

Vertical angles

 Let *l* and *m* be two distinct lines meeting at B and A*B*C on *l* and D*B*E on *m*. Angles *⊲*ABD and *⊲*CBE are called *vertical angles*.

Are angles ⊲ABE and ⊲CBD vertical as well? Why or why not?

Proposition 3.15

- 1. Vertical angles are congruent to each other.
- 2. An angle congruent to a right angle is a right angle.

Proof: Use Proposition 3.14.

Proof

- (a) Let ⊲ABD and ⊲ CBE be vertical angles, with A*B*C and D*B*E. We must show that ⊲ ABD ≅ ⊲ CBE. By definition of supplementary angles, ⊲ ABD and ⊲ ABE are supplements and ⊲ CBE and ⊲ ABE are supplements. By C-2, ⊲ABE ≅ ⊲ ABE. Therefore by Proposition 3.14, ⊲ ABD ≅ ⊲ CBE\$.
- (b) Let < ABC be a right angle. Suppose that < DEF ≅ < ABC. Let < X be supplementary to < ABC and let < Y be supplementary to < DEF. We must prove that < DEF ≅ < Y. By definition of right angle, < ABC ≅ < X. By Proposition3.14,
 < X ≅ < Y. We now have < DEF ≅ < ABC ≅ < X ≅ < Y. By C-2, < DEF ≅ < Y. Thus < DEF is a right angle.

Perpendicular?

Suppose lines *l* and *m* meet at a point A. Lines *l* and *m* are *perpendicular* if there is a point B on *l* and a point C on *m* such that *A*BAC is a right angle.

Proposition 3.16: For every line *l* and every point P there exists a line through P perpendicular to *l*.

Reminder:

- We proved: "The base angles of an isosceles triangle are congruent."
- Equivalently: If $AB \cong AC$ in a $\triangle ABC$, then $\triangleleft C \cong \triangleleft B$.

• Q: If in a $\triangle ABC$ you have $\triangleleft C \cong \triangleleft B$, what can you say about that triangle?

ASA criterion for congruence

For Monday: how you might prove these two?

Proposition 3.17: Let $\triangle ABC$ and $\triangle DEF$ be two triangles. If $\triangleleft A \cong \triangleleft D$, $\triangleleft B \cong \triangleleft E$ and $AB \cong DE$, then $\triangle ABC \cong \triangle DEF$.

Proposition 3.18: If in a $\triangle ABC$ we have $\triangleleft A \cong \triangleleft B$, then $\triangle ABC$ is isosceles.

Angle addition, subtraction and comparison

- There are equivalent statements for congruence of angles to those we were either given as axioms or that we proved for segments. Here is a sampling:
- <u>Proposition 3.19</u> (Angle addition): If BG is between BA and BC, EH is between ED and EF, \triangleleft CBG $\cong \triangleleft$ FEH, and \triangleleft GBA $\cong \triangleleft$ HED, then \triangleleft ABC $\cong \triangleleft$ DEF.
- Proposition 3.20 (Angle Subtraction): If \overrightarrow{BG} is between \overrightarrow{BA} and \overrightarrow{BC} , \overrightarrow{EH} is between \overrightarrow{ED} and \overrightarrow{EF} , $\triangleleft \overrightarrow{CBG} \cong \triangleleft \overrightarrow{FEH}$, and $\triangleleft \overrightarrow{ABC} \cong \triangleleft \overrightarrow{DEF}$, then $\triangleleft \overrightarrow{GBA} \cong \triangleleft \overrightarrow{HED}$.

Comparison

■ \triangleleft ABC < \triangleleft DEF means there is a ray EG between ED and EF such that \triangleleft ABC $\cong \triangleleft$ DEG.

Proposition 3.21 (Ordering of angles)

- 1. Exactly one of the following happens: $\triangleleft P \leq \triangleleft Q$, $\triangleleft P \cong \triangleleft Q$, or $\triangleleft Q \leq \triangleleft P$.
- 2. If $\triangleleft P < \triangleleft Q$ and $\triangleleft Q \cong \triangleleft R$, then $\triangleleft P < \triangleleft R$.
- 3. If $\triangleleft P \leq \triangleleft Q$ and $\triangleleft P \cong \triangleleft R$, then $\triangleleft R \leq \triangleleft Q$.
- 4. If $\triangleleft P \leq \triangleleft Q$ and $\triangleleft Q \leq \triangleleft R$, then $\triangleleft P \leq \triangleleft R$.

To think about for Monday!!!

Proposition 3.22 (SSS): Let $\triangle ABC$ and $\triangle DEF$ be two triangles. If $AB \cong DE$, $BC \cong EF$ and $AC \cong DF$, then $\triangle ABC \cong \triangle DEF$.

Proposition 3.23: All right angles are congruent.

Hints are to be found in the book.