- 1. Two lines l and m are *parallel* if no point lies on both of them.
- 2. An *interpretation* is a choice of particular meaning for undefined terms in an axiomatic system. If an axiom is a correct statement in a given interpretation we say that that interpretation *satisfies* the axiom. If an interpretation satisfies ALL the axioms of a given system we say it is a *model* for that system.
- 3. To demonstrate that a statement S can not be proved from a list of statements \mathcal{L} it is enough to find an interpretation in which all the statements \mathcal{L} are correct, but S is not.
- 4. A statement S in an axiomatic system is called independent if there is no proof of S and there is no proof of $\sim S$.
- 5. An axiomatic system is said to be complete if there are no independent statements in the language of the system.
- 6. Two models of an axiomatic system are said to be isomorphic if there is a one-to-one correspondence between the basic objects that preserves the relationship between the objects.
- 7. If \mathcal{A} is an affine plane, we enlarge it to \mathcal{A}^* by adding a point $P_{[l]}$ for each equivalence class [l] and we declare that $P_{[l]}$ lies on each line in [l]. $P_{[l]}$ is called a point at infinity. We also add a line that consists of all points at infinity and only those points. \mathcal{A}^* is called *projective completion* of \mathcal{A} .
- 8. Given two distinct points A and B, the segment AB is the set of all points between A and B, together with A and B: $AB = \{C : A * C * B\} \cup \{A, B\}.$
- 9. Given two distinct points A and B, the ray \overrightarrow{AB} is the set of all points on the segment AB together with all the points C such that A * B * C: $\overrightarrow{AB} = AB \cup \{C : A * B * C\}$.
- 10. If C * A * B, then \overrightarrow{AC} and \overrightarrow{AB} are called *opposite* rays.