Class \#9

Projective plane, affine plane, hyperbolic plane,

Interpretation \#5

- Points are points on a sphere

$$
S^{3}=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=1\right\}
$$

- Lines are great circles (great circles are circles of unit radius with the center at the origin)

A	

"Gluing" spaces

Möbius band

Torus

"Fixing" a sphere: Real projective plane

- Points are pairs $\{(x, y, z),(-x,-y,-z)\}$
- You are gluing antipodal points
- Lines are sets of points $\{(x, y, z),(-x,-y,-z)\}$ that are parts of great circles

Projective plane

Another way define P^{2} is to say it is a hemisphere where the antipodal points on the rim are identified.

Model \#4: P²

- The real projective plane is a model for incidence geometry
- It satisfies elliptic parallel property:
- For every line l and every point P not on l there is no line passing through P which is parallel to l.

Some topological considerations

Another way to think of P^{2}

Crosscap

Hyperbolic plane (the upper half plane model)

- Points are ordered pairs of real numbers (x, y), where $\mathrm{y}>0$.
- Lines are
- Subsets of vertical lines that consist of points (x, y), with $\mathrm{y}>0$
- Semicircles whose centers are points $(x, 0)$, where x is a real number

Model \#5: H^{2}

- Hyperbolic plane is also a model of incidence geometry
- It satisfies hyperbolic parallel postulate:
- For every line l and every point P not lying on l there are at least two lines that pass through P and are parallel to l.

A
B

Half-Plane Model Credits \rfloor | \mid 1

