Class \#6

More proofs

Exercise

Prove: For every point P there exist at least two lines through P .

Exercise 2

- What is wrong with the following proof for homework problem 3?
- Let l be any line. By Axiom I-3, there exist three distinct points R, S, T that do not all lie on the same line. By $I-2$, there exist two points R, S lying on l. Since T does not lie on the same line as R, S , we conclude that T does not lie on l.

If H then $C(H \Rightarrow C)$

- CONTRAPOSITIVE
- If not C then not $\mathrm{H} \quad(\sim \mathrm{C} \Rightarrow \sim \mathrm{H})$
- Logically equivalent to $\mathrm{H} \Rightarrow \mathrm{C}$
- CONVERSE
- If C then H

$$
(\mathrm{C} \Rightarrow \mathrm{H})
$$

Exercise 3: State the converse and contrapositive of Proposition 2.1.

- Proposition 2.1: If l and m are distinct lines that are not parallel, then l and m have a unique point in common.
- Which one of the two can you prove?

