Class \#21

More on congruence

Question

A
C

Can you find a triangle congruent to $\triangle \mathrm{ABC}$ whose side is DE ?

Can you now prove

- If in $\triangle A B C$ we have $A B \cong A C$ then $\varangle B \cong \varangle C$

C

Since $A B \cong A C, A C \cong A B, \varangle A \cong \varangle A$ we have $\triangle \mathrm{ABC} \cong \triangle \mathrm{ACB}$, by $\boldsymbol{S} \boldsymbol{A} \boldsymbol{S}$. By definition of congruent triangles we have that corresponding parts, are congruent, so $\varangle B \cong \varangle C$

Model?

- In the Cartesian plane we can define length of segments:
- $\mathrm{A}=\left(a_{1}, a_{2}\right)$ and $\mathrm{B}=\left(b_{1}, b_{2}\right)$, then

$$
\sqrt{\left(\left(a_{1}-b_{1}\right)^{2}+\left(a_{2}-b_{2}\right)^{2}\right)}
$$

- Two segments are congruent iff they have equal length.
- Two angles are congruent iff they have equal measures.
- $c^{2}=a^{2}+b^{2}-2 a b \cdot \cos C$, where

