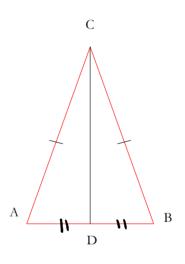

Class 29 – 1pm class

Medians, bisectors, ...

While proving SAA


How would instead of using vertical angles use:

Exterior angle theorem: In a triangle exterior angle is greater than either remote interior angle. to show that the above diagram is impossible, that is that the assumption AB<DE leads to contradiction?

Angle \triangleleft FGD is an exterior angle to the triangle \triangle EFG, and is congruent to a remote interior angle, which contradicts the Exterior Angle Theorem.

What else can we conclude?

Let \triangle ABC be a triangle with AC \cong BC. Let D be a midpoint of AB. In triangles \triangle ACD and \triangle BCD, AC \cong BC by hypothesis. AD \cong BD by definition of a midpoint. Therefore, triangles \triangle ACD and \triangle BCD are congruent by SSS. Hence, \triangleleft A \cong \triangleleft B.

Conclusions:

- $\triangleleft A \cong \triangleleft B$
- \triangleleft ACD $\cong \triangleleft$ BCD
- CD is angle bisector of ∢ACB
- $\bullet \triangleleft ADC > \triangleleft BCD$
- ∢ADC is a right angle

New definitions

A ray AD is an *angle bisector* of angle \triangleleft BAC if it is between rays AB and AC and \triangleleft BAD $\cong \triangleleft$ DAC.

A line l is a perpendicular bisector of AB if l is incident with midpoint of AB and is perpendicular to line AB.

A segment connecting a vertex of a triangle to the midpoint of the opposite side is called a median.

A segment CD is an *altitude* of a triangle \triangle ABC if CD is perpendicular to AB and D lies on AB.

List all the theorems we just proved

- 1. Given a triangle $\triangle ABC$ in which a median is an angle bisector, then $\triangle ABC$ is isosceles.
- In an isosceles triangle \triangle ABC with AC \cong BC and D a midpoint of AB than CD is an altitude.
- 3. In an equilateral triangle all altitudes are perpendicular bisectors.
- 4. If in a triangle an altitude is a median then the triangle is isosceles.
- 5. Every angle has a bisector.

HOMEWORK: For Monday, 11/27, prove the fifth statement (which did not come up in class, so I had to add it) and restate the others so that they are precise and unambiguous and grammatically correct. First two people to enter the classroom, except for me ©, are to write their versions on the board.

Note card task – if you haven't done you still may

Yeepee side: List three things that you learned in this class so far that you think will be most valuable to you in your future life as ______.

So saaad side: List three things that you think will be important to you in your future life as _____ that you wanted to see in this class, but you haven't seen it yet.