Class \#25

Towards continuity principles and ultimately some familiar waters

Base angle theorem revisited.

If in a $\triangle A B C$ we have $\varangle A \cong \varangle B$, then $\triangle A B C$ is isosceles.

Suggestion: Show again that $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAC}$

ASA criterion for congruence

Proposition 3.17: Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ be two triangles. If $\varangle A \cong \varangle D, \varangle C \cong \varangle F$ and $A C \cong D F$, then $\triangle A B C \cong \triangle D E F$.

Sketch of proof:

- By axiom C 1 there exists a unique point B^{\prime} on $\overrightarrow{\mathrm{DE}}$ st $\mathrm{DB}^{\prime} \cong \mathrm{AB}$. We now have $\varangle A \cong \varangle D, A C \cong D F$ and $A B \cong D B '$ from which, using SAS, we conclude that $\triangle \mathrm{ABC} \cong \triangle \mathrm{DB}^{\prime} \mathrm{F}$. From the definition of congruent triangles we know that corresponding angles are congruent, hence $\varangle \mathrm{DFB} \underset{\leftrightarrows}{\leftrightarrows} \varangle \mathrm{C}$. By axiom C 4 we know that there is a unique ray FX on the side $(\mathrm{B}, \stackrel{\mathrm{DF}}{ })$ such that $\varangle \mathrm{C} \cong$ $\varangle \mathrm{XFD}$. Since both $\overrightarrow{\mathrm{FE}}$ and $\overrightarrow{\mathrm{FB}}$ are such rays, we conclude that $\overrightarrow{\mathrm{FE}}=\overrightarrow{\mathrm{FB}}{ }^{\prime}$. Since both points E and B' lie on distinct, nonparallel lines $\overleftrightarrow{\mathrm{DF}}$ and $\overleftrightarrow{\mathrm{DE}}$, they must be the same point (Proposition 2.1), hence $E=B$ '. Since $\triangle A B C \cong$ $\triangle \mathrm{DB}$ 'F, we conclude: $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$

Comparison

- $\varangle \mathrm{ABC}<\varangle \mathrm{DEF}$ means there is a ray EG between ED and EF such that $\varangle \mathrm{ABC} \cong \varangle \mathrm{DEG}$.

Proposition 3.21 (Ordering of angles)

Proposition 3.21 (Ordering of angles)

1. Exactly one of the following happens: $\varangle \mathrm{P}<\varangle \mathrm{Q}, \varangle \mathrm{P} \cong$ $\varangle Q$, or $\varangle Q<\varangle P$.
2. If $\varangle P<\varangle Q$ and $\varangle Q \cong \varangle R$, then $\varangle P<\varangle R$.
3. If $\varangle P<\varangle Q$ and $\varangle P \cong \varangle R$, then $\varangle R<\varangle Q$.
4. If $\varangle \mathrm{P}<\varangle \mathrm{Q}$ and $\varangle \mathrm{Q}<\varangle \mathrm{R}$, then $\varangle \mathrm{P}<\varangle \mathrm{R}$.

- Proposition 3.22 (SSS): Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ be two triangles. If $\mathrm{AB} \cong \mathrm{DE}, \mathrm{BC} \cong \mathrm{EF}$ and $\mathrm{AC} \cong \mathrm{DF}$, then $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.
- Proposition 3.23: All right angles are congruent.

New axioms and new terms

- Let O and R be two distinct points. The set of all points A such that $\mathrm{OA} \cong \mathrm{OR}$ is called a circle. Point O is called a center. Each segment OA is called radius. If B is a point such that $\mathrm{OB}<\mathrm{OR}$ then B is inside the circle. If $\mathrm{OB}>\mathrm{OR}$ then B is outside the circle.

Elementary continuity principle

If one endpoint of a segment is inside a circle and the other outside
then the segment intersects the circle.

Circular continuity principle

If a circle c has one point inside and one point outside another circle c^{\prime}

then the two circles intersect in two points.

Measurements?

- Archemede's axiom: If CD is any segment, A any point and r any ray with vertex A , then for every point $\mathrm{B} \neq \mathrm{A}$ on r there is a number n such that when CD is laid off n times on r starting from A, a point E is reached such that $n \cdot C D \cong A E$ and either $B=E$ or B is between A and E.

Given a segment OI called unit segment there is a unique way of assigning a length $\ell(\mathrm{AB})$ to each segment AB so that the following holds:

1. $\quad \ell(\mathrm{AB})$ is a positive real number and $\ell(\mathrm{OI})=1$
2. $\quad \ell(\mathrm{AB})=\ell(\mathrm{CD})$ iff $\mathrm{AB} \cong \mathrm{CD}$
3. $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ iff $\ell(\mathrm{AC})=\ell(\mathrm{AB})+\ell(\mathrm{BC})$
4. $\quad \ell(\mathrm{AB})<\ell(\mathrm{CD})$ iff $\mathrm{AB}<\mathrm{CD}$
5. For every positive real number x, there exists a segment AB such that $\ell(\mathrm{AB})=x$.

There is a unique way of assigning a degree measurement to each angle so that the following holds:

1. $m(\varangle A)$ is a real number such that $0<m(\varangle A)<180^{\circ}$
2. $m(\varangle A)=90^{\circ}$ iff $\varangle A$ is a right angle.
3. $m(\varangle A)=m(\varangle B)$ iff $\varangle A \cong \varangle B$.
4. If C is in the interior of $\varangle \mathrm{DAB}$ then $m(\varangle \mathrm{DAB})=$ $m(\varangle \mathrm{DAC})+m(\varangle \mathrm{CAB})$
5. For every real number x between 0 and 180 there is an angle $\varangle \mathrm{A}$ such that $m(\varangle \mathrm{~A})=x^{\circ}$
6. If $\varangle \mathrm{B}$ is supplementary to $\varangle \mathrm{A}$, then $m(\varangle \mathrm{~A})+m(\varangle \mathrm{~B})=180^{\circ}$
7. $m(\varangle A)>m(\varangle B)$ iff $\varangle A>\varangle B$
