Class \#35

More angle sum

GOAL:

- Theorem : In hyperbolic geometry every triangle has angle sum less than 180°.
- Theorem : In Euclidean geometry every triangle has angle sum of 180°.

If you had these, could you prove Theorem and Theorem ?

- Theorem 5.2: If there is a triangle whose angle sum is not 180° then no triangle has angle sum 180°.
- Theorem 5.3: No triangle in neutral geometry can have angle sum greater than 180°.
- Theorem 5.4: If there is a triangle with angle sum 180°, then all triangles have angle sum 180°.
- Theorem 5.5: A rectangle exists iff EPP holds.
- Theorem 5.6: If a rectangle does not exist, there is a triangle with angle sum less than 180°.
- Theorem 5.7: If a rectangle exists, then there are arbitrarily large rectangles. (proved)
- Theorem 5.8: If a rectangle exists, then for any right triangle $\triangle X Y Z$ (with right angle at X), there is a rectangle $\square \mathrm{DEFG}$ such that $\mathrm{DE}>\mathrm{XY}$ and $\mathrm{DG}>\mathrm{XZ}$. (proved)
- Theorem 5.9: If a rectangle exists, then every right triangle has angle sum of 180°.
- Theorem 5.10: If every right triangle has angle sum 180°, then every triangle has angle sum 180°.
- Theorem 5.11: If there is a right triangle with angle sum 180°, then a rectangle exists. (proved)

Theorem \downarrow : In hyperbolic geometry every triangle has angle sum less than 180°.

Every triangle with angle sum less than 180°.
^T5.2 and T5.3
There is a triangle with angle sum less than 180°.

A rectangle does not exist

Contrapositive of T5.5

In hyperbolic geometry HPP holds \Rightarrow EPP does not hold

Theorem : In Euclidean geometry every triangle has angle sum of 180°.

Theorem 5.4: If there is a triangle with angle sum 180°, then all triangles have angle sum 180°.
every triangle has angle sum of 180°

- Proof:
- If there is a right triangle whose angle sum is 180°, then a rectangle exist (Theorem 5.11)
- This implies that there are arbitrarily large rectangles, and consequently every right triangle has angle sum 180°. (Theorem 5.8, 5.9)
- Therefore all triangles have angle sum 180° (Theorem 5.10).
- Remains to be shown: If there is a triangle with angle sum 180°, then there is a right triangle whose angle sum is 180°. How could you do that?

T5.10
every right triangle has angle sum of 180°

T5.7 \& T5.8
there is a rectangle

T5.11
there is a right triangle with angle sum 180°
to be proved
there is a triangle with angle sum 180°

Prove: If there is a triangle with angle sum 180°, then there is a right triangle whose angle sum is 180°

$\alpha+\beta+\gamma=180^{\circ}$
WLOG $\alpha<90^{\circ}, \beta<90^{\circ}$

Theorem 5.9 : If a rectangle exists, then every right triangle has angle sum of 180°.

Strategy: Use 5.8 to put the triangle into a large rectangle.
Consider the $\triangle \mathrm{ABC}$ and show that its angle sum is 180°. Then show that
This means that each triangle $\triangle \mathrm{AEC}$ and $\triangle \mathrm{EBC}$ has to have angle sum 180°. Apply
The same reasoning to $\triangle \mathrm{AEC}$ to show that $\triangle \mathrm{AEF}$ must have angle sum 180° as well.

Theorem 5.10: If every right triangle has angle sum 180°, then all triangles have angle sum 180°.

