Class \#8

Models, planes and such

Abstract axiomatic system

Model for the system
S is correct
S is not correct

S here is a statement in the abstract system

- I-1 is not a correct statement in interpretation \#2
- I-1 can not be proved from I-2 and I-3.
- I-1 is a correct statement in interpretation \#1
- Not I-1 can not be proved from I-2 and I-3.
- I-1 is independent from I-2 and I-3

Independence

- Definition: A statement S in an axiomatic system is called independent if there is no proof of S and there is no proof of $\sim S$.
- Q: How can you show that Euclid's Parallel Postulate is independent of IG?

Interpretation of IG \#3

- Points - A, B, C, D
- Lines - $\{\mathrm{A}, \mathrm{B}\},\{\mathrm{A}, \mathrm{C}\},\{\mathrm{A}, \mathrm{D}\},\{\mathrm{B}, \mathrm{C}\},\{\mathrm{B}, \mathrm{D}\},\{\mathrm{C}, \mathrm{D}\}$

We checked that this is in fact a model for IG and that EPP is correct in this model.

In Model \#1 (3 points and 3 lines, from last class), EPP is not correct. We conclude:

EPP is independent of IG

- Definition: An axiomatic system is said to be complete if there are no independent statements in the language of the system.
- Q: Is incidence geometry complete?
- A: No, because EPP is an independent statement.

Isomorphism of the models

- Definition: Two models of an axiomatic system are said to be isomorphic if there is a one-to-one correspondence between the basic objects that preserves the relationship between the objects.
- For IG: there is a one-to-one correspondence between points and lines so that if a point P lies on a line l in one model the point corresponding to P lies on the line corresponding to the line $/$ in the other system.

Categorical systems

- If an axiomatic system has only one model (up to isomorphism) then it is called categorical.
- They completely describe all the properties of that model.
- Q : Can you think of a categorical system?
- Sarah Chow: If we change I-3 to say: There are only three distinct points and no line passes through all three of them, the new system is categorical.

Cartesian plane

- Points are ordered pairs of real numbers (x, y)
- Lines are triples of real numbers (a, b, c) so that either $a \neq 0$ or $b \neq 0$. It is the set of all points (x, y) that satisfy the equation $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$.
- Lies on \equiv is a member of

$a x+b y+c=0$

- $b=0$: equation $a x+b y+c=0$ is equivalent to one of the form $\mathrm{x}=$ constant.
- $b \neq 0$: equation $a x+b y+c=0$ is equivalent to one of the form $\mathrm{y}=\mathrm{mx}+\mathrm{n}$

Exercise:

- Show that the Cartesian plane is a model of incidence geometry.
- Show that the Cartesian plane satisfies the EPP (For every line l and every point P not lying on l, there is a unique line through P parallel to l).

