, P and S are on
the same side of l. Also, P ∗M ∗L and P ∗L ∗Q give us
M ∗L∗Q bu Proposition 3.3, so L and Q are on the same
side of m (Lemma 3.2.2). From M ∗ S ∗ L we conclude
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that L and S are on the same side of m, so by B-4 we
have that S and Q are on the same side of m. Hence,
S ∈side(P, l) ∩ side(Q,m).

• P ∗ L ∗M together with P ∗M ∗Q gives, by Proposition
3.3 L ∗M ∗Q, hence our claim holds.

• M ∗ P ∗ L together with P ∗ L ∗Q gives M ∗ P ∗Q, so P
and Q are on the same side of m, contradiciton.

Note: I could have done this whole argument without using
Proposition 3.3, but that would have made it much longer
than it already is, so I chose not to.

3. l = m. P and Q lie on opposite sides of l, for if they did not then
side(P, l) = side(Q, m), so side(P, l) is their intersection, and that set
is nonempty.

This exhaust all the possible cases.

2. Prove Proposition 3.8: If D is in the interior of an �CAB then:

1. so is every point on
−−→
AD except A,

2. no point on the opposite ray to
−−→
AD is in the interior of �BAC

3. if C ∗ A ∗ E, then B is in the interior of �DAE

Proof of (1). Suppose that E ∈
−−→
AD and E 6= A. Since D is in the interior

of �CAB, D and B are on the same side of
←→
AC; by Lemma 3.7.5, E and D

are on the same side of
←→
AC; hence, by B-4 E and B are on the same side

of
←→
AC. By the same reasoning, since D and C are on the same side of

←→
AB,

we deduce from Lemma 3.7.5 and B-4 that E and C are on the same side of←→
AB. Thus E is in int�CAB.

Proof of (2). Suppose that E is on the ray opposite to
−−→
AD. Then E = A or

E ∗ A ∗D by definition of the ray opposite to
−−→
AD (as discussed in class). If

E = A, then E lies on
←→
AC, so E and B are not on the same side of

←→
AC, so

E is not in the interior of �CAB. Suppose that E ∗A∗D. By Lemma 3.2.4,

E and D are on opposite sides of
←→
AB. Since D ∈ int�CAB, D and C are

on the same side of
←→
AB. Thus, by Corollary to B-4 E and C are on opposite

sides of
←→
AB. Thus, E is not in int�CAB.
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Proof of (3). There are two things to show: first is B and D are on the same

side of
←→
AE, and second is B and E are on the same side of line

←→
AD.

Since C ∗ A ∗ E, by B-1 and I-1 we have
←→
AC =

←→
AE. Since D is in the

interior of �CAB, B and D are on the same side of
←→
AC, hence

←→
AE.

To prove that B and E are on the same side of
←→
AD, suppose on the

contrary that E and B not on the same side of
←→
AD. Before we can say that

B and E are on opposite sides of
←→
AD, we must first check that neither B nor

E is on
←→
AD. Since D ∈ int�CAB, D and C are on the same side of

←→
AB, so

D is not on
←→
AB (definition of same sides), so A, B, D are not collinear, so B

is not on
←→
AD. Also, since D ∈ int�CAB, D and B are on the same side of←→

AC =
←→
AE, so D is not on

←→
AE, so A, D, E are not collinear, so E is not on←→

AD. Now that we know that B and E do not lie on
←→
AD and are not on the

same side of
←→
AD, they must be on opposite sides of

←→
AD.

By definition of opposite sides and segment, there is a point F lying on←→
AD such that E ∗ F ∗B. By Proposition 3.7, F is in the interior of �BAE.

(Note that �BAE is an angle because B does not lie on
←→
AE.) In particular

F and B are on the same side of
←→
AE. Since B and D are on the same side

of
←→
AC =

←→
AE, by B-4 F and D are on the same side of

←→
AE. Thus, either

D = F , A ∗ D ∗ F or A ∗ F ∗ D by Lemma 3.2.3. In any case, D is on ray−→
AF . Thus, by Proposition 3.8(a) (applied to

−→
AF and �BAE) D is in the

interior of �BAE.
By definition of interior, D and E are on the same side of

←→
AB. We also

know that D and C are on the same side of
←→
AB because D is in interior of

�CAB. Therefore, by B-4(i), C and E are on same side of
←→
AB. But, since

C ∗ A ∗ E, by Lemma 3.2.4 C and E are on opposite sides of
←→
AB. This is a

contradiction. Therefore, B and E are on the same side of
←→
AD.

3. If B and D are distinct points there exists a point C such that B∗C∗D.

1. There exists line
←→
BD through B and D – by axiom I-1, since B and D

are distinct points.

2. There exists a point F not lying on
←→
BD – by Proposition 2.3.
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3. There exists a line
←→
BF through B and F – by axiom I-1, since F does

not lie on
←→
BD we must have F 6= B, and also

←→
BD 6=

←→
BF .

4. There exists a point G such that B ∗ F ∗ G – by axiom B-2, since B
and F are distinct points.

5. Points B, F, and G are collinear – by axiom B-1 and step 4.

6. G and D are distinct points and D, B and G are not collinear – G

lies on
←→
BF , D lies on

←→
BD, and the intersection of those two lines is

B. Since the lines are distinct (step 3), by Proposition 2.1 B is the
only point they have in common, hence G and D are distinct points.
If D, B and G were collinear, they would have to lie on a unique line←→
BD (axiom I-1), so

←→
BD =

←→
BF which contradicts step 3.

7. There exists a point H such that G ∗ D ∗ H – step 6 guarantees that
we can apply axiom B-2 to points G and D.

8. There exists a line
←→
GH – by axiom I-1.

9. H and F are distinct points – If they were the same then we would
have B ∗F ∗G and G∗D∗F , so by axiom B-1 B, G and D are collinear
points contradicting step 6.

10. There exists a line
←→
FH – previous step and axiom I-1.

11. D does not lie on
←→
FH – F does not lie on

←→
GD (step 9), so

←→
GD 6=

←→
FH.

Since H lies on each of those lines, and since H 6= D by step 7, by
Proposition 2.1, D does not.

12. B does not lie on
←→
FH – If it did, then H would lie on the unique line←→

BF determined by B and F (axiom I-1). Lines
←→
BF and

←→
GD now have

two points in common: G and H. By Proposition 2.1 they would have
to be equal, which contradicts the previous step.

13. G does not lie on
←→
FH – if it did we would have: G, F, H collinear,

G, D, H collinear, hence G, D, B collinear (usinga axiom I-1) which
contradicts step 6.
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14. Points D, B and G determine 4DBG – step 6 and definition of a tri-
angle,

and
←→
FH intersects side BG in a point between B and G – steps 4, 12

and 13.

15. H is the only point lying on both
←→
FH and

←→
GH – these two lines are

distinct, eg. step 13, so by Proposition 2.1 they share exactly one point:
H.

16. No point between G and D lies on
←→
FH – step 7 and axiom B-3.

17. Hence,
←→
FH intersects side BD in a point C between D and B – step 14,

16 and Pasch’s theorem (note that it can’t be point D since G∗D∗H).

18. Thus, there exists a point C between points B and D.
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