Class \#24

Vertical angles

- Let l and m be two distinct lines meeting at B and $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ on l and $\mathrm{D} * \mathrm{~B} * \mathrm{E}$ on m. Angles $\varangle \mathrm{ABD}$ and $\varangle C B E$ are called vertical angles.
- Are angles $\varangle \mathrm{ABE}$ and $\varangle \mathrm{CBD}$ vertical as well? Why or why not?

Proposition 3.15

1. Vertical angles are congruent to each other.
2. An angle congruent to a right angle is a right angle.

Proof: Use Proposition 3.14.

Proof

- (a) Let $\varangle \mathrm{ABD}$ and $\varangle \mathrm{CBE}$ be vertical angles, with $\mathrm{A} * \mathrm{~B} * \mathrm{C}$ and D*B*E. We must show that $\varangle \mathrm{ABD} \cong \varangle C B E$. By definition of supplementary angles, $\varangle A B D$ and $\varangle A B E$ are supplements and $\varangle \mathrm{CBE}$ and $\varangle \mathrm{ABE}$ are supplements. By C-2, $\varangle \mathrm{ABE} \cong \varangle \mathrm{ABE}$. Therefore by Proposition 3.14, $\varangle A B D \cong \varangle C B E \$$.
- (b) Let $\varangle \mathrm{ABC}$ be a right angle. Suppose that $\varangle \mathrm{DEF} \cong \varangle \mathrm{ABC}$. Let $\varangle \mathrm{X}$ be supplementary to $\varangle \mathrm{ABC}$ and let $\varangle \mathrm{Y}$ be supplementary to $\varangle \mathrm{DEF}$. We must prove that $\varangle \mathrm{DEF} \cong \varangle \mathrm{Y}$. By definition of right angle, $\varangle \mathrm{ABC} \cong \varangle \mathrm{X}$. By Proposition3.14, $\varangle \mathrm{X} \cong \varangle \mathrm{Y}$. We now have $\varangle \mathrm{DEF} \cong \varangle \mathrm{ABC} \cong \varangle \mathrm{X} \cong \varangle \mathrm{Y}$. By $\mathrm{C}-2, \varangle \mathrm{DEF} \cong \varangle \mathrm{Y}$. Thus $\varangle \mathrm{DEF}$ is a right angle.

Perpendicular?

- Suppose lines l and m meet at a point A. Lines l and m are perpendicular if there is a point B on l and a point C on m such that $\varangle B A C$ is a right angle.
- Proposition 3.16: For every line l and every point P there exists a line through P perpendicular to l.

Reminder:

- We proved: "The base angles of an isosceles triangle are congruent."
- Equivalently: If $A B \cong A C$ in a $\triangle A B C$, then $\varangle C \cong \varangle B$.
- Q : If in a $\triangle \mathrm{ABC}$ you have $\varangle \mathrm{C} \cong \varangle \mathrm{B}$, what can you say about that triangle?

ASA criterion for congruence

For Monday: how you might prove these two?

Proposition 3.17: Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ be two triangles. If $\varangle A \cong \varangle D, \varangle B \cong \varangle E$ and $A B \cong D E$, then $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

Proposition 3.18: If in a $\triangle \mathrm{ABC}$ we have $\varangle \mathrm{A} \cong \varangle B$, then $\triangle A B C$ is isosceles.

Angle addition, subtraction and

comparison

- There are equivalent statements for congruence of angles to those we were either given as axioms or that we proved for segments. Here is a sampling:
- Proposition 3.19 (Angle addition): If $\overrightarrow{B G}$ is between $\overrightarrow{B A}$ and BC, EH is between ED and $\mathrm{EF}, \varangle \mathrm{CBG} \cong \varangle F E H$, and \varangle $\mathrm{GBA} \cong \varangle \mathrm{HED}$, then $\varangle \mathrm{ABC} \cong \varangle \mathrm{DEF}$.
- Proposition 3.20 (Angle Subtraction): If $\overrightarrow{\mathrm{BG}}$ is between $\overrightarrow{\mathrm{BA}}$ and $\overrightarrow{B C}, \overrightarrow{E H}$ is between $\overrightarrow{\mathrm{ED}}$ and $\mathrm{EF}, \varangle \mathrm{CBG} \cong \varangle F E H$, and $\varangle A B C \cong \varangle D E F$, then $\varangle G B A \cong \varangle H E D$.

Comparison

- $\varangle \mathrm{ABC}<\varangle \mathrm{DEF}$ means there is a ray EG between ED and EF such that $\varangle \mathrm{ABC} \cong \varangle \mathrm{DEG}$.

Proposition 3.21 (Ordering of angles)

1. Exactly one of the following happens: $\varangle \mathrm{P}<\varangle \mathrm{Q}$, $\varangle P \cong \varangle \mathrm{Q}$, or $\varangle \mathrm{Q}<\varangle \mathrm{P}$.
2. If $\varangle P<\varangle Q$ and $\varangle Q \cong \varangle R$, then $\varangle P<\varangle R$.
3. If $\varangle P<\varangle Q$ and $\varangle P \cong \varangle R$, then $\varangle R<\varangle Q$.
4. If $\varangle \mathrm{P}<\varangle \mathrm{Q}$ and $\varangle \mathrm{Q}<\varangle \mathrm{R}$, then $\varangle \mathrm{P}<\varangle \mathrm{R}$.

To think about for Monday!!!

- Proposition 3.22 (SSS): Let $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$ be two triangles. If $\mathrm{AB} \cong \mathrm{DE}, \mathrm{BC} \cong \mathrm{EF}$ and $\mathrm{AC} \cong \mathrm{DF}$, then $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.
- Proposition 3.23: All right angles are congruent.

Hints are to be found in the book.

