Theorem 5.3: Angle sum of any triangle is less than or equal to 180°

- Suppose there is a triangle with angle sum greater than 180°, say angle sum of ΔABC is 180° + p, where p>0.
- Goal: Construct a triangle that has the same angle sum, but one of its angles is smaller than p.
 - Why is that enough?
 - We would have that the remaining two angles add up to more than 180°, which contradicts one of our theorem HW9#3.

Construct a triangle with angle sum as that of $\triangle ABC$ (180° + p), but one of its angles is at most half of m($\triangleleft A$)

If EPP holds a rectangle exists.

 $\longleftrightarrow \\ \text{Let AX and BY be perpendicular lines to } \\ \text{Such that X and Y are on the same side of AB} \\ \end{cases}$

Let D be any point on ray \overrightarrow{AX} . There exists a unique ray DZ such that Z is on the same side of \overrightarrow{AX} as B and that $\triangleleft \overrightarrow{ADZ}$ is a right.

Note that \overleftrightarrow{DZ} is parallel to \overleftrightarrow{AB} (AIA thm)

Line \overrightarrow{DZ} intersects \overrightarrow{BY} in a point C, for if it did not then \overrightarrow{AB} and \overrightarrow{BY} are two distinct lines parallel to \overrightarrow{DZ} through B, which contradicts EPP.

C is on the same side of \overrightarrow{AB} as D because Note.

Using converse of alternate interior angle theorem we conclude that \triangleleft YCB $\cong \triangleleft$ ABC, where D*C*Y. Therefore \triangleleft YCB is a right angle. Its supplement is \triangleleft DCB, hence it is a right angle as well

If a rectangle exists then EPP holds.

Let *l* be any line and P a point not lying on it. Let Q be the foot of the perpendicular to *l* through P. Let *m* be a line perpendicular to PQ through P. Then *m* parallel to *l*. Claim is that every line *n* through P not equal to *m* intersects *l*.

If $n = \stackrel{\leftrightarrow}{PQ}$ then *n* intersects *l*. Suppose then *Q* is not on *n*.

A ray \overrightarrow{PY} of *n* lies between ray \overrightarrow{PQ} and a ray $\overrightarrow{PS'}$ of *m*.

Let X be the foot of the perpendicular to *m* through Y.

Let S be the foot of the perpendicular to PQ through Y. Then □SYXP has three right angles, so its fourth angle has to be right as well (rectangle exists implies every triangle has angle sum 180° implies every quadrilateral has angle sum 360°)

 $PS\cong XY$ (still to show). We can choose Y so that XY>PQ. Then PS>PQ, so P*Q*S. Since S and Y on the same side of *l*, and P and S on opposite side of *l*, PY intersects *l*.