Due 10/13

1. Suppose that $A * B * C$ and $A * C * D$.
(a) (3 pts) Prove that A, B, C, D are four distinct points.

Solution: By B-1, A, B, C are distinct and A, C, D are distinct. The only pair of points that do not appear in both sets is the pair B, D. If $B=D$ then substituting D for B in the hypothesis would yield $A * D * C$ and $A * C * D$, contradicting B-3. Therefore $B \neq D$.
(b) ($\mathbf{3}$ pts.) Prove that A, B, C, D are collinear.

Solution: Axiom B-1 and the assumption $A * B * C$ together imply that the points A, B, C are collinear. Furthermore, the uniqueness part of I-1 guarantees that these points all line on line $\overleftrightarrow{A C}$. Similarly, Axiom B-1 and $A * C * D$ together imply that A, C, D are collinear. Again the uniqueness part of I-1 guarantees that these points all lie on $\overleftrightarrow{A C}$. So all four points lie on $\overleftrightarrow{A C}$.
2. Prove Proposition 3.1(ii): For any two distinct points A and $B, \overrightarrow{A B} \cup$ $\overrightarrow{B A}=\{\overleftrightarrow{A B}\}$.

Proof. Step 1 (5 pts.): $\overrightarrow{A B} \cup \overrightarrow{B A} \subset\{\overleftrightarrow{A B}\}$.
Let $P \in \overrightarrow{A B} \cup \overrightarrow{B A}$. The proof will be complete once we show that $P \in\{\overleftrightarrow{A B}\}$. If $P=A$ or $P=B$ then P is on line $\overleftrightarrow{A B}$ hence in set $\{\overleftrightarrow{A B}\}$. Now suppose that P, A, B are distinct. If $P \in \overrightarrow{A B}$, then by definition of ray, $P \in A B$ or $A * B * P$. Having ruled out the possibilities $P=A$ or $P=B$, if $P \in A B$ then $A * P * B$ by definition of segment. Therefore $A * P * B$ or $A * B * P$. In both cases A, P, B all lie on the same line according to $\mathrm{B}-1$; this line is $\overleftrightarrow{A B}$ by the uniqueness part of I-1. Thus $P \in\{\overleftrightarrow{A B}\}$. By the same logic, if $P \in \overrightarrow{B A}$ then $B * P * A$ or $B * A * P$, and again P, A, B all lie on $\overleftrightarrow{A B}$, so $P \in\{\overleftrightarrow{A B}\}$.

Step 2 (5 pts.) : $\{\overleftrightarrow{A B}\} \subset \overrightarrow{A B} \cup \overrightarrow{B A}$.
Let $P \in\{\overleftrightarrow{A B}\}$. The proof will be complete once we show that $P \in$ $\overrightarrow{A B} \cup \overrightarrow{B A}$. If $P=A$ or $P=B$, then $P \in A B$ by definition of segment.
$A B \subset \overrightarrow{A B}$ by definition of ray, and $\overrightarrow{A B} \subset \overrightarrow{A B} \cup \overrightarrow{B A}$ by definition of union, so $P \in \overrightarrow{A B} \cup \overrightarrow{B A}$.

Now suppose that P, A, B are distinct. These points are collinear because we assumed that P lies on $\overleftrightarrow{A B}$. Thus B-3 gives us $P * A * B$ or $A * P * B$ or $A * B * P$.

- If $P * A * B$ then $P \in \overrightarrow{B A}$ by definition of ray.
- If $A * P * B$ then $P \in A B$ by definition of segment, so then $P \in \overrightarrow{A B}$ by definition of ray.
- If $A * B * P$ then $P \in \overrightarrow{A B}$ by definition of ray.

In all cases P is in $\overrightarrow{A B}$ or $\overrightarrow{B A}$, meaning that $P \in \overrightarrow{A B} \cup \overrightarrow{B A}$.
3. ($\mathbf{1 4}$ pts.) Let \mathcal{A} be an affine plane. Show that the projective completion of $\mathcal{A}, \mathcal{A}^{*}$ satisfies axioms I1, I2+, I3 and elliptic parallel postulate.
Axiom I2+: For every line l there are at least three distinct points incident with it.
Solution: See pages 59-60 in the book. Although few more details could be supplied.

