Math 431 Homework 10

Due 12/8
You will need some of these definitions. Our definining groups were not working deligently, so I offer some thoughts. In Theorem 4.3 we said that one can, in a unique way, assign lengths to segments so that certain conditions are satisfied (see class25 or book, page 122). If we use lengths, we can make following definitions.

Definitions Let l be a line and P a point not on l. The distance from P to l is the length of the segment between P and the foot of the perpendicular ${ }^{1}$ to l through P. If r is a ray such that $r \subset\{l\}$ and the foot of the perpendicular to l through P is contained in r, then we define the distance from P to r to be the distance from P to l.

A point P is said to be equidistant from lines l_{1} and l_{2} (or rays r_{1} and r_{2}) if the distance from P to $l_{1}\left(r_{1}\right)$ is equal to the distance from P to $l_{2}\left(r_{2}\right)$.

One can define equidistance without talking about lengths, and using only our undefined term congruence.
0. Define equidistance without talking about lengths, and using only our undefined term congruence.

1. Prove: Theorem 4.4: Angle bisectors in a triangle meet at a point.
2. Prove: Theorem 4.5: A point P lies on the angle bisector of $\Varangle B A C$ if and only if it is equidistant from the sides of $\Varangle B A C$.
3. Let $\triangle A B C$ be a triangle and let $A * D * B$. If $C D$ is a median and $\overrightarrow{C D}$ is the angle bisector of $\Varangle A C B$ show that $\triangle A B C$ is isosceles.

Some hints for the previous problems are in the Class \# 30 .

[^0]
[^0]: ${ }^{1}$ Foot of the perpendicular to l throught P is the intersection of the line perpendicular to l passing through P and l

