Class \#2

Thought experiment

- Discuss your answers to the questions from the handout you got last time.
- Learn to listen and criticize.
- Do you all understand and approve of each other's arguments?

Axiomatic method

Procedure by which we demonstrate or prove that statements are indeed correct (given hypotheses).

Proving

- To show that a statement, S , is true:

$$
\longrightarrow \mathrm{S}_{2} \longrightarrow \mathrm{~S}_{1} \longrightarrow \mathrm{~S}
$$

either:

awe arrive at a statement that is accepted as true S has been proved
awe do not arrive at a true statement:
-Flawed proof
-Faulty system
\square The sequence of statements is incorrect.

Needed

- Agree on language
- Agree on axioms (statements to be accepted as true without justification)
- Agree on what constitutes a proof (how do we deduce new statements from old ones?)

By Tweedledee:

- Contrariwise, if it was so, it might be; and if it were so, it would be; but as it isn't, it ain't!

"Theorem": A cat has nine tails

- No cat has eight tails. Since one cat has one more tail than no cat, it must have nine tails.

Language: technical terms

Exercise:

- What is a point?
- What is a line?
- What is a number?

Possible answers

- What is a point?
- A sharp or tapered end
- A decimal point
- A dimensionless geometric object having no properties except location
- Euclid: that which has no part.

Possible answers

- What is a line?
- a geometric figure formed by a point moving along a fixed direction and the reverse direction
- Euclid:
- A breadthless length
- That which lies evenly with the points on itself

Undefined terms

- Point
- Line
- Lie on (a point P lies on line l, I passes through P)
- Between (point A is between B and C)
- Congruent

New terms

- Using undefined terms we can define new terms.

Definition: Two lines l and m are parallel, $l \| m$, if no point lies on both lines.
'no point lies on both lines' reads
'there exists no point P such that P lies on l and P lies on m

Experiment:

- Define the following terms:
- Segment AB
- Midpoint M of a segments AB
- Points A, B and C are collinear
- The triangle ABC formed by three noncollinear points A , B and C

