## Class \#33

## Most popular response to

- What did the students want to prove?
- The angle bisectors of a square meet at a point.
- A square is a convex quadrilateral in which all sides are congruent and all angles are right angles.


## Claim: The angle bisectors of a square meet at a point.

- Proof: Consider the angle bisector of $\varangle B A C$.


This is too complicated. Let us try a different approach.

## Claim: The angle bisectors of a square meet at a point.

- Proof: Let $a$ be the angle bisector of $\varangle A, b$ the angle bisector of $\varangle \mathrm{B}$, etc. Consider the triangles $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ACD}$.
- Since $A B \cong A D, B C \cong C D$, by SSS, we have that triangles $\triangle \mathrm{ACB}$ and $\triangle \mathrm{ACD}$ are congruent.
$C \backsim$ By definition of congruent triangles $\varangle B A C \cong$ $\varangle \mathrm{DAC}$. This and the fact that C is in the interior of the angle $\varangle \mathrm{BAD}$ (consequence of the definition of convex quadrilateral), imply that the ray $\xrightarrow[\mathrm{AC}]{ }$ is the angle bisector of $\varangle \mathrm{BAD}$, that is $a=A C$.
- Similarly, we conclude that $c=\overrightarrow{\mathrm{CA}}$.

A
B

- By Prop 3.1. $a \cap c=\mathrm{AC}$.
- Consideration of triangles $\triangle \mathrm{BDA}$ and $\triangle \mathrm{BDC}$, would in the identical manner give us that $b \cap d=\mathrm{BD}$.
- We now have (using set theory)

$$
a \cap c \cap b \cap d=\mathrm{AC} \cap \mathrm{BD}
$$

- The intersection of the angle bisectors is the intersection of the diagonals, and we have proved that the diagonals of a convex quadrilateral intersect in a point. Therefore, the angle bisectors of a square intersect in a point.


## Most popular response to

- What did the students prove?
$\square$ The angle bisectors of a square are the diagonals.
- Could we prove this?
- How would you rephrase it so that it is a meaningful statement?


## Conjectures@12

- Group 1 :
- Def: A parallelogram is a convex quadrilateral whose opposite sides are parallel.
- If the diagonals of a parallelogram $\square \mathrm{ABCD}$ lie on the angle bisectors such that BD $\subset$ bisector $(\varangle \mathrm{ABC}), \mathrm{BD} \subset$ bisector $(\varangle \mathrm{ADC}), \mathrm{AC} \subset$ bisector $(\varangle \mathrm{DCB}), \mathrm{AC} \subset$ bisector $(\varangle \mathrm{DAB})$, then all four sides $\mathrm{DC}, \mathrm{AB}, \mathrm{BC}$ and DA are congruent.
- Group 2:
- In a parallelogram the lines defined by opposite angle bisectors are either equal or parallel.
- Group 3:
- 1: If all four sides are congruent, the angle bisectors of opposite angles are collinear, the bisectors of adjacent angles intersect at a point and are perpendicular.
- 2: If opposite sides are parallel, then the angle bisectors of adjacent angles are perpendicular.
- 3: If all 4 sides are different lengths, you are screwed.
- Group 4:
- Bisectors of adjacent angles always meet. Therefore, one angle bisector will intersect at least 2 other angle bisectors and sometimes all 3 .
- Group 5:
- If all sides of a quadrilateral are congruent, then the intersection of all 4 angle bisectors is one point.


## Group 1

- Def: A parallelogram is a convex quadrilateral whose opposite sides are parallel.
- If the diagonals of a parallelogram $\square \mathrm{ABCD}$ lie on the angle bisectors such that $\mathrm{BD} \subset$ bisector $(\varangle \mathrm{ABC}), \mathrm{BD} \subset$ bisector $(\varangle \mathrm{ADC}), \mathrm{AC} \subset$ bisector $(\varangle \mathrm{DCB})$, $A C \subset$ bisector $(\varangle D A B)$, then all four sides $D C, A B, B C$ and $D A$ are congruent.
D
C


A
B

## Group 2

- In a parallelogram the lines defined by opposite angle bisectors are either equal or parallel.



## Group 3:

- 1: If all four sides are congruent, the angle bisectors of opposite angles are collinear, the bisectors of adjacent angles intersect at a point and are perpendicular.
- Angle bisectors are collinear?
- 2: If opposite sides are parallel, then the angle bisectors of adjacent angles are perpendicular.

- 3: If all 4 sides are different lengths, you are screwed.


## Group 4:

- Bisectors of adjacent angles always meet. Therefore, one angle bisector will intersect at least 2 other angle bisectors and sometimes all 3 .


## Group 5

- If all sides of a quadrilateral are congruent, then the intersection of all 4 angle bisectors is one point.
- Proof:


## Conjectures @1

- Group 1:
- Given a convex quadrilateral $\square \mathrm{ABCD}$, if the intersection of the angle bisectors emanating from any two opposite vertices is a segment, then those segments are diagonals and opposite angles are congruent.
- Group 2:
- If all sides of a convex quadrilateral are congruent the angle bisectors meet at a unique point in the interior of the quadrilateral.
- Group 3:
- The angle bisector of a convex quadrilateral intersects one side of a quadrilateral not containing the vertex it originated from. If it intersects both sides, then it contains its opposite vertex.
- Group 4:
- Given a convex quadrilateral, if the intersection of the angle bisectors of the angles formed by the opposite vertices are equal to the diagonals, then the quadrilateral is a square.
- A square is a quadrilateral with all four sides congruent and all four angles right angles.
- Group 5:
- If a rectangle is not a square, then the angle bisectors intersect to form a square.
- Rectangle - quadrilateral with four right angles and opposite sides congruent.
- Square - rectangle with all sides congruent


## Group 1:

$\square$ Given a convex quadrilateral $\square \mathrm{ABCD}$, if the intersection of the angle bisectors emanating from any two opposite vertices is a segment, then those segments are diagonals and opposite angles are congruent.


## Group 2:

- If all sides of a convex quadrilateral are congruent the angle bisectors meet at a unique point in the interior of the quadrilateral.
- Proof:



## Group 3:

- The angle bisector of a convex quadrilateral intersects one side of a quadrilateral not containing the vertex it originated from. If it intersects both sides, then it contains its opposite vertex.



## Group 4:

- Given a convex quadrilateral, if the intersection of the angle bisectors of the angles formed by the opposite vertices are equal to the diagonals, then the quadrilateral is a square.



## Group 5:

- If a rectangle is not a square, then the angle bisectors intersect to form a square.
- Rectangle - quadrilateral with four right angles and opposite sides congruent.
- Square - rectangle with all sides congruent

