Class #9

Projective plane, affine plane, hyperbolic plane,

Interpretation #5

- Points are points on a sphere $S^{3} = \{(x, y, z): x^{2} + y^{2} + z^{2} = 1\}$
- Lines are great circles (great circles are circles of unit radius with the center at the origin)

"Gluing" spaces

Möbius band

"Fixing" a sphere: Real projective plane

• Points are pairs {(x,y,z), (-x,-y,-z)}

- You are gluing antipodal points

• Lines are sets of points {(x,y,z), (-x,-y,-z)} that are parts of great circles

Projective plane

Another way define P² is to say it is a hemisphere where the antipodal points on the rim are identified.

Model #4: **P**²

• The real projective plane is a model for incidence geometry

- It satisfies elliptic parallel property:
 - For every line *l* and every point P not on *l* there is no line passing through P which is parallel to *l*.

Some topological considerations

Another way to think of P²

Crosscap

Hyperbolic plane (the upper half plane model)

• Points are ordered pairs of real numbers (x, y), where y > 0.

- Lines are
 - Subsets of vertical lines that consist of points (x, y),
 with y > 0
 - Semicircles whose centers are points (x, 0), where x is a real number

Model #5: H²

• Hyperbolic plane is also a model of incidence geometry

- It satisfies hyperbolic parallel postulate:
 - For every line / and every point P not lying on / there are at least two lines that pass through P and are parallel to /.

