Class \#20

Axiom of congruence

Changing Pasch's theorem

- Pasch's theorem: If A, B, C are distinct, noncollinear points and l is any line intersecting $A B$ in a point between A and B , then l also intersects AC or BC . If C does not lie on l, then l does not intersect both AC and BC.
- Can you come up with a theorem in spirit of Pasch's if a line l is replaced by a ray r.

Congruence!!!

- Last undefined term
- What do you think of when you hear the word congruent?
- We'll really be thinking of two different things:
- Congruent segments
- Congruent angles
- Define: Two triangles are congruent if there is a one to one correspondence between their vertices so that corresponding sides are congruent and so that corresponding angles are congruent.
- If we write $\triangle \mathrm{ABC} \cong \triangle \mathrm{EFG}$ we will mean that E corresponds to A, F corresponds to B and G corresponds to C.

C1 - Congruence Axiom 1

- If A and B are distinct points and if A^{\prime} is any point, then for each ray r emanating from A^{\prime}, there is a unique point B^{\prime} on r, such that $\mathrm{B}^{\prime} \neq \mathrm{A}^{\prime}$ and $\mathrm{AB} \cong \mathrm{A}^{\prime} \mathrm{B}^{\prime}$.

C2-Congruence Axiom 2

- If $\mathrm{AB} \cong \mathrm{CD}$ and $\mathrm{AB} \cong \mathrm{EF}$ then $\mathrm{CD} \cong \mathrm{EF}$. Furthermore, every segment is congruent to itself.
- Lemma 3.9.5: Congruence of segments is equivalence relation.
- $\mathrm{AB} \cong \mathrm{AB}$, by $\boldsymbol{C} 2$-- reflexive
- Since $A B \cong C D$ and $A B \cong A B$, by $C 2$, we see $C D \cong A B$
- symmetric
- Transitive by $\boldsymbol{C 2}$.

C3-Congruence Axiom 3

- If $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}, \mathrm{A}{ }^{*} \mathrm{~B}{ }^{*} \mathrm{C}^{\prime}, \mathrm{AB} \cong \mathrm{A}^{\prime} \mathrm{B}^{\prime}$ and $\mathrm{BC} \cong \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, then $\mathrm{AC} \cong \mathrm{A}^{\prime} \mathrm{C}^{\prime}$

C4-Congruence Axiom 4

- Given any $\varangle B A C$ and given any ray $A^{\prime} B^{\prime}$ there is a unique ray $\mathrm{A}^{\prime} \mathrm{C}^{\prime}$ on a given side of the line $\mathrm{A}^{\prime} \mathrm{B}$ ' such that $\varangle B A C \cong \varangle B^{\prime} A^{\prime} C^{\prime}$.

C5-Congruence Axiom 5

- If $\varangle A \cong \varangle B$ and $\varangle B \cong \varangle C$ then $\varangle A \cong \varangle C$. Moreover, every angle is congruent to itself.
- Lemma 3.9.6: Congruence of angles is equivalence relation.

C6 (SAS) - Congruence Axiom 6

- If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

C

$\Delta \mathrm{ABC} \cong \Delta \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{A}^{\prime}$
$\Delta \mathrm{BAC} \cong \Delta \mathrm{C}^{\prime} \mathrm{B}^{\prime} \mathrm{A}^{\prime}$

