Class \#34

Sum of angles

Types of quadrilaterals

- You defined or talked about various types of quadrilaterals:
- Square - all sides are congruent and all angles are right angles
- Rectangle - all angles are right angles
- Parallelograms - opposite sides are parallel
- Kite - there are two distinct pairs of congruent adjacent sides
- Rhombus - all sides are congruent

Questions to ask

- Do these exist?
- If they do, what are their relationships?
\square Every square is a rectangle?
- Every rectangle is a parallelogram?
\square Every square is a rhombus?
- Every rhombus is a kite?
- If a quadrilateral has four congruent sides and four congruent angles then it is a square?

Rectangle

- Let's construct a rectangle in hyperbolic geometry:
- NonEuclid

4 right angles and 4 congruent sides - forces fifth side in hyperbolic geometry

MEASURE ANGLE

Click on Three Points. The Second point you click will be the Vertex of the angle measured.

```
Length: AB = 0.916
Angle: }\textrm{ABC}=9\mp@subsup{0}{}{\circ
Angle: }\textrm{BAD}=9\mp@subsup{0}{}{\circ
Length: }\textrm{DA}=0.91
Length: }\textrm{BC}=0.91
Angle: FEA = 90%
Angle: }\textrm{GCB}=9\mp@subsup{0}{}{\circ
Length: FE =0.916
Length: GC = 0.916
Angle: }\textrm{EHC}=120.\mp@subsup{5}{}{\circ
```


Quadrilateral with all sides congruent and all angles

congruent.

```
DELETE
Click on Point, Segment, Ray,
Line, or Circle
Angle: }\textrm{CAB}=77.\mp@subsup{7}{}{\circ
Angle: }\textrm{CHB}=77.\mp@subsup{7}{}{\circ
Angle: }\textrm{ACH}=77.\mp@subsup{7}{}{\circ
Angle: }\textrm{HBA}=77.\mp@subsup{7}{}{\circ
Length: }\textrm{CH}=
Length: }\textrm{HB}=
Length: BA = 1
Length: AC = 1
```


When does a rectangle exist?

- Rephrased:
- When can you construct a rectangle?
- Would you be able to do it if you had a right angle triangle?
- NonEuclid
- Is there something else you'd need to know about that triangle?
- Would it help if the sum of the measures of the angles was 180° ?

$$
\mathrm{m}(\varangle \mathrm{~A})=\alpha, \mathrm{m}(\varangle \mathrm{~B})=\beta, \mathrm{m}(\varangle \mathrm{C})=\gamma
$$

If there is a right triangle whose angle sum is 180°, then a rectangle exist.

If there is a rectangle, then there are arbitrarily large rectangles.

- Given a right triangle $\triangle \mathrm{XYZ}$ (with right angle at X), then there is a rectangle \square DEFG such that $\mathrm{DE}>\mathrm{XY}$ and $D G>X Z$.

Book says:

To be slightly more rigorous you could argue that you can build large rectangles using the initial right triangle.

If one right angle triangle has angle sum 180°, then all right angle triangles have angle sum 180°.

If you know that $\triangle \mathrm{ABC}$ has angle sum 180°, could you show that The same holds for $\triangle A E F$?

- If the angle sum in $\square \mathrm{ABCD}$ is 360°, then both $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ACD}$ have angle sum 180°.

