

Axiom of congruence

Changing Pasch's theorem

Pasch's theorem: If A, B, C are distinct, noncollinear points and l is any line intersecting AB in a point between A and B, then l also intersects AC or BC. If C does not lie on l, then l does not intersect both AC and BC.

 Can you come up with a theorem in spirit of Pasch's if a line *l* is replaced by a ray *r*.

Congruence!!!

- Last undefined term
- What do you think of when you hear the word congruent?
- We'll really be thinking of two different things:
 - Congruent segments
 - Congruent angles
- Define: Two triangles are congruent if there is a one to one correspondence between their vertices so that corresponding sides are congruent and so that corresponding angles are congruent.
- If we write $\triangle ABC \cong \triangle EFG$ we will mean that E corresponds to A, F corresponds to B and G corresponds to C.

C1– Congruence Axiom 1

• If A and B are distinct points and if A' is any point, then for each ray *r* emanating from A', there is a unique point B' on *r*, such that $B' \neq A'$ and $AB \cong A'B'$.

C2– Congruence Axiom 2

- If $AB \cong CD$ and $AB \cong EF$ then $CD \cong EF$. Furthermore, every segment is congruent to itself.
- Lemma 3.9.5: Congruence of segments is equivalence relation.
 - □ AB \cong AB, by *C2* -- reflexive
 - □ Since $AB \cong CD$ and $AB \cong AB$, by *C2*, we see $CD \cong AB$ – symmetric
 - **Transitive by** *C2*.

C3 – Congruence Axiom 3

• If A*B*C, A'*B'*C', AB \cong A'B' and BC \cong B'C', then AC \cong A'C'

C4 – Congruence Axiom 4

Given any $\triangleleft BAC$ and given any ray A'B' there is a unique ray A'C' on a given side of the line A'B' such that $\triangleleft BAC \cong \triangleleft B'A'C'$.

C5– Congruence Axiom 5

• If $\triangleleft A \cong \triangleleft B$ and $\triangleleft B \cong \triangleleft C$ then $\triangleleft A \cong \triangleleft C$. Moreover, every angle is congruent to itself.

 Lemma 3.9.6: Congruence of angles is equivalence relation.

C6 (SAS) – Congruence Axiom 6

If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.

 $A ABC \cong A B'C'A'$

 Δ BAC $\cong \Delta$ C'B'A'