

Most popular response to

What did the students want to prove?

□ The angle bisectors of a square meet at a point.

• A *square* is a convex quadrilateral in which all sides are congruent and all angles are right angles.

Claim: The angle bisectors of a square meet at a point.

• Proof: Consider the angle bisector of \triangleleft BAC.

Claim: The angle bisectors of a square meet at a point.

- Proof: Let *a* be the angle bisector of $\triangleleft A$, *b* the angle bisector of $\triangleleft B$, etc. Consider the triangles $\triangle ACB$ and $\triangle ACD$.
- Since $AB \cong AD$, $BC \cong CD$, by SSS, we have that triangles $\triangle ACB$ and $\triangle ACD$ are congruent.
- By definition of congruent triangles $\triangleleft BAC \cong \triangleleft DAC$. This and the fact that C is in the interior of the angle $\triangleleft BAD$ (consequence of the definition of convex quadrilateral), imply that the ray \overrightarrow{AC} is the angle bisector of $\triangleleft BAD$, that is $a = \overrightarrow{AC}$.
 - Similarly, we conclude that $c = \overrightarrow{CA}$.

By Prop 3.1. $a \cap c = AC$.

- Consideration of triangles Δ BDA and Δ BDC, would in the identical manner give us that $b \cap d =$ BD.
- We now have (using set theory) $a \cap c \cap b \cap d = AC \cap BD$
- The intersection of the angle bisectors is the intersection of the diagonals, and we have proved that the diagonals of a convex quadrilateral intersect in a point. Therefore, the angle bisectors of a square intersect in a point.

Most popular response to

- What did the students prove?
 - □ The angle bisectors of a square are the diagonals.
- Could we prove this?
- How would you rephrase it so that it is a meaningful statement?
 - 12

1

Conjectures @12

- Group 1 :
 - Def: A parallelogram is a convex quadrilateral whose opposite sides are parallel.
 - If the diagonals of a parallelogram □ABCD lie on the angle bisectors such that BD ⊂bisector(⊲ABC), BD ⊂bisector(⊲ADC), AC ⊂bisector(⊲DCB), AC ⊂bisector(⊲DAB), then all four sides DC, AB, BC and DA are congruent.
- Group 2:
 - □ In a parallelogram the lines defined by opposite angle bisectors are either equal or parallel.
- Group 3:
 - □ 1: If all four sides are congruent, the angle bisectors of opposite angles are collinear, the bisectors of adjacent angles intersect at a point and are perpendicular.
 - 2: If opposite sides are parallel, then the angle bisectors of adjacent angles are perpendicular.
 - 3: If all 4 sides are different lengths, you are screwed.
- Group 4:
 - Bisectors of adjacent angles always meet. Therefore, one angle bisector will intersect at least 2 other angle bisectors and sometimes all 3.
- Group 5:
 - □ If all sides of a quadrilateral are congruent, then the intersection of all 4 angle bisectors is one point.

Group 1

- Def: A parallelogram is a convex quadrilateral whose opposite sides are parallel.
- If the diagonals of a parallelogram □ABCD lie on the angle bisectors such that BD ⊂bisector(⊲ABC), BD ⊂bisector(⊲ADC), AC ⊂bisector(⊲DCB), AC ⊂bisector(⊲DAB), then all four sides DC, AB, BC and DA are congruent.

D

С

Group 2

• In a parallelogram the lines defined by opposite angle bisectors are either equal or parallel.

Group 3:

- 1: If all four sides are congruent, the angle bisectors of opposite angles are collinear, the bisectors of adjacent angles intersect at a point and are perpendicular.
 - Angle bisectors are collinear?
- 2: If opposite sides are parallel, then the angle bisectors of adjacent angles are perpendicular.

□ 3: If all 4 sides are different lengths, you are screwed.

Group 4:

 Bisectors of adjacent angles always meet. Therefore, one angle bisector will intersect at least 2 other angle bisectors and sometimes all 3.

Group 5

□ If all sides of a quadrilateral are congruent, then the intersection of all 4 angle bisectors is one point.

• Proof:

Conjectures @1

- Group 1:
 - □ Given a convex quadrilateral □ABCD, if the intersection of the angle bisectors emanating from any two opposite vertices is a segment, then those segments are diagonals and opposite angles are congruent.
- Group 2:
 - □ If all sides of a convex quadrilateral are congruent the angle bisectors meet at a unique point in the interior of the quadrilateral.
- Group 3:
 - The angle bisector of a convex quadrilateral intersects one side of a quadrilateral not containing the vertex it originated from. If it intersects both sides, then it contains its opposite vertex.
- Group 4:
 - Given a convex quadrilateral, if the intersection of the angle bisectors of the angles formed by the opposite vertices are equal to the diagonals, then the quadrilateral is a square.
 - A square is a quadrilateral with all four sides congruent and all four angles right angles.
- Group 5:
 - □ If a rectangle is not a square, then the angle bisectors intersect to form a square.
 - Rectangle quadrilateral with four right angles and opposite sides congruent.
 - □ Square rectangle with all sides congruent

Group 1:

□ Given a convex quadrilateral □ABCD, if the intersection of the angle bisectors emanating from any two opposite vertices is a segment, then those segments are diagonals and opposite angles are congruent.

Group 2:

- If all sides of a convex quadrilateral are congruent the angle bisectors meet at a unique point in the interior of the quadrilateral.
- □ Proof:

Group 3:

 The angle bisector of a convex quadrilateral intersects one side of a quadrilateral not containing the vertex it originated from. If it intersects both sides, then it contains its opposite vertex.

Group 4:

• Given a convex quadrilateral, if the intersection of the angle bisectors of the angles formed by the opposite vertices are

equal to the diagonals, then the quadrilateral is a square.

 $m \angle DAB = 60.00^{\circ}$

- AD = 4.19 cm AB = 4.19 cm
- DC = 4.19 cm BC = 4.19 cm

Group 5:

- If a rectangle is not a square, then the angle bisectors intersect to form a square.
- Rectangle quadrilateral with four right angles and opposite sides congruent.
- □ Square rectangle with all sides congruent