

More on congruence

D _____ E

Can you find a triangle congruent to $\triangle ABC$ whose side is DE?

Can you now prove

If in $\triangle ABC$ we have $AB\cong AC$ then $\triangleleft B\cong \triangleleft C$

Since $AB\cong AC$, $AC\cong AB$, $\triangleleft A \cong \triangleleft A$ we have $\triangle ABC \cong \triangle ACB$, by *SAS*. By definition of congruent triangles we have that corresponding parts, are congruent, so $\triangleleft B \cong \triangleleft C$

Model?

In the Cartesian plane we can define length of segments:

• A=
$$(a_1, a_2)$$
 and B= (b_1, b_2) , then
 $\sqrt{((a_1 - b_1)^2 + (a_2 - b_2)^2)}$

- Two segments are congruent iff they have equal length.
- Two angles are congruent iff they have equal measures.
- $c^2 = a^2 + b^2 2ab \cos C$, where

