Class #30

G1– Little devils	G2 – False proofs	G3 – definitions	G4 – sketches	G5 – examples and counters
				Jacob
Lisa	Nese	Rachel	Kristen	Sarah
Kevin	Meg	Anthony	Matt	Mike
Jasmin	Victor	David	Jenny	Stephen
Erik	TJ	Tricia	Eddy	Sam

G1 – Little devils	G2 – sketches	G3 – false proofs	G4 – examples and counters	G5 – definitions
Amanda	Rachel	Sarah R	Julia	Laura
Sarah Y	Josh	Laurence	Robert	Matt
Whitney	Sarah C	Edgar	Sarah F	Ann
William	Nikki	Adam	Jim	Ping
Yolanda	Sahar	David	Alison	

Theorem 4.3: Every angle has a bisector.

Proof:

Let $\triangleleft BAC$ be an angle. We need to find a ray \overrightarrow{AD} between rays \overrightarrow{AB} and \overrightarrow{AC} , such that $\triangleleft BAD \cong \triangleleft DAC$. Let C' be the unique point on the ray \overrightarrow{AC} such that $AC' \cong AB$ (by axiom C1). Then $\triangle BAC'$ is an isosceles triangle. Let D be the midpoint of BC', so that AD is a median.

Triangles \triangle BAD and \triangle C'AD are congruent by SSS, so the corresponding angles are congruent: \triangleleft BAD $\cong \triangleleft$ DAC. Hence, AD is the angle bisector of \triangleleft BAC.

Part of hw10: Prove 4.4 and 4.5

-- Defining groups beware - we need your input!!

<u>angle bisectors</u>

- Theorem 4.4: Angle bisectors in a triangle meet at a point.
 - □ Proof: We need few new things for this proof:
 - Recall:
 - the proof that from a point not on a line there is a perpendicular to the line from that point.
 - Given a line, an angle was formed, then isosceles triangle whose base was a segment perpendicular to the given line.
 - Say you have an angle, and a point on its bisector. Form the perpendiculars from that point to the sides of an angle. What can you say about them? Phrase your conclusion as a statement (theorem, proposition).
 - In order to finish this we need to define a distance from a point to a line (or ray). Our defining groups are working on this. The definitions will be supplied on the homework sheet. If you want to help them you are welcome to.
 - □ Theorem 4.5: A point P lies on the angle bisector of \triangleleft BAC if and only if it is equidistant from the sides of \triangleleft BAC.

In all of the propositions below let $\triangle ABC$ be a triangle and D a point on AB

- Prop 4.2.1: If $AC \cong BC$ and CD is a median then \overrightarrow{CD} is the angle bisector of $\triangleleft ACB$.
 - Sketch: By definition of a median, D is a midpoint of AB, so $AD\cong BD$. This, together with $CD\cong CD$, $AC \cong BC$, and SSS shows $\Delta ACD\cong \Delta BCD$. Angle $\triangleleft ACD$ corresponds to $\triangleleft BCD$, so they are congruent by definition of congruent triangles. Since D is such that A*D*B it is in the interior of the angle $\triangleleft ACB$ (Prop 3.7), so ray \overrightarrow{CD} is between rays \overrightarrow{CB} and \overrightarrow{CA} , hence it is the angle bisector.

 \longleftrightarrow

- Prop 4.2.2: If $AC \cong BC$ and CD is a median then CD is the altitude.
 - □ Sketch: By definition of a median, D is a midpoint of AB, so AD≅BD. This, together with CD≅CD, AC ≅ BC, and SSS shows $\triangle ACD \cong \triangle BCD$. Angle $\triangleleft ADC$ corresponds to $\triangleleft BDC$, so they are congruent by definition of congruent triangles. These angles are supplementary as well, since A*D*B and DC is a side of both. By definition of a right angle, $\triangleleft ADC$ is a right angle, so CD is perpendicular to AB. Since D lies on AB, we have that CD is an altitude, by definition of altitude.
- Prop 4.2.3: If $AC \cong BC$ and \overrightarrow{CD} is the angle bisector of $\triangleleft ACB$, then CD is the altitude.
 - Sketch: Since CD is the angle bisector, we have $\triangleleft ACD \cong \triangleleft BCD$. Since CD \cong CD, and AC \cong BC and using SAS we conclude that $\triangle ACD \cong \triangle BCD$. Angle $\triangleleft ADC$ corresponds to $\triangleleft BDC$, so they are congruent by definition of congruent triangles. These angles are supplementary as well, since A*D*B and DC is a side of both. By definition of a right angle, $\triangleleft ADC$ is a right angle, so CD is perpendicular to AB. Since D lies on AB, we have that CD is an altitude, by definition of altitude.
- Prop 4.2.4: If CD is a median and \overrightarrow{CD} is the angle bisector of $\triangleleft ACB$, then the triangle is isosceles.
 - Sketch: By definition of a median, D is a midpoint of AB, so AD \cong BD. Since CD is the angle bisector of \triangleleft ACB, we know \triangleleft ACD $\cong \triangleleft$ BCD. Further, CD \cong CD. Use ASS to conclude that \triangle ACD $\cong \triangle$ BCD. But ASS is NOT a theorem. WHY? Hint: To finish the proof use Theorem 4.5 this becomes HW10.
- Prop 4.2.5: If CD is a median and the altitude, then \triangle ABC is isosceles.
 - □ Sketch: By definition of a median, D is a midpoint of AB, so AD≅BD. Since CD is the altitude we have that \triangleleft ADC and \triangleleft BDC are right angles. Since CD≅CD, using ASA we conclude that \triangle ACD≅ \triangle BCD. By definition of congruent triangles we have AC ≅ BC, hence the triangle \triangle ABC is isosceles, by definition.