
Math 431 Homework 5
Due 10/23

For the purposes of this homework I will list a few lemmas here and use them. You may
want to prove this as an exercise for your own well being.

Betweenness Lemmas

Lemma 1. Let A and B be two distinct points.

(1) AB = BA.

(2) AB ⊂
−→
AB ⊂ {

←→
AB}.

Lemma 2. If A ∗B ∗ C and l is any line passing through C that is distinct from
←→
AC, then

A and B are on the same side of l.

Lemma 3. If A and B are distinct points on the same side of a line l and
←→
AB intersects l

at a point C, then A ∗B ∗ C or B ∗ A ∗ C.

Lemma 4. If A ∗B ∗ C and l is a line passing through B that is distinct from
←→
AC, then A

and C are on opposite sides of l.

Lemma 5. If A and C are on opposite sides of a line l, then there exists a unique point B
such that l passes through B and A ∗B ∗ C.

1. Prove the second part of Proposition 3.3. That is, given A ∗B ∗ C and A ∗ C ∗D, prove
that A ∗ B ∗ D (do not use the first part of the same proposition. Never mind! You may.
But if you have the solution that does not use it, you’ll get extra credit). Follow the book’s

suggestion by considering the line
←→
EB. Is the converse of Proposition 3.3 true?

Proof. From the proof of the first part we know that A, B, C,D are distinct collinear points

and B ∗ C ∗ D; we also have a point E not lying on line
←→
AD. By Lemma 2, A and C are

on opposite sides of
←→
EB. By Lemma 4, C and D are on the same side of

←→
EB. Thus, by

B-4(iii), A and D lie on opposite sides of
←→
EB. By Lemma 3, there is a unique point lying

on both
←→
AD and

←→
EB; since B lies on both of these lines, this unique point is B. Therefore,

the second part of Lemma 3 gives A ∗B ∗D.

The converse is true as well. We wish to show that B ∗ C ∗ D and A ∗ B ∗ D imply
A ∗B ∗C and A ∗C ∗D. B ∗C ∗D and A ∗B ∗D can, by B1, be rewritten as D ∗C ∗B and
D ∗ B ∗ A. Consider the following mapping of letters: D → A′, C → B′, B → C ′, A → D′.
Our claim now reads: A′ ∗B′ ∗C ′ and A′ ∗C ′ ∗D′ imply B′ ∗C ′ ∗D′ and A′ ∗B′ ∗D′, which
is exactly the statement of Proposition 3.3. and we have already supplied its proof.
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2. Prove Proposition 3.5. If A ∗ B ∗ C, then AC = AB ∪ BC and B is the only point in
common segments AB and BC.

Proof. (1) First let us prove that AB ∪ BC ⊂ AC. We split this into two parts: first we
show AB ⊂ AC, and then we show BC ⊂ AC.

Suppose that P ∈ AB. If P = A then P ∈ AC. If P = B, then substituting B for P in
A∗B ∗C gives A∗P ∗C, so P ∈ AC. Now suppose that P 6= A and P 6= B. Since P ∈ AB,
we have A ∗ P ∗B.Combining this with A ∗B ∗C gives A ∗ P ∗C by Proposition 3.3. Thus,
P ∈ AC. We conclude that AB ⊂ AC.

We have C ∗ B ∗ A by hypothesis and B-1. The result of the previous paragraph allows
us to conclude that CB ⊂ CA. By Lemma 1(a), BC ⊂ AC.

Having proved that AB ⊂ AC and BC ⊂ AC, we conclude that AB ∪BC ⊂ AC.

(2) Let us prove that AC ⊂ AB ∪ BC. Suppose that P ∈ AC. The goal is to prove
that P ∈ AB or P ∈ BC. If P = A or P = B then P ∈ AB, and if P = C then P ∈ BC.
Let us now assume that P, A, B, C are distinct. Since P ∈ AC, we have A ∗ P ∗ C. Note
that P, A, B, C are collinear by the argument from Exercise 1 on Problem Set 4. Let l be
a line through P that is different from the line through P, A, B, C. Such a line exists by
Proposition 2.3 and I-1.

Since P is on l, by Proposition 2.1, A does not lie on l and neither does B. Thus, either
B and A are on the same side of l, or B and A are on opposite sides of l. Before dealing
with each case, let us remark that by Lemma 2, A and C are on opposite sides of l.

Suppose that B and A are on the same side of l. By B-4(iii) B and C are on opposite

sides of l. As P is the unique point common to both l and
←→
AC (Proposition 2.1), Lemma 3

gives B ∗ P ∗ C. So P ∈ BC.
Suppose that B and A are on opposite sides of l. By B-4(ii) B and C are on the same

side of l. By Lemma 5, B ∗ C ∗ P or C ∗ B ∗ P . The first option, B ∗ C ∗ P , together with
A ∗ B ∗ C (hypothesis) gives A ∗ C ∗ P by Proposition 3.3, Corollary 1. This contradicts
A ∗P ∗C by B-3. So B ∗C ∗P cannot hold. We are left with the case C ∗B ∗P . Combining
this with A ∗ P ∗ C gives A ∗ P ∗ B by Proposition 3.3 Corollary 1. Thus P ∈ AB. This
completes the proof.

(3)
Certainly B is in both segments AB and BC. We claim that there is not other point in

both segments. Suppose to the contrary that there is such a point P 6= B such that P ∈ AB
and P ∈ BC. Points A, B, and C are distinct by B-1. Note that P 6= A because if it were,
then A would be in BC; so B ∗A ∗C, which contradicts A ∗B ∗C (hypothesis ) by B-3. By
the same logic, P 6= C.

Let E be a point not lying on
←→
AC. Consider the line

←→
EB. Since P ∈ AB, we have

A ∗ P ∗ B, so by Lemma 4, A and P are on the same side of
←→
EB. Since P ∈ BC, we have

B ∗P ∗C, so by Lemma 4, P and C are on the same side of
←→
EB. By B-4(i), A and C are on

same side of
←→
EB. But by Lemma 2, A and C are on opposite sides of

←→
EB, a contradiction.

Thus P = B, and this is the only point that lies on AB and BC.
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3. Prove Proposition 3.6: If A ∗ B ∗ C then B is the only point common to both rays
−→
BA

and
−−→
BC, and

−→
AB =

−→
AC.

Proof. (1) Suppose P is a point in
−→
BA and

−−→
BC. We want to show that P = B. Since

P ∈
−→
BA, we have P ∈ BA or B ∗ A ∗ P .

Case 1: Suppose that P ∈ BA. Since P ∈
−−→
BC, we have P ∈ BC or B ∗ C ∗ P . Let us

consider these two subcases:

Case 1a: Suppose P ∈ BC. Then P = B by the uniqueness part of Proposition 3.5.

Case 1b: Suppose B∗C ∗P . Then P 6= B and P 6= C. Since P ∈ BA, we have B∗P ∗A.
By Proposition 3.3, B ∗ C ∗ A, which contradicts A ∗B ∗ C by B-3.

Case 2: Suppose that B ∗ A ∗ P . Again, since P ∈
−−→
BC we have two subcases:

Case 2a: Suppose P ∈ BC. We know P 6= B by B-1. Thus B = C or B ∗ P ∗ C. If
P = C then B ∗ A ∗ C. But A ∗ B ∗ C by assumption. This contradicts B-3. If B ∗ P ∗ C,
then A ∗B ∗ P . But B ∗ A ∗ P by assumption. This contradictions B-3.

Case 2b: Suppose B ∗ C ∗ P . Combining this with A ∗ B ∗ C gives A ∗ B ∗ P by
Proposition 3.3, Corollary 1. This contradicts B ∗ A ∗ P by B-3.

This completes the case-by-case argument that P = B. Thus, B is the only point in−→
BA ∩

−−→
BC.

(2) We will show that
−→
AB ⊂

−→
AC. Let P ∈

−→
AB. The goal is to show that P ∈

−→
AC. Given

that P ∈
−→
AB, we have P = A or P = B or A ∗ P ∗B or A ∗B ∗ P . If P = A then P ∈

−→
AC.

If P = B, then substituting P for B in A ∗B ∗C gives A ∗ P ∗C, so P ∈
−→
AC. If A ∗ P ∗B,

then together with A ∗B ∗ C, we get A ∗ P ∗ C by Proposition 3.3, so P ∈
−→
AC. We are left

with one more case to consider: A ∗B ∗ P .
Suppose that A ∗ B ∗ P . Consider the relations among points P, A, C. If P = C then

P ∈
−→
AC. If P 6= C then P, A, C are distinct collinear points (P 6= A because A ∗B ∗P , and

A 6= C because A∗B ∗C). By B-3, P ∗A∗C or A∗P ∗C or A∗C ∗P . Either of the last two

cases implies P ∈
−→
AC. The first case, P ∗ A ∗ C, combined with A ∗ B ∗ C gives P ∗ A ∗ B

by Proposition 3.3 Corollary 1; this contradicts A ∗B ∗ P by B-3.

(3) Finally, we will show that
−→
AC ⊂

−→
AB. Let P ∈

−→
AC. Then P = A or P = C or

A ∗ P ∗ C or A ∗ C ∗ P . If P = A then P ∈
−→
AB. If P = C, then A ∗ B ∗ P , so P ∈

−→
AB. If

A ∗C ∗ P then A ∗B ∗ P by Proposition 3.3, so P ∈
−→
AB. We are left with one more case to

consider: A ∗ P ∗ C.
Suppose that A ∗P ∗C. Consider the relations among the points P, B, A. If P = B then

P ∈
−→
AB. If P 6= B, then P, A, B are distinct collinear points. By B-3, P ∗A∗B or A∗P ∗B

or A∗B ∗P . Either of the last two cases implies P ∈
−→
AB. The first case, P ∗A∗B, combined

with A ∗B ∗ C, gives P ∗A ∗ C, contradicting A ∗ P ∗ C by B-3. Therefore,
−→
AC ⊂

−→
AB.
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