

Towards continuity principles and ultimately some familiar waters

#### Base angle theorem revisited.

# If in a $\triangle ABC$ we have $\triangleleft A \cong \triangleleft B$ , then $\triangle ABC$ is isosceles.



### ASA criterion for congruence

Proposition 3.17: Let  $\triangle ABC$  and  $\triangle DEF$  be two triangles. If  $\triangleleft A \cong \triangleleft D$ ,  $\triangleleft C \cong \triangleleft F$  and  $AC \cong DF$ , then  $\triangle ABC \cong \triangle DEF$ .

Sketch of proof:

■ By axiom C1 there exists a unique point B' on DE st DB'  $\cong$  AB. We now have  $\triangleleft A \cong \triangleleft D$ , AC  $\cong$  DF and AB  $\cong$  DB' from which, using SAS, we conclude that  $\triangle ABC \cong \triangle DB'F$ . From the definition of congruent triangles we know that corresponding angles are congruent, hence  $\triangleleft DFB' \cong \triangleleft C$ . By axiom C4 we know that there is a unique ray FX on the side(B', DF) such that  $\triangleleft C \cong \triangleleft XFD$ . Since both FE and FB' are such rays, we conclude that FE=FB'. Since both points E and B' lie on distinct, nonparallel lines DF and DE, they must be the same point (Proposition 2.1), hence E=B'. Since  $\triangle ABC \cong \triangle DB'F$ , we conclude:  $\triangle ABC \cong \triangle DEF$ 

# Comparison

■  $\triangleleft$  ABC <  $\triangleleft$  DEF means there is a ray EG between ED and EF such that  $\triangleleft$  ABC  $\cong \triangleleft$  DEG.



# Proposition 3.21 (Ordering of angles)

- Proposition 3.21 (Ordering of angles)
- 1. Exactly one of the following happens:  $\triangleleft P < \triangleleft Q, \triangleleft P \cong \triangleleft Q$ , or  $\triangleleft Q < \triangleleft P$ .
- If  $\triangleleft P \leq \triangleleft Q$  and  $\triangleleft Q \cong \triangleleft R$ , then  $\triangleleft P \leq \triangleleft R$ .
- 3. If  $\triangleleft P \leq \triangleleft Q$  and  $\triangleleft P \cong \triangleleft R$ , then  $\triangleleft R \leq \triangleleft Q$ .
- 4. If  $\triangleleft P \leq \triangleleft Q$  and  $\triangleleft Q \leq \triangleleft R$ , then  $\triangleleft P \leq \triangleleft R$ .

Proposition 3.22 (SSS): Let  $\triangle ABC$  and  $\triangle DEF$  be two triangles. If  $AB \cong DE$ ,  $BC \cong EF$  and  $AC \cong DF$ , then  $\triangle ABC \cong \triangle DEF$ .

Proposition 3.23: All right angles are congruent.

#### New axioms and new terms

Let O and R be two distinct points. The set of all points A such that OA ≅ OR is called a *circle*. Point O is called a *center*. Each segment OA is called *radius*. If B is a point such that OB<OR then B is *inside* the circle. If OB>OR then B is *outside* the circle.



## Elementary continuity principle

If one endpoint of a segment is inside a circle and the other outside



then the segment intersects the circle.

# Circular continuity principle

If a circle *c* has one point inside and one point outside another circle *c*'



then the two circles intersect in two points.

#### Measurements?

Archemede's axiom: If CD is any segment, A any point and *r* any ray with vertex A, then for every point  $B \neq A$  on *r* there is a number *n* such that when CD is laid off *n* times on *r* starting from A, a point E is reached such that  $n \cdot CD \cong AE$  and either B=E or B is between A and E.



Given a segment OI called unit segment there is a unique way of assigning a length  $\ell(AB)$  to each segment AB so that the following holds:

- $\ell$  (AB) is a positive real number and  $\ell$ (OI)=1
- $\ell(AB) = \ell(CD) \text{ iff } AB \cong CD$
- 3. A\*B\*C iff  $\ell(AC) = \ell(AB) + \ell(BC)$
- $\ell(AB) \leq \ell(CD) \text{ iff } AB \leq CD$
- 5. For every positive real number *x*, there exists a segment AB such that  $\ell(AB) = x$ .

There is a unique way of assigning a degree measurement to each angle so that the following holds:

- *m*( $\triangleleft$ A) is a real number such that  $0 \le m(\triangleleft A) \le 180^{\circ}$
- 2.  $m(\triangleleft A) = 90^{\circ}$  iff  $\triangleleft A$  is a right angle.
- $3. \quad m(\triangleleft A) = m(\triangleleft B) \text{ iff } \triangleleft A \cong \triangleleft B.$
- 4. If C is in the interior of  $\triangleleft DAB$  then  $m(\triangleleft DAB) = m(\triangleleft DAC) + m(\triangleleft CAB)$
- 5. For every real number x between 0 and 180 there is an angle  $\triangleleft A$  such that  $m(\triangleleft A) = x^0$
- 6. If  $\triangleleft B$  is supplementary to  $\triangleleft A$ , then  $m(\triangleleft A) + m(\triangleleft B) = 180^{\circ}$
- 7.  $m(\triangleleft A) > m(\triangleleft B)$  iff  $\triangleleft A > \triangleleft B$