Class \#22

Congruence ...

Model

- In the Cartesian plane we can define length of segments:
- $\mathrm{A}=\left(a_{1}, a_{2}\right)$ and $\mathrm{B}=\left(b_{1}, b_{2}\right)$, then
- Two segments are congruent iff they have equal length.
- Two angles are congruent iff they have equal measures.
- $c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C$, where

SAS is independent of other axioms

- Use Cartesian plane, except the length of the segments whose endpoints are on the x -axis will be twice as long as they used to be.
- Does this satisfy $\boldsymbol{C 1 - 5}$? What about $\boldsymbol{S A S}$?

Proposition 3.11 (Segment subtraction)

- If $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}$ and $\mathrm{D}^{*} \mathrm{E}^{*} \mathrm{~F}, \mathrm{AB} \cong \mathrm{DE}$ and $\mathrm{AC} \cong \mathrm{DF}$, then $B C \cong E F$.
- Proof on next homework.

Proposition 3.12. If $\mathrm{AC} \cong \mathrm{DF}$, then for any point B between A and
C , there is a unique point E between D and F such that $\mathrm{AB} \cong \mathrm{DE}$.

- Sketch of proof: By \boldsymbol{C} 1 there is a unique point E on DF such that $\mathrm{AB} \cong \mathrm{DE}$. Either:
- D*E*F - done
- $\mathrm{E}=\mathrm{F}$ - we have $\mathrm{AB} \cong \mathrm{DE}$ and $\mathrm{AC} \cong \mathrm{DE}$, hence by $\boldsymbol{C} \boldsymbol{3}$ we have $A B \cong A C$. Since $B \neq C$, we have a contradiction to uniqueness in $\mathbf{C 1}$.
- $\mathrm{D}^{*} \mathrm{~F}^{*} \mathrm{E}$ - then on the ray opposite to $\overrightarrow{\mathrm{CA}}$ there is a unique point G such that $\mathrm{CG} \cong \mathrm{EF}$. By $\boldsymbol{C 3}, \mathrm{AG} \cong \mathrm{DE}$. Further, since $A B \cong D E$ we have that $A B \cong A G$. We know that $\mathrm{B} \neq \mathrm{C}$ (since $\mathrm{B}^{*} \mathrm{C}^{*} \mathrm{G}$ by Prop. 3.3), again contradicting the uniqueness in $\boldsymbol{C 1}$.

Comparing segments?

- Is there any way of telling when one segment is "smaller" then another without talking about length? Use only undefined terms we have.
- Definition: $\mathrm{AB}<\mathrm{CD}$ if there exists a point E between C and D such that $A B \cong C E$.
- When is $\mathrm{AB} \nless \mathrm{CD}$?

To contemplate for Friday:

Proposition 3.13:

1. Exactly one of the following holds: $\mathrm{AB}<\mathrm{CD}$, $A B \cong C D$, or $A B>C D$.
2. If $\mathrm{AB}<\mathrm{CD}$ and $\mathrm{CD} \cong \mathrm{EF}$, then $\mathrm{AB}<\mathrm{EF}$.
3. If $\mathrm{AB}<\mathrm{CD}$ and $\mathrm{AB} \cong \mathrm{EF}$, then $\mathrm{EF}<\mathrm{CD}$.
4. If $\mathrm{AB}<\mathrm{CD}$ and $\mathrm{CD}<\mathrm{EF}$, then $\mathrm{AB}<\mathrm{EF}$.
