Language: logical terms

- A statement is a sentence that is either true or false, but not ambiguous
Are the following statements?

1. The temperature in Ann Arbor at 7:30am on 9/8/2006 is 73 F .
2. Bicycles have nine wheels.
3. The 36th digit of π is 7 .
4. Is it hot today?
5. Mona Lisa is a beautiful painting.
6. She is 5 feet 1 .

"She is 5 feet 1 "

- Replace "she" by
- Emina: Emina is 5 feet 1 .
- Michael Jordan: Michael Jordan is 5 feet 1.
- "she" is a free variable: it can take on different values
- A sentence with a free variable in it that becomes a statement when the free variable takes on a particular value is called a predicate.

Examples of predicates

1. $x+y=3$
2. She went to the movies and he went to feed their dogs.

Notation:

1. $\mathrm{P}(\mathrm{x}, \mathrm{y}):=" \mathrm{x}+\mathrm{y}=3 "$
2. $\mathrm{Q}($ she, he $):="$ "She went to the...."

Exercise

- Give examples of mathematical predicates that have 2 and 3 free variables. Share with your group.

Promoting predicates into statements

Substituting a particular value for the free variable

$$
\mathrm{P}(7,3):=" 7+3=3 "
$$

2. Giving a range of values for the free variable that turn the predicate into a statement

$$
\mathrm{T}(\mathrm{x}):=" \mathrm{x}^{2}-1=0 "
$$

- For all real numbers $x, x^{2}-1=0$
- There exists a real number $x, x^{2}-1=0$

Quantifiers

- For all, \forall, and there exists, \exists, are called quantifiers.
- Variables are no longer free; we now call them bound.

Exercises

1. Free variable z will refer to fish. Give examples of predicates $\mathrm{A}(\mathrm{z})$ and $\mathrm{B}(\mathrm{z})$ so that
2. "For all $z, A(z)$ " is a true statement
3. "For all $z, B(z)$ " is false, but "There exists $z, B(z)$ " is true.
4. Translate the following statement into a precise statement
5. "A line must pass through at least two points."
6. Consider the following statements
7. For all x there exists y such that $\mathrm{y}^{2}=\mathrm{x}$.
8. There exists y such that for all $\mathrm{x}, \mathrm{y}^{2}=\mathrm{x}$.
9. There exists x and there exists y such that $\mathrm{y}^{2}=\mathrm{x}$.
10. There exists y and there exists x such that $\mathrm{y}^{2}=\mathrm{x}$.

Explain the differences between 1. and 2. and a. and b, if there are any. Which of the above statements are true?

Compound statements

P	Q	$\mathrm{P} \wedge \mathrm{Q}$ P and Q	$\mathrm{P} \vee \mathrm{Q}$ P or Q	$\mathrm{P} \Rightarrow \mathrm{Q}$ P implies Q	$\sim \mathrm{P}$ Not P
T	T	T	T	T	F
T	F	F	T	F	F
F	T	F	T	T	T
F	F	F	F	T	T

- "P only if Q " means "if P then Q "
- "P if and only if Q " means "(if P then Q) and (if Q then P)"
- If and only if is abbreviated iff.
- "A=B" means that A and B represent identical object (eg. point).

Mathematical implication

- All mathematical statements are of this form (even when it does not appear to be so)
- If (hypothesis) then (conclusion).
- Theorem: Base angles of an isosceles triangle are congruent.

If a triangle is isosceles, then its base angles are congruent.

Example

- If the moon is made of green cheese, then chocolate prevents cavities.
- $\mathrm{P}:=$ "the moon is made of green cheese" is false
- $\mathrm{Q}:=$ "chocolate prevents cavity" is false
- $\mathrm{P} \Rightarrow \mathrm{Q}$ is true!

P	Q	$\mathrm{P} \Rightarrow \mathrm{Q}$
T	T	T
T	F	F
F	T	T
F	F	T

Exercise

- Find the truth table for " $\mathrm{Q} \vee \sim \mathrm{P}$ "

P	Q	$\sim \mathrm{P}$	$\mathrm{Q} \vee \sim \mathrm{P}$
T	T	F	T
T	F	F	F
F	T	T	T
F	F	T	$\mathrm{T} \Rightarrow \mathrm{Q}$
T			
F			
T			
T			

Two statements whose truth tables are the same are called logically equivalent

Find the truth table for $\mathrm{P} \vee \sim \mathrm{P}$ and $\mathrm{P} \wedge \sim \mathrm{P}$

P	$\sim P$	$P \vee \sim P$	$P \wedge \sim P$
T	F	T	F
F	T	T	F

A statement whose truth table value is always true is called tautology.
A statement whose truth table value is always false is called contradiction.

Negation

Q: What is the negation of:
\square For all $x, P(x)$

- There exists y such that $\mathrm{Q}(\mathrm{y})$

