## Class \#7

## Interpretations

## Proposition 2.5: For every point P there exist at least two lines through P.

Proof \#1: Let P be a point. By Proposition 2.4 there is a line $l$ that is not incident with P . By axiom $\boldsymbol{I}-2$ there are at least two distinct points, S and T , incident with $l$. Since P does not lie on $l, \mathrm{P}$ can not equal S or T . By applying axiom $\boldsymbol{I}-\mathbf{1}$ twice we conclude that there exists a line $m$ that passes through P and S and that there exists a line $n$ that passes through P and $\mathrm{T} . m$ and $n$ both pass through P and they are not equal to each other (if they were they would both pass through S and T , and would consequently have to equal $l$, by axiom $\boldsymbol{I}-\mathbf{1}$, which they can not as P lies on each of them, but does not lie on $l$ ).

## Proposition 2.5: For every point P there exist at least two lines through $P$.

Proof \#2: Let P be a point. By axiom $\boldsymbol{I}-\mathbf{3}$ there exist three distinct points $\mathrm{R}, \mathrm{S}$ and T . There are two possibilities:

1. $\mathrm{P} \in\{\mathrm{R}, \mathrm{S}, \mathrm{T}\}$
${ }_{2} \mathrm{P} \notin\{\mathrm{R}, \mathrm{S}, \mathrm{T}\}$
Suppose $P \in\{R, S, T\}$. Then $P$ equals one of these points, say R. However, $P \neq S$ and by $\boldsymbol{I}-1$, there is a unique line $l$ through P and S . Also, $\mathrm{P} \neq \mathrm{T}$, so by $\boldsymbol{I}-1$, there is a unique line $m$ through P and T . Since no line passes through all three of the points $\mathrm{R}, \mathrm{S}$ and T , we conclude that $l$ and $m$ are distinct, and we are done.

Suppose $\mathrm{P} \notin\{\mathrm{R}, \mathrm{S}, \mathrm{T}\}$. Since $\mathrm{P} \neq \mathrm{R}$ and by axiom $\boldsymbol{I}-1$, there is a unique line $l$ through P and R. If S does not lie on $l$, then the unique line $m$ passing through P and $S$ whose existence is guaranteed by axiom $\boldsymbol{I}-\mathbf{1}$ is not equal to $l$ and our claim is proven. If, however, S lies on $l$, then T does not lie on $l$ (because of the choice of R , S and T ), and there is a line $n$ through P and T , by axiom $\mathrm{I}-\mathbf{1}$. Since T lies on $n$ and not on $l, l \neq n$.

Proof \#1: Let P be a point. By Proposition 2.4 there is a line / that is not incident with P. By axiom I-2 there are at least two distinct points, $S$ and $T$, incident with $I$. Since $P$ does not lie on $I, P$ can not equal S or T . By applying axiom $I-1$ twice we conclude that there exists a line $m$ that passes through P and S and that there exists a line $n$ that passes through P and T. $m$ and $n$ both pass through P and they are not equal to each other (if they were they would both pass through S and T , and would consequently have to equal I, by axiom I-1, which bthey can not as P lies on each of them, but does not lie on I ).

Proof \#2: Let P be a point. By axiom I-3 there exist three distinct points $\mathrm{R}, \mathrm{S}$ and T . There are two possibilities:
$P \in\{R, S, T\}$
$P \notin\{R, S, T\}$
Suppose $P \in\{R, S, T\}$. Then $P$ equals one of these points, say R. However, $P \neq S$ and by $l-1$, there is a unique line $/$ through P and S . Also, $\mathrm{P} \neq \mathrm{T}$, so by $\boldsymbol{l - 1}$, there is a unique line $m$ through P and T . Since no line passes through all three of the points $\mathrm{R}, \mathrm{S}$ and T , we conclude that $/$ and $m$ are distinct, and we are done.

Suppose $P \notin\{R, S, T\}$. Since $P \neq R$ and by axiom $I-1$, there is a unique line $I$ through $P$ and $R$. If $S$ does not lie on $I$, then the unique line $m$ passing through $P$ and $S$ whose existence is guaranteed by axiom $I-1$ is not equal to $/$ and our claim is proven. If, however, S lies on I, then T does not lie on I (because of the choice of $R, S$ and $T$ ), and there is a line $n$ through $P$ and $T$, by axiom $I-1$. Since $T$ lies on $n$ and not on $I, I \neq n$.

## If $H$ then $C(H \Rightarrow C)$

- CONTRAPOSITIVE
- If not C then not $\mathrm{H} \quad(\sim \mathrm{C} \Rightarrow \sim \mathrm{H})$
- Logically equivalent to $\mathrm{H} \Rightarrow \mathrm{C}$
- CONVERSE
- If C then H

$$
(\mathrm{C} \Rightarrow \mathrm{H})
$$

Exercise: State the converse and contrapositive of Proposition 2.1.

- Proposition 2.1: If $l$ and $m$ are distinct lines that are not parallel, then $l$ and $m$ have a unique point in common.
- Which one of the two can you prove?


## Food for thought

- Is it possible to prove one of the axioms of incidence geometry from the other two?
- How do you convince somebody that it is not possible to prove a certain statement from a given list of axioms?


## Interpretation

- If we give the undefined terms of a system a particular meaning then we have given that system an interpretation.


## Interpretation of incidence geometry (IG) \#1

- Points - letters A, B, and C
- Lines - sets $\{A, B\},\{A, C\}$ and $\{B, C\}$
- Point lies on a line $l$ - the letter belongs to the set $l$



## Interpretation of IG \#2

- Points - numbers 1, 2, and 3
- Lines - there is only one line $l$
- 1 lies on $l$, 2 lies on $l, 3$ does not lie on $l$


3

## Models

- Q: Are the axioms of incidence geometry correct statements in these interpretations?
- If an axiom is a correct statement in a given interpretation we say that that interpretation satisfies the axiom
- If an interpretation satisfies all the axioms of a given system we say it is a model for that system.


## Exercise 1:

1. Is interpretation \#1 of IG a model of IG?
2. I1 ...
3. I2 ...
4. I3 ...
5. Is interpretation \#2 of IG a model of IG?
6. I1 ...
7. I2 $\ldots$
8. I3 ...

- To demonstrate that a statement $S$ can not be proved from a list of statements $\mathcal{L}$ it is enough to find an interpretation in which all the statements $\mathcal{L}$ are correct, but $S$ is not.
- WARNING: If you find an interpretation in which $S$ is correct, that does not mean that there is a proof of S .

