Language: logical terms

- A *statement* is a sentence that is either true or false, but not ambiguous Are the following statements?
 - 1. The temperature in Ann Arbor at 7:30am on 9/8/2006 is 73F.
 - 2. Bicycles have nine wheels.
 - 3. The 36th digit of π is 7.
 - 4. Is it hot today?
 - 5. Mona Lisa is a beautiful painting.

6. She is 5 feet 1.

"She is 5 feet 1"

- Replace "she" by
 - Emina: Emina is 5 feet 1.
 - □ Michael Jordan: Michael Jordan is 5 feet 1.
- "she" is a free variable: it can take on different values
- A sentence with a free variable in it that becomes a statement when the free variable takes on a particular value is called a *predicate*.

Examples of predicates

1.
$$x + y = 3$$

2. She went to the movies and he went to feed their dogs.

Notation:

1.
$$P(x,y) := x + y = 3$$

2. Q(she, he):= "She went to the...."

• Give examples of mathematical predicates that have 2 and 3 free variables. Share with your group.

Promoting predicates into statements

- 1. Substituting a particular value for the free variable P(7,3): = "7+3=3"
- 2. Giving a range of values for the free variable that turn the predicate into a statement T(x): =" x² - 1 = 0"
 - For all real numbers x, $x^2 1 = 0$
 - There exists a real number x, $x^2 1 = 0$

False statement

True statement

• For all, \forall , and there exists, \exists , are called quantifiers.

• Variables are no longer free; we now call them *bound*.

Exercises

- 1. Free variable z will refer to fish. Give examples of predicates A(z) and B(z) so that
 - 1. "For all z, A(z)" is a true statement
 - 2. "For all z, B(z)" is false, but "There exists z, B(z)" is true.

- 2. Translate the following statement into a precise statement
 - 1. "A line must pass through at least two points."

- 3. Consider the following statements
 - 1. For all x there exists y such that $y^2 = x$.
 - 2. There exists y such that for all x, $y^2 = x$.
 - 3. There exists x and there exists y such that $y^2 = x$.
 - 4. There exists y and there exists x such that $y^2 = x$.

Explain the differences between 1. and 2. and a. and b, if there are any. Which of the above statements are true?

Compound statements

Р	Q	$P \land Q$	$P \lor Q$	$P \Rightarrow Q$	~P
		P and	P or Q	P implies	Not P
		Q		Q	
Т	Т	Т	Т	Т	F
Т	F	F	Т	F	F
F	Т	F	Т	Т	Т
F	F	F	F	Т	Т

"P only if Q" means "if P then Q"

"P if and only if Q" means "(if P then Q) and (if Q then P)"

□ If and only if is abbreviated iff.

• "A=B" means that A and B represent identical object (eg. point).

Mathematical implication

 All mathematical statements are of this form (even when it does not appear to be so)

□ If (hypothesis) then (conclusion).

 Theorem: Base angles of an isosceles triangle are congruent.

If a triangle is isosceles, then its base angles are congruent.

Example

- If the moon is made of green cheese, then chocolate prevents cavities.
 - □ P:= "the moon is made of green cheese" is false
 - Q:= "chocolate prevents cavity" is false
 - $P \Rightarrow Q \text{ is true!}$

Exercise

Find the truth table for " $Q \lor \sim P$ "

Two statements whose truth tables are the same are called *logically equivalent*

Find the truth table for $P \lor \sim P$ and $P \land \sim P$

Р	~P	P ∨ ~P	P ^~P
Т	F	Т	F
F	Т	Т	F

A statement whose truth table value is always true is called *tautology*.

A statement whose truth table value is always false is called *contradiction*.

Negation

Q: What is the negation of:For all x, P(x)

 \Box There exists y such that Q(y)