Theorem 5.3: Angle sum of any triangle is

 less than or equal to 180°- Suppose there is a triangle with angle sum greater than 180°, say angle sum of $\triangle \mathrm{ABC}$ is $180^{\circ}+\mathrm{p}$, where $\mathrm{p}>0$.
- Goal: Construct a triangle that has the same angle sum, but one of its angles is smaller than p .
- Why is that enough?
- We would have that the remaining two angles add up to more than 180°, which contradicts one of our theorem HW9\#3.

Construct a triangle with angle sum as that of $\triangle \mathrm{ABC}\left(180^{\circ}\right.$ $+p)$, but one of its angles is at most half of $\mathrm{m}(\varangle \mathrm{A})$

Since $\alpha_{1}+\alpha_{2}=m(\varangle A)$, we conclude that either α_{1} or α_{2} is smaller B than $m(\varangle A)$, so either $m(\varangle D A B)$ or $m(\varangle A D B) \leq m(\varangle A) / 2$
angle sum of $\triangle A B C$ is

$$
\alpha_{1}+\alpha_{2}+\left(h+\gamma=100^{\circ}+p\right.
$$

Single sum of $\triangle A B D$ is

$$
\alpha_{1}+\alpha_{2}+\beta+\gamma=100^{\circ}+p
$$

If EPP holds a rectangle exists.

Using converse of alternate interior angle theorem we conclude that $\varangle \mathrm{YCB} \cong \varangle \mathrm{ABC}$, where
$\mathrm{D} * \mathrm{C} * \mathrm{Y}$. Therefore $\varangle \mathrm{YCB}$ is a right angle. Its supplement is $\varangle \mathrm{DCB}$, hence it is a right angle as well

If a rectangle exists then EPP holds.

Let l be any line and P a point not lying on it. Let Q be the foot of the perpendicular to l through P . Let m be a line perpendicular to PQ through P . Then m parallel to l. Claim is that every line n through P not equal to m intersects l.

If $n=\overleftrightarrow{\mathrm{PQ}}$ then n intersects l. Suppose then
Q is not on n.

$\mathrm{PS} \cong \mathrm{XY}$ (still to show). We can choose Y so that $\mathrm{XY}>\mathrm{PQ}$. Then $\mathrm{PS}>\mathrm{PQ}$, so $\mathrm{P} * \mathrm{Q} *$. Since S and Y on the same side of l, and P and S on opposite side of l, PY intersects l.

