Axioms of incidence

And some theorems

Axioms of incidence

- I1 - For every point P and for every point Q not equal to P there exists a unique line l incident with P and Q .
- Discuss how each of the following differs from I1:

1. There exists a line through at least two points.
2. If you have two points, you can draw one line through them.
3. There exist two distinct points P, Q such that they both lie on a unique line 1 .
4. There exists a point P and there exists a point Q and there exists a line 1 such that P lies on 1 and Q lies on 1 .
5. For all lines 1 and for all points P and Q on l , there is no line m such that P and Q lie on m .

- I1 - For every point P and for every point Q not equal to P there exists a unique line $/$ incident with P and Q .
- I2 - For every line l there exist at least two distinct points incident with l.
- I3 - There exist three distinct points with the property that no line is incident with all three of them.

Proposition 2.0. In incidence geometry, there is a line.

- Proof: By Axiom I-3, there exist three distinct points P, Q and R. Since $P \neq Q$, by Axiom I-1, there exists a line through P and Q . This is the desired conclusion.

Remark: This is an existence theorem. You are trying to show that some object exist. Possible approach: produce a candidate and show that it does or is what you want it to do or be. Direct proof

Proposition 2.1: If l and m are distinct lines that are not

 parallel, then l and m have a unique point in common.- Proof: Let l and m be distinct lines that are not parallel. By definition of parallel lines, there exists a point P that lies on both l and m. (**We've simply stated the negation of the definition of parallel lines**) We wish to prove that P is the only such point; i.e., there is no other point Q lying on l and m. We will prove this by contradiction. (**We will show this by contradiction: this means assume the opposite is true, and derive a statement that contradicts a known fact or a previous step in the proof). Suppose contrary that there is a point Q such that $\mathrm{Q} \neq \mathrm{P}$ and Q lies on both l and m. By axiom $\boldsymbol{I}-1$, there is only line passing through P and Q . Since l passes through P and Q and m passes through P and Q , we must have $l=m$. This contradicts our assumption that $l \neq m$. (**Our assumption led to this contradiction; therefore the assumption is false**). Therefore there is no other point Q lying on l and m. We conclude that l and m have a unique point in common, namely P .

