Class \#30

Class@12

G1- Little devils	G2 - False proofs	G3- definitions	G4 - sketches	G5 - examples and counters
				Jacob
Lisa	Nese	Rachel	Kristen	Sarah
Kevin	Meg	Anthony	Matt	Mike
Jasmin	Victor	David	Jenny	Stephen
Erik	TJ	Tricia	Eddy	Sam

Class@1

G1 - Little devils	G2 - sketches	G3-false proofs	G4- examples and counters	G5- definitions
Amanda	Rachel	Sarah R	Julia	Laura
Sarah Y	Josh	Laurence	Robert	Matt
Whitney	Sarah C	Edgar	Sarah F	Ann
William	Nikki	Adam	Jim	Ping
Yolanda	Sahar	David	Alison	

Theorem 4.3: Every angle has a bisector.

Proof:
Let $\varangle \mathrm{BAC}$ be an angle. We need to find a ray $\overrightarrow{\mathrm{AD}}$ between rays $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AC}}$, such that $\varangle \mathrm{BAD} \cong \varangle \mathrm{DAC}$. Let C^{\prime} be the unique point on the ray $\overrightarrow{A C}$ such that $A C^{\prime} \cong A B$ (by axiom $C 1$). Then $\triangle B A C^{\prime}$ is an isosceles triangle. Let D be the midpoint of BC^{\prime}, so that AD is a median.
Triangles $\triangle \mathrm{BAD}$ and $\triangle \mathrm{C}^{\prime} A D$ are congruent by SSS , so the corresponding angles are congruent: $\varangle \mathrm{BAD} \cong$ $\varangle \mathrm{DAC}$. Hence, AD is the angle bisector of $\varangle \mathrm{BAC}$.

Part of hw10: Prove 4.4 and 4.5
-- Defining groups beware - we need your input!!

- angle bisectors
- Theorem 4.4: Angle bisectors in a triangle meet at a point.
- Proof: We need few new things for this proof:
- Recall:
- the proof that from a point not on a line there is a perpendicular to the line from that point.
- Given a line, an angle was formed, then isosceles triangle whose base was a segment perpendicular to the given line.
- Say you have an angle, and a point on its bisector. Form the perpendiculars from that point to the sides of an angle. What can you say about them? Phrase your conclusion as a statement (theorem, proposition).
- In order to finish this we need to define a distance from a point to a line (or ray). Our defining groups are working on this. The definitions will be supplied on the homework sheet. If you want to help them you are welcome to.
$\square \quad$ Theorem 4.5: A point P lies on the angle bisector of $\varangle B A C$ if and only if it is equidistant from the sides of $\varangle B A C$.

In all of the propositions below let $\triangle \mathrm{ABC}$ be a triangle and D a point on $\stackrel{\mathrm{AB}}{ }$

- Prop 4.2.1: If $A C \cong B C$ and $C D$ is a median then $\overrightarrow{C D}$ is the angle bisector of $\varangle A C B$.
- Sketch: By definition of a median, D is a midpoint of AB , so $\mathrm{AD} \cong \mathrm{BD}$. This, together with $\mathrm{CD} \cong \mathrm{CD}, \mathrm{AC} \cong$ $B C$, and SSS shows $\triangle A C D \cong \triangle B C D$. Angle $\varangle A C D$ corresponds to $\varangle B C D$, so they are congruent by definition of congruent triangles. Since $\overline{\mathrm{D}}$ is such that $\mathrm{A} * \mathrm{D} * \mathrm{~B}$ it is in the interior of the angle $\varangle \mathrm{ACB}$ (Prop 3.7), so ray $\overrightarrow{\mathrm{CD}}$ is between rays $\overrightarrow{\mathrm{CB}}$ and $\overrightarrow{\mathrm{CA}}$, hence it is the angle bisector.
- Prop 4.2.2: If $\mathrm{AC} \cong \mathrm{BC}$ and CD is a median then CD is the altitude.
- Sketch: By definition of a median, D is a midpoint of AB , so $\mathrm{AD} \cong \mathrm{BD}$. This, together with $\mathrm{CD} \cong \mathrm{CD}, \mathrm{AC} \cong$ BC , and SSS shows $\triangle \mathrm{ACD} \cong \triangle \mathrm{BCD}$. Angle $\varangle \mathrm{ADC}$ corresponds to $\varangle \mathrm{BDC}$, so they are congruent by definition of congruent triangles. These angles are supplementary as well, since $A * D * B$ and $D C$ is a side of both. By definition of a right angle, $\varangle \mathrm{ADC}$ is a right angle, so CD is perpendicular to AB . Since D lies on AB , we have that CD is an altitude, by definition of altitude.
- Prop 4.2.3: If $\mathrm{AC} \cong \mathrm{BC}$ and $\overrightarrow{\mathrm{CD}}$ is the angle bisector of $\varangle \mathrm{ACB}$, then CD is the altitude.
- Sketch: Since $C D$ is the angle bisector, we have $\varangle A C D \cong \varangle B C D$. Since $C D \cong C D$, and $A C \cong B C$ and using SAS we conclude that $\triangle \mathrm{ACD} \cong \triangle \mathrm{BCD}$. Angle $\varangle \mathrm{ADC}$ corresponds to $\varangle \mathrm{BDC}$, so they are congruent by definition of congruent triangles. These angles are supplementary as well, since $A * D * B$ and $\overrightarrow{D C}$ is a side of both. By definition of a right angle, $\varangle \mathrm{ADC}$ is a right angle, so CD is perpendicular to $\widehat{\mathrm{AB}}$. Since D lies on $\overleftrightarrow{A B}$, we have that CD is an altitude, by definition of altitude.
- Prop 4.2.4: If CD is a median and $\overrightarrow{\mathrm{CD}}$ is the angle bisector of $\varangle \mathrm{ACB}$, then the triangle is isosceles.
- Sketch: By definition of a median, D is a midpoint of $A B$, so $A D \cong B D$. Since $C D$ is the angle bisector of $\varangle A C B$, we know $\varangle A C D \cong \varangle B C D$. Further, $C D \cong C D$. Use ASS to conclude that $\triangle A C D \cong \triangle B C D$. But ASS is NOT a theorem. WHY? Hint: To finish the proof use Theorem 4.5 - this becomes HW10.
- Prop 4.2.5: If CD is a median and the altitude, then $\triangle \mathrm{ABC}$ is isosceles.
- Sketch: By definition of a median, D is a midpoint of $A B$, so $A D \cong B D$. Since $C D$ is the altitude we have that $\varangle A D C$ and $\varangle B D C$ are right angles. Since $C D \cong C D$, using ASA we conclude that $\triangle A C D \cong \triangle B C D$. By definition of congruent triangles we have $A C \cong B C$, hence the triangle $\triangle A B C$ is isosceles, by definition.

