

Should we talk about congruence? Sure, for a change...

Comments about homework

- "opposite sides of *m* as M"???
- By homework4, #1 P, Q, L, M are distinct points.
 - HW4, #1 says: A*B*C and A*C*D then A, B, C, D are distinct.
 - □ You had P*M*Q and P*L*Q
- Crossbar theorem was used in Proof of 3.8(c)

Proposition 3.13

- 1. Exactly one of the following holds: AB < CD, $AB \cong CD$, or AB > CD.
- If $AB \leq CD$ and $CD \cong EF$, then $AB \leq EF$.
- 3. If AB<CD and AB \cong EF, then EF<CD.
- 4. If AB<CD and CD<EF, then AB<EF.
- Definition: AB < CD if there exists a point E between C and D such that $AB \cong CE$.

Sketch of 1.

- Either $AB \cong CD$ or $AB \ncong CD$.
 - If AB ≅ CD you must show that AB ∠CD and AB ∠CD.
 Which axiom might be helpful?
 - If AB ≇ CD, then show that either AB < CD or AB > CD. In each case you must show that remaining option is not possible (that is, if AB<CD, show that AB≯CD).

Supplementary angles

- If two angles \triangleleft BAC and \triangleleft DAC have a common side \overrightarrow{AC} and two other sides \overrightarrow{AB} and \overrightarrow{AD} are opposite rays then we say the angles are *supplements* of each other, or *supplementary angles*.
- An angle ⊲BAC is a right angle if it is congruent to its supplementary angle.
- Proposition 3.14: Supplementary angles of congruent angles are congruent.