Class \#23

Should we talk about congruence?
Sure, for a change...

Comments about homework

- "opposite sides of m as M" ???
- By homework4, \#1 P, Q, L, M are distinct points.
- HW4, \#1 says: $A * B * C$ and $A * C * D$ then A, B, C, D are distinct.
- You had $\mathrm{P}^{*} \mathrm{M}^{*} \mathrm{Q}$ and $\mathrm{P}^{*} \mathrm{~L}^{*} \mathrm{Q}$
- Crossbar theorem was used in Proof of 3.8(c)

Proposition 3.13

1. Exactly one of the following holds: $\mathrm{AB}<\mathrm{CD}, \mathrm{AB} \cong \mathrm{CD}$, or $A B>C D$.
2. If $\mathrm{AB}<\mathrm{CD}$ and $\mathrm{CD} \cong \mathrm{EF}$, then $\mathrm{AB}<\mathrm{EF}$.
3. If $\mathrm{AB}<\mathrm{CD}$ and $\mathrm{AB} \cong \mathrm{EF}$, then $\mathrm{EF}<\mathrm{CD}$.
4. If $\mathrm{AB}<\mathrm{CD}$ and $\mathrm{CD}<\mathrm{EF}$, then $\mathrm{AB}<\mathrm{EF}$.

- Definition: $\mathrm{AB}<\mathrm{CD}$ if there exists a point E between C and D such that $A B \cong C E$.

Sketch of 1.

- Either $A B \cong C D$ or $A B \nsubseteq C D$.
- If $A B \cong C D$ you must show that $A B \nless C D$ and $A B \ngtr C D$. Which axiom might be helpful?
- If $\mathrm{AB} \not \equiv \mathrm{CD}$, then show that either $\mathrm{AB}<\mathrm{CD}$ or $\mathrm{AB}>$ CD. In each case you must show that remaining option is not possible (that is, if $A B<C D$, show that $A B \ngtr C D$).

Supplementary angles

- If two angles $\varangle \mathrm{BAC}$ and $\varangle \mathrm{DAC}$ have a common side AC and two other sides $\overrightarrow{\mathrm{AB}}$ and $\overrightarrow{\mathrm{AD}}$ are opposite rays then we say the angles are supplements of each other, or supplementary angles.
- An angle $\varangle \mathrm{BAC}$ is a right angle if it is congruent to its supplementary angle.
- Proposition 3.14: Supplementary angles of congruent angles are congruent.

