

Sum of angles

Types of quadrilaterals

- You defined or talked about various types of quadrilaterals:
 - Square all sides are congruent and all angles are right angles
 - □ Rectangle all angles are right angles
 - Parallelograms opposite sides are parallel
 - Kite there are two distinct pairs of congruent adjacent sides
 - □ Rhombus all sides are congruent

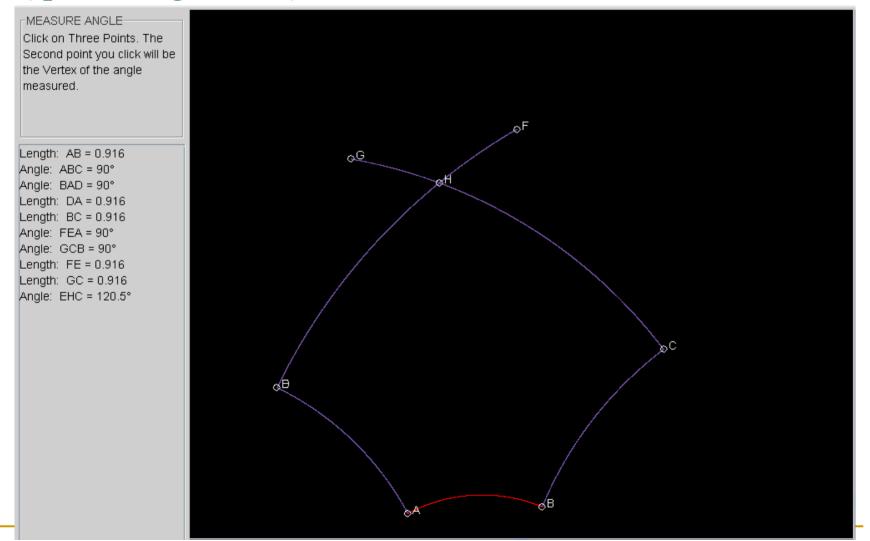
Questions to ask

- Do these exist?
- If they do, what are their relationships?
 - Every square is a rectangle?
 - Every rectangle is a parallelogram?
 - Every square is a rhombus?
 - Every rhombus is a kite?
 - If a quadrilateral has four congruent sides and four congruent angles then it is a square?

• Let's construct a rectangle in hyperbolic geometry:

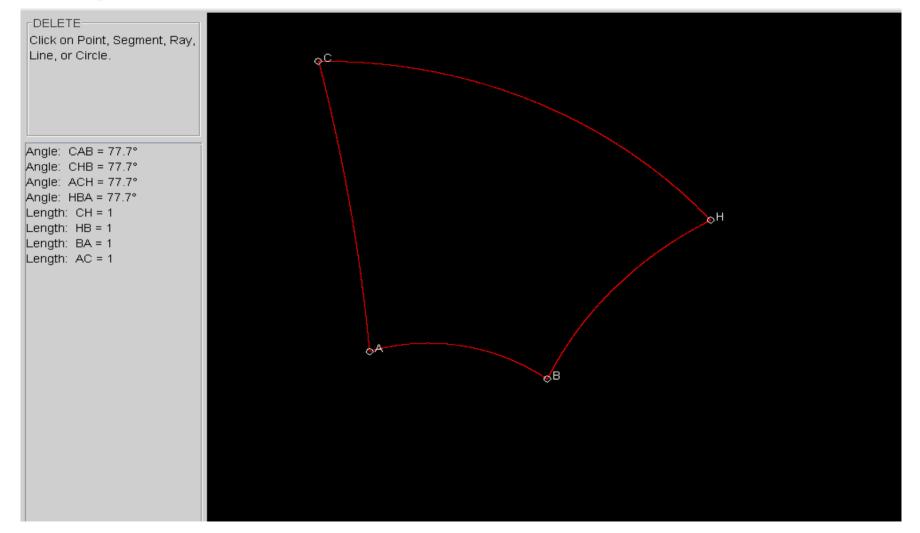
□ <u>NonEuclid</u>

4 right angles and 4 congruent sides – forces fifth side in hyperbolic geometry



Quadrilateral with all sides congruent and all angles

congruent.



When does a rectangle exist?

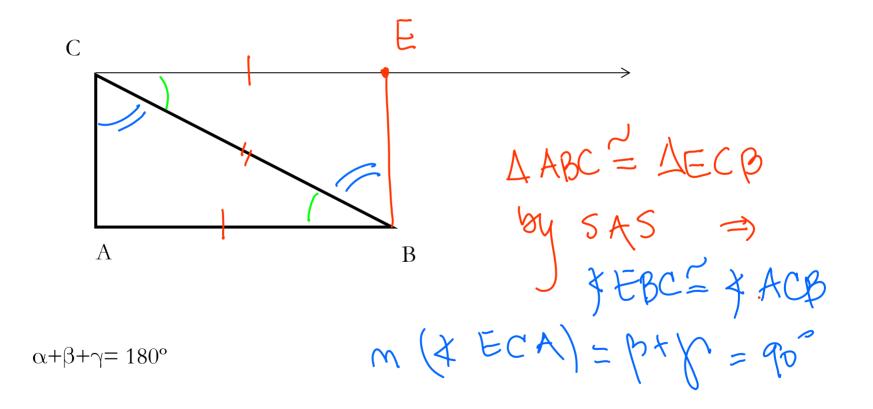
Rephrased:

- □ When can you construct a rectangle?
- Would you be able to do it if you had a right angle triangle?

NonEuclid

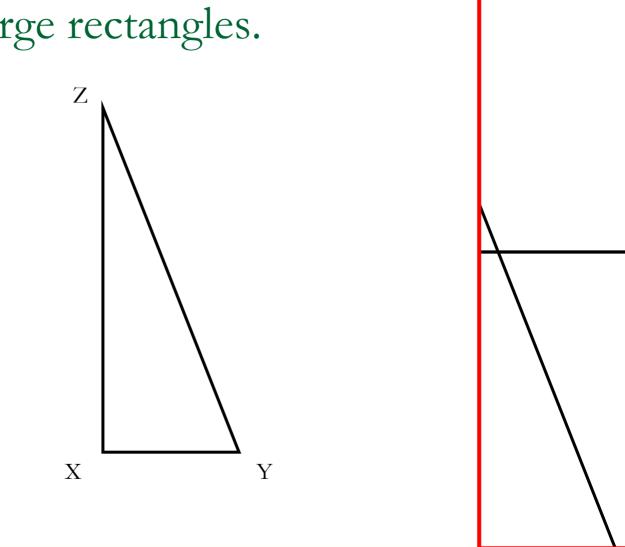
- Is there something else you'd need to know about that triangle?
 - Would it help if the sum of the measures of the angles was 180°? $m (\triangleleft A) = \alpha, m(\triangleleft B) = \beta, m(\triangleleft C) = \gamma$

If there is a right triangle whose angle sum is 180°, then a rectangle exist.



If there is a rectangle, then there are arbitrarily large rectangles.

Given a right triangle ∆XYZ (with right angle at X), then there is a rectangle □DEFG such that DE>XY and DG>XZ.

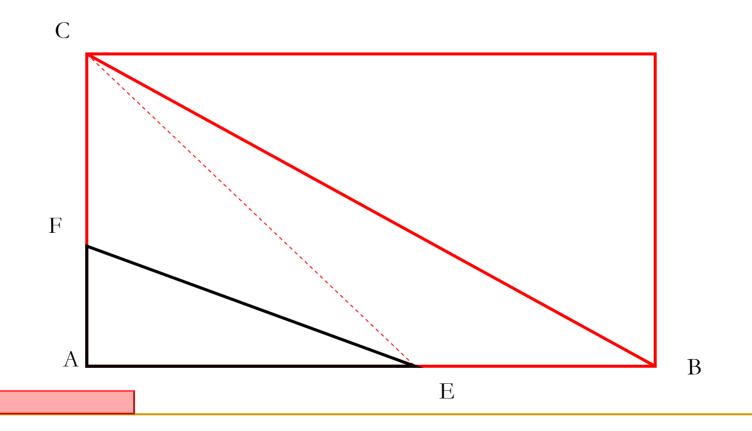


Book says:

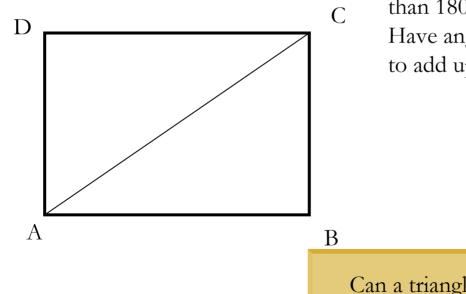
To be slightly more rigorous you could argue that you can build large rectangles using the initial right triangle.

If one right angle triangle has angle sum 180°, then all right angle triangles have angle sum 180°.

If you know that \triangle ABC has angle sum 180°, could you show that The same holds for \triangle AEF?



• If the angle sum in $\Box ABCD$ is 360°, then both $\triangle ABC$ and $\triangle ACD$ have angle sum 180°.



Suppose one of them had angle sum less than 180°. Then the other would have to Have angle sum greater than 180°, if they were to add up to 360°.

Can a triangle have angle sum greater than 180°?