Math 431 Homework 4 Due 10/13

1. Suppose that A * B * C and A * C * D.

(a) (3 pts) Prove that A, B, C, D are four distinct points.

Solution: By B-1, A, B, C are distinct and A, C, D are distinct. The only pair of points that do not appear in both sets is the pair B, D. If B = D then substituting D for B in the hypothesis would yield A * D * C and A * C * D, contradicting B-3. Therefore $B \neq D$.

(b) (3 pts.) Prove that A, B, C, D are collinear.

Solution: Axiom B-1 and the assumption A * B * C together imply that the points A, B, C are collinear. Furthermore, the uniqueness part of I-1 guarantees that these points all line on line \overrightarrow{AC} . Similarly, Axiom B-1 and A * C * D together imply that A, C, D are collinear. Again the uniqueness part of I-1 guarantees that these points all lie on \overrightarrow{AC} . So all four points lie on \overrightarrow{AC} .

2. Prove Proposition 3.1(ii): For any two distinct points A and B, $\overrightarrow{AB} \cup \overrightarrow{BA} = {\overrightarrow{AB}}$.

Proof. Step 1 $(\underbrace{\mathbf{5} \text{ pts.}}): \overrightarrow{AB} \cup \overrightarrow{BA} \subset \{\overleftarrow{AB}\}.$

Let $P \in \overrightarrow{AB} \cup \overrightarrow{BA}$. The proof will be complete once we show that $P \in \{\overrightarrow{AB}\}$. If P = A or P = B then P is on line \overrightarrow{AB} hence in set $\{\overrightarrow{AB}\}$. Now suppose that P, A, B are distinct. If $P \in \overrightarrow{AB}$, then by definition of ray, $P \in AB$ or A * B * P. Having ruled out the possibilities P = A or P = B, if $P \in AB$ then A * P * B by definition of segment. Therefore A * P * B or A * B * P. In both cases A, P, B all lie on the same line according to B-1; this line is \overrightarrow{AB} by the uniqueness part of I-1. Thus $P \in \{\overrightarrow{AB}\}$. By the same logic, if $P \in \overrightarrow{BA}$ then B * P * A or B * A * P, and again P, A, B all lie on \overrightarrow{AB} , so $P \in \{\overrightarrow{AB}\}$.

Step 2 (5 pts.): $\{\overrightarrow{AB}\} \subset \overrightarrow{AB} \cup \overrightarrow{BA}$.

Let $P \in {\{\overrightarrow{AB}\}}$. The proof will be complete once we show that $P \in \overrightarrow{AB} \cup \overrightarrow{BA}$. If P = A or P = B, then $P \in AB$ by definition of segment.

 $AB \subset \overrightarrow{AB}$ by definition of ray, and $\overrightarrow{AB} \subset \overrightarrow{AB} \cup \overrightarrow{BA}$ by definition of union, so $P \in \overrightarrow{AB} \cup \overrightarrow{BA}$.

Now suppose that P, A, B are distinct. These points are collinear because we assumed that P lies on \overrightarrow{AB} . Thus B-3 gives us P * A * B or A * P * B or A * B * P.

- If P * A * B then $P \in \overrightarrow{BA}$ by definition of ray.
- If A * P * B then $P \in AB$ by definition of segment, so then $P \in \overrightarrow{AB}$ by definition of ray.
- If A * B * P then $P \in \overrightarrow{AB}$ by definition of ray.

In all cases P is in \overrightarrow{AB} or \overrightarrow{BA} , meaning that $P \in \overrightarrow{AB} \cup \overrightarrow{BA}$.

3. (14 pts.) Let \mathcal{A} be an affine plane. Show that the projective completion of \mathcal{A} , \mathcal{A}^* satisfies axioms I1, I2+, I3 and elliptic parallel postulate. Axiom I2+: For every line l there are at least three distinct points incident with it.

Solution: See pages 59 - 60 in the book. Although few more details could be supplied.