1. Let P and Q be two points and l and m two lines. What can you say about these points and lines if you know that $\operatorname{side}(P, l) \cap \operatorname{side}(Q, m)=\emptyset$? In the event that there is a point $L \in\{l\}$ such that $P * L * Q$ and $M \in\{m\}$ such that $P * M * Q$ show that $L * M * Q$ and $P * L * M$.
2. Prove Proposition 3.8: If D is in the interior of an $\Varangle C A B$ then:
3. so is every point on $\overrightarrow{A D}$ except A,
4. no point on the opposite ray to $\overrightarrow{A D}$ is in the interior of $\Varangle B A C$
5. if $C * A * E$, then B is in the interior of $\Varangle D A E$
6. Exercise 6, page 104.
