Class \#26

Dedekind's axiom \& Neutral Geometry

Dedekind's axiom

- Suppose that set $\{l\}$ of all points on a line l is a disjoint union $S_{1} \cup S_{2}$ of two nonempty subsets so that no point of either subset is between two points of the other. Then there exists a unique point O on l such that one of the subsets is equal to a ray of l with vertex O and the other is equal to the rays complement.
$-S_{1}$ and S_{2} are called Dedekind's cut of the line l.

Neutral geometry

- If we use I1-I3, B1-B4, C1-C6 and continuity axioms we can do a lot, but can not get Euclidean geometry. What we do get, we will call neutral geometry.
- Neutral geometry + Euclidean PP $=$ Euclidean geometry
- Neutral geometry + Hyperbolic PP = Hyperbolic geometry

Alternate interior angles

- We will say that a line t is a transversal to lines $l \neq l$ ' if there are exactly two distinct points B and B ' such that $\{l\} \cap\{t\}=\{B\}$ and $\left\{l^{\prime}\right\} \cap\{t\}=\left\{B^{\prime}\right\}$.
- Let $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}$ be points on $l, \mathrm{~A}^{*} * \mathrm{~B}^{*} \mathrm{C}^{\prime}$ be points on l ' so that A and A' are on the same side of t. The angles $\varangle A B B^{\prime}, \varangle C B B^{\prime}, \varangle A^{\prime} B^{\prime} B$ and $\varangle C^{\prime} B^{\prime} B$ are called interior.
- Pairs ($\varangle \mathrm{ABB}^{\prime}, \varangle \mathrm{C}^{\prime} \mathrm{B}^{\prime} \mathrm{B}$) and ($\varangle \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{B}, \varangle \mathrm{CBB}^{\prime}$) are called alternate interior angles.
- Let's see some pictures.

Alternate interior angle theorem

- If two lines cut by a transversal have a pair of congruent alternate interior angles, then the two lines are parallel.
- Proof: Let t be a transversal to lines l and l^{\prime} and $\varangle A B B^{\prime} \cong \varangle C^{\prime} B^{\prime} B$ (the notation is the same as in definition of alternate interior angles). Our claim is that the lines l and l ' are parallel. Assume contrary, that is assume that they intersect, say at a point D . By axiom C 1 there is a unique point E on the ray BA so that $\mathrm{BE} \cong \mathrm{B}$ ' D . We now have (added in red in the figure)
- $\quad \mathrm{BE} \cong \mathrm{B}^{\prime} \mathrm{D}$
- $\mathrm{B}^{\prime} \mathrm{B} \cong \mathrm{B}^{\prime} \mathrm{B}$
- $\varangle \mathrm{EBB}^{\prime} \cong \varangle \mathrm{DB}^{\prime} \mathrm{B}$ (hypothesis)
so, by SAS, we conclude that $\triangle \mathrm{BB}^{\prime} \mathrm{D} \cong \triangle \mathrm{B}^{\prime} \mathrm{BE}$. By definition of congruent triangles, we have $\varangle \mathrm{DBB}^{\prime} \cong$ $\varangle \mathrm{BB}^{\prime} \mathrm{E}$ (in green).
By our hypothesis we know that $\varangle E B^{\prime} \cong \varangle \mathrm{DB}^{\prime} \mathrm{B}$. By Proposition 3.14 we know that congruent angles have congruent supplements, so the supplements of these two angels are congruent. Supplement of $\varangle E B B \prime$ is $\varangle \mathrm{DBB}^{\prime}$, and let us call $\varangle \mathrm{DB} ’ \mathrm{~B}^{\prime}$ s supplement $\varangle \mathrm{X}$, hence $\varangle \mathrm{X} \cong \varangle \mathrm{DBB}$ '. Angle $\varangle \mathrm{X}$ and $\varangle E B B '$ both share a side, and they are congruent, so by Axiom C4 they have to be equal (that is their remaining sides have to coincide). Since $\varangle X=\varangle E B B \prime$ is a supplement to $\varangle D B \prime B$, we conclude that $B^{\prime} E$ and $\mathrm{B}^{\prime} \mathrm{D}$ are opposite rays, hence E and D lie on the same line, line l '. However, E and D also lie on l. We now have two lines l and l^{\prime} passing through two distinct points, so by $\mathrm{I} 1, l=l^{\prime}$, which contradicts our hypothesis. Therefore, our assumption must be wrong, and l and l ' are in fact parallel.

