

Congruence ...

Model

In the Cartesian plane we can define length of segments:
A=(a₁, a₂) and B=(b₁, b₂), then

- Two segments are congruent iff they have equal length.
- Two angles are congruent iff they have equal measures.
- $c^2 = a^2 + b^2 2ab \cos C$, where

SAS is independent of other axioms

 Use Cartesian plane, except the length of the segments whose endpoints are on the x-axis will be twice as long as they used to be.

Does this satisfy *C1-5*? What about *SAS*?

Proposition 3.11 (Segment subtraction)

• If A^*B^*C and D^*E^*F , $AB \cong DE$ and $AC \cong DF$, then $BC \cong EF$.

Proof on next homework.

Proposition 3.12. If $AC \cong DF$, then for any point B between A and

C, there is a unique point E between D and F such that $AB \cong DE$.

- Sketch of proof: By C1 there is a unique point E on DF such that AB ≅ DE. Either:
 - $\Box D^*E^*F done$
 - E=F we have AB \cong DE and AC \cong DE, hence by *C3* we have AB \cong AC. Since B≠C, we have a contradiction to uniqueness in *C1*.
 - D*F*E then on the ray opposite to CA there is a unique point G such that CG ≅ EF. By C3, AG ≅ DE. Further, since AB ≅ DE we have that AB ≅ AG. We know that B≠C (since B*C*G by Prop. 3.3), again contradicting the uniqueness in C1.

Comparing segments?

Is there any way of telling when one segment is "smaller" then another without talking about length? Use only undefined terms we have.

- *Definition:* AB<CD if there exists a point E between C and D such that $AB \cong CE$.
- When is $AB \not< CD$?

To contemplate for Friday:

Proposition 3.13:

- Exactly one of the following holds: AB < CD, AB≅CD, or AB>CD.
- 2. If AB<CD and CD \cong EF, then AB<EF.

3. If AB<CD and AB \cong EF, then EF<CD.

4. If AB<CD and CD<EF, then AB<EF.